首页 > 最新文献

Cell Reports Methods最新文献

英文 中文
Synthetic mismatches enable specific CRISPR-Cas12a-based detection of genome-wide SNVs tracked by ARTEMIS. 合成错配使基于crispr - cas12的全基因组snv特异性检测成为可能。
IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-16 Epub Date: 2024-12-06 DOI: 10.1016/j.crmeth.2024.100912
Kavish A V Kohabir, Jasper Linthorst, Lars O Nooi, Rick Brouwer, Rob M F Wolthuis, Erik A Sistermans

Detection of pathogenic DNA variants is vital in cancer diagnostics and treatment monitoring. While CRISPR-based diagnostics (CRISPRdx) offer promising avenues for cost-effective, rapid, and point-of-care testing, achieving single-nucleotide detection fidelity remains challenging. We present an in silico pipeline that scans the human genome for targeting pathogenic mutations in the seed region (ARTEMIS), the most stringent crRNA domain. ARTEMIS identified 12% of pathogenic SNVs as Cas12a recognizable, including 928 cancer-associated variants such as BRAFV600E, BRCA2E1953∗, TP53V272M, and ALDH2E504K. Cas12a exhibited remarkable tolerance to single mismatches within the seed region. Introducing deliberate synthetic mismatches within the seed region yielded on-target activity with single-nucleotide fidelity. Both positioning and nucleobase types of mismatches influenced detection accuracy. With improved specificity, Cas12a could accurately detect and semi-quantify BRAFV600E in cfDNA from cell lines and patient liquid biopsies. These results provide insights toward rationalized crRNA design for high-fidelity CRISPRdx, supporting personalized and cost-efficient healthcare solutions in oncologic diagnostics.

检测致病性DNA变异在癌症诊断和治疗监测中至关重要。虽然基于crispr的诊断(CRISPRdx)提供了具有成本效益、快速和即时护理检测的有希望的途径,但实现单核苷酸检测保真度仍然具有挑战性。我们提出了一种扫描人类基因组靶向种子区(ARTEMIS)致病性突变的硅管道,这是最严格的crRNA结构域。ARTEMIS鉴定出12%的致病性snv是Cas12a可识别的,包括928种癌症相关变异,如BRAFV600E、BRCA2E1953 *、TP53V272M和ALDH2E504K。Cas12a对种子区单次错配表现出显著的耐受性。在种子区引入故意合成错配,产生了单核苷酸保真度的靶活性。定位和核碱基类型不匹配都会影响检测精度。Cas12a具有更高的特异性,可以准确检测和半定量细胞系和患者液体活检cfDNA中的BRAFV600E。这些结果为高保真CRISPRdx的合理crRNA设计提供了见解,支持肿瘤诊断中个性化和经济高效的医疗保健解决方案。
{"title":"Synthetic mismatches enable specific CRISPR-Cas12a-based detection of genome-wide SNVs tracked by ARTEMIS.","authors":"Kavish A V Kohabir, Jasper Linthorst, Lars O Nooi, Rick Brouwer, Rob M F Wolthuis, Erik A Sistermans","doi":"10.1016/j.crmeth.2024.100912","DOIUrl":"10.1016/j.crmeth.2024.100912","url":null,"abstract":"<p><p>Detection of pathogenic DNA variants is vital in cancer diagnostics and treatment monitoring. While CRISPR-based diagnostics (CRISPRdx) offer promising avenues for cost-effective, rapid, and point-of-care testing, achieving single-nucleotide detection fidelity remains challenging. We present an in silico pipeline that scans the human genome for targeting pathogenic mutations in the seed region (ARTEMIS), the most stringent crRNA domain. ARTEMIS identified 12% of pathogenic SNVs as Cas12a recognizable, including 928 cancer-associated variants such as BRAF<sup>V600E</sup>, BRCA2<sup>E1953∗</sup>, TP53<sup>V272M</sup>, and ALDH2<sup>E504K</sup>. Cas12a exhibited remarkable tolerance to single mismatches within the seed region. Introducing deliberate synthetic mismatches within the seed region yielded on-target activity with single-nucleotide fidelity. Both positioning and nucleobase types of mismatches influenced detection accuracy. With improved specificity, Cas12a could accurately detect and semi-quantify BRAF<sup>V600E</sup> in cfDNA from cell lines and patient liquid biopsies. These results provide insights toward rationalized crRNA design for high-fidelity CRISPRdx, supporting personalized and cost-efficient healthcare solutions in oncologic diagnostics.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100912"},"PeriodicalIF":4.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell RNA sequencing algorithms underestimate changes in transcriptional noise compared to single-molecule RNA imaging. 与单分子RNA成像相比,单细胞RNA测序算法低估了转录噪声的变化。
IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-16 Epub Date: 2024-12-10 DOI: 10.1016/j.crmeth.2024.100933
Neha Khetan, Binyamin Zuckerman, Giuliana P Calia, Xinyue Chen, Ximena Garcia Arceo, Leor S Weinberger

Stochastic fluctuations (noise) in transcription generate substantial cell-to-cell variability. However, how best to quantify genome-wide noise remains unclear. Here, we utilize a small-molecule perturbation (5'-iodo-2'-deoxyuridine [IdU]) to amplify noise and assess noise quantification from numerous single-cell RNA sequencing (scRNA-seq) algorithms on human and mouse datasets and then compare it to noise quantification from single-molecule RNA fluorescence in situ hybridization (smFISH) for a panel of representative genes. We find that various scRNA-seq analyses report amplified noise-without altered mean expression levels-for ∼90% of genes and that smFISH analysis verifies noise amplification for the vast majority of tested genes. Collectively, the analyses suggest that most scRNA-seq algorithms (including a simple normalization approach) are appropriate for quantifying noise, although all algorithms appear to systematically underestimate noise changes compared to smFISH. For practical purposes, this analysis further argues that IdU noise enhancement is globally penetrant-i.e., homeostatically increasing noise without altering mean expression levels-and could enable investigations of the physiological impacts of transcriptional noise.

转录中的随机波动(噪声)产生了大量的细胞间变异性。然而,如何最好地量化全基因组噪声仍不清楚。在这里,我们利用小分子扰动(5'-碘-2'-脱氧尿嘧啶[IdU])来放大噪声,并评估来自人类和小鼠数据集的众多单细胞RNA测序(scRNA-seq)算法的噪声量化,然后将其与来自一组代表性基因的单分子RNA荧光原位杂交(smFISH)的噪声量化进行比较。我们发现,各种scRNA-seq分析报告了约90%基因的噪声放大-没有改变平均表达水平,smFISH分析证实了绝大多数被测基因的噪声放大。总的来说,分析表明大多数scRNA-seq算法(包括一种简单的归一化方法)都适合于量化噪声,尽管与smFISH相比,所有算法似乎都系统性地低估了噪声变化。在实际应用中,该分析进一步论证了IdU噪声增强具有全局渗透性,即:在不改变平均表达水平的情况下,动态地增加噪音,从而可以研究转录噪音的生理影响。
{"title":"Single-cell RNA sequencing algorithms underestimate changes in transcriptional noise compared to single-molecule RNA imaging.","authors":"Neha Khetan, Binyamin Zuckerman, Giuliana P Calia, Xinyue Chen, Ximena Garcia Arceo, Leor S Weinberger","doi":"10.1016/j.crmeth.2024.100933","DOIUrl":"10.1016/j.crmeth.2024.100933","url":null,"abstract":"<p><p>Stochastic fluctuations (noise) in transcription generate substantial cell-to-cell variability. However, how best to quantify genome-wide noise remains unclear. Here, we utilize a small-molecule perturbation (5'-iodo-2'-deoxyuridine [IdU]) to amplify noise and assess noise quantification from numerous single-cell RNA sequencing (scRNA-seq) algorithms on human and mouse datasets and then compare it to noise quantification from single-molecule RNA fluorescence in situ hybridization (smFISH) for a panel of representative genes. We find that various scRNA-seq analyses report amplified noise-without altered mean expression levels-for ∼90% of genes and that smFISH analysis verifies noise amplification for the vast majority of tested genes. Collectively, the analyses suggest that most scRNA-seq algorithms (including a simple normalization approach) are appropriate for quantifying noise, although all algorithms appear to systematically underestimate noise changes compared to smFISH. For practical purposes, this analysis further argues that IdU noise enhancement is globally penetrant-i.e., homeostatically increasing noise without altering mean expression levels-and could enable investigations of the physiological impacts of transcriptional noise.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100933"},"PeriodicalIF":4.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704610/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142814498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput specificity profiling of antibody libraries using ribosome display and microfluidics. 利用核糖体展示和微流体技术对抗体文库进行高通量特异性分析。
IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-16 DOI: 10.1016/j.crmeth.2024.100934
Ellen K Wagner, Kyle P Carter, Yoong Wearn Lim, Geeyun Jenny Chau, Alexis Enstrom, Nicholas P Wayham, Jessica-Mae Hanners, Chiann-Ling C Yeh, Marc Fouet, Jackson Leong, Adam S Adler, Jan Fredrik Simons

In this work, we developed PolyMap (polyclonal mapping), a high-throughput method for mapping protein-protein interactions. We demonstrated the mapping of thousands of antigen-antibody interactions between diverse antibody libraries isolated from convalescent and vaccinated COVID-19 donors and a set of clinically relevant SARS-CoV-2 spike variants. We identified over 150 antibodies with a variety of distinctive binding patterns toward the antigen variants and found a broader binding profile, including targeting of the Omicron variant, in the antibody repertoires of more recent donors. We then used these data to select mixtures of a small number of clones with complementary reactivity that together provide strong potency and broad neutralization. PolyMap is a generalizable platform that can be used for one-pot epitope mapping, immune repertoire profiling, and therapeutic design and, in the future, could be expanded to other families of interacting proteins.

在这项工作中,我们开发了PolyMap(多克隆定位),这是一种高通量的蛋白质相互作用定位方法。我们展示了从恢复期和接种COVID-19的供体中分离的不同抗体文库与一组临床相关的SARS-CoV-2刺突变体之间数千种抗原-抗体相互作用的映射。我们鉴定了150多种针对抗原变体具有不同结合模式的抗体,并在最近供体的抗体谱中发现了更广泛的结合谱,包括靶向Omicron变体。然后,我们使用这些数据来选择具有互补反应性的少数克隆的混合物,这些克隆共同提供强大的效力和广泛的中和作用。PolyMap是一个通用的平台,可用于单锅表位定位,免疫库分析和治疗设计,并且在未来,可以扩展到其他相互作用蛋白家族。
{"title":"High-throughput specificity profiling of antibody libraries using ribosome display and microfluidics.","authors":"Ellen K Wagner, Kyle P Carter, Yoong Wearn Lim, Geeyun Jenny Chau, Alexis Enstrom, Nicholas P Wayham, Jessica-Mae Hanners, Chiann-Ling C Yeh, Marc Fouet, Jackson Leong, Adam S Adler, Jan Fredrik Simons","doi":"10.1016/j.crmeth.2024.100934","DOIUrl":"10.1016/j.crmeth.2024.100934","url":null,"abstract":"<p><p>In this work, we developed PolyMap (polyclonal mapping), a high-throughput method for mapping protein-protein interactions. We demonstrated the mapping of thousands of antigen-antibody interactions between diverse antibody libraries isolated from convalescent and vaccinated COVID-19 donors and a set of clinically relevant SARS-CoV-2 spike variants. We identified over 150 antibodies with a variety of distinctive binding patterns toward the antigen variants and found a broader binding profile, including targeting of the Omicron variant, in the antibody repertoires of more recent donors. We then used these data to select mixtures of a small number of clones with complementary reactivity that together provide strong potency and broad neutralization. PolyMap is a generalizable platform that can be used for one-pot epitope mapping, immune repertoire profiling, and therapeutic design and, in the future, could be expanded to other families of interacting proteins.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"4 12","pages":"100934"},"PeriodicalIF":4.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single chromatin fiber profiling and nucleosome position mapping in the human brain. 人脑中单个染色质纤维谱和核小体位置定位。
IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-16 Epub Date: 2024-12-03 DOI: 10.1016/j.crmeth.2024.100911
Cyril J Peter, Aman Agarwal, Risa Watanabe, Bibi S Kassim, Xuedi Wang, Tova Y Lambert, Behnam Javidfar, Viviana Evans, Travis Dawson, Maya Fridrikh, Kiran Girdhar, Panos Roussos, Sathiji K Nageshwaran, Nadejda M Tsankova, Robert P Sebra, Mitchell R Vollger, Andrew B Stergachis, Dan Hasson, Schahram Akbarian

We apply a single-molecule chromatin fiber sequencing (Fiber-seq) protocol designed for amplification-free cell-type-specific mapping of the regulatory architecture at nucleosome resolution along extended ∼10-kb chromatin fibers to neuronal and non-neuronal nuclei sorted from human brain tissue. Specifically, application of this method enables the resolution of cell-selective promoter and enhancer architectures on single fibers, including transcription factor footprinting and position mapping, with sequence-specific fixation of nucleosome arrays flanking transcription start sites and regulatory motifs. We uncover haplotype-specific chromatin patterns, multiple regulatory elements cis-aligned on individual fibers, and accessible chromatin at 20,000 unique sites encompassing retrotransposons and other repeat sequences hitherto "unmappable" by short-read epigenomic sequencing. Overall, we show that Fiber-seq is applicable to human brain tissue, offering sharp demarcation of nucleosome-depleted regions at sites of open chromatin in conjunction with multi-kilobase nucleosomal positioning at single-fiber resolution on a genome-wide scale.

我们应用了一种单分子染色质纤维测序(fiber -seq)方案,该方案设计用于在核小体分辨率下,沿着延伸的~ 10kb染色质纤维,对从人类脑组织中分类的神经元和非神经元细胞核进行无扩增的细胞类型特异性调控结构定位。具体来说,该方法的应用能够在单个纤维上解析细胞选择性启动子和增强子结构,包括转录因子足迹和位置定位,以及转录起始位点和调控基序两侧的核小体阵列的序列特异性固定。我们发现了单倍型特异性染色质模式,单个纤维上顺式排列的多个调控元件,以及包含反转录转座子和其他迄今为止通过短读表观基因组测序“无法绘制”的重复序列的20,000个独特位点的可访问染色质。总的来说,我们表明纤维序列适用于人类脑组织,在开放染色质位点上提供核小体耗尽区域的清晰划分,并在全基因组范围内以单纤维分辨率进行多千碱基核小体定位。
{"title":"Single chromatin fiber profiling and nucleosome position mapping in the human brain.","authors":"Cyril J Peter, Aman Agarwal, Risa Watanabe, Bibi S Kassim, Xuedi Wang, Tova Y Lambert, Behnam Javidfar, Viviana Evans, Travis Dawson, Maya Fridrikh, Kiran Girdhar, Panos Roussos, Sathiji K Nageshwaran, Nadejda M Tsankova, Robert P Sebra, Mitchell R Vollger, Andrew B Stergachis, Dan Hasson, Schahram Akbarian","doi":"10.1016/j.crmeth.2024.100911","DOIUrl":"10.1016/j.crmeth.2024.100911","url":null,"abstract":"<p><p>We apply a single-molecule chromatin fiber sequencing (Fiber-seq) protocol designed for amplification-free cell-type-specific mapping of the regulatory architecture at nucleosome resolution along extended ∼10-kb chromatin fibers to neuronal and non-neuronal nuclei sorted from human brain tissue. Specifically, application of this method enables the resolution of cell-selective promoter and enhancer architectures on single fibers, including transcription factor footprinting and position mapping, with sequence-specific fixation of nucleosome arrays flanking transcription start sites and regulatory motifs. We uncover haplotype-specific chromatin patterns, multiple regulatory elements cis-aligned on individual fibers, and accessible chromatin at 20,000 unique sites encompassing retrotransposons and other repeat sequences hitherto \"unmappable\" by short-read epigenomic sequencing. Overall, we show that Fiber-seq is applicable to human brain tissue, offering sharp demarcation of nucleosome-depleted regions at sites of open chromatin in conjunction with multi-kilobase nucleosomal positioning at single-fiber resolution on a genome-wide scale.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100911"},"PeriodicalIF":4.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142781313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the landscape of antibody discovery. 扩大抗体发现的范围。
IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-16 DOI: 10.1016/j.crmeth.2024.100936
Shelbe Johnson, Brandon J DeKosky

Library:library screening technologies hold substantial promise for paired antibody:antigen discovery, but challenges have persisted. In this issue of Cell Reports Methods, Wagner et al. introduce a method that combines antibody-ribosome-mRNA complexes, antigen cell surface display, and single-cell RNA sequencing to successfully screen diverse antibody gene libraries against a library of viral receptor proteins.

文库:文库筛选技术对配对抗体:抗原的发现有很大的希望,但挑战仍然存在。在这一期的Cell Reports Methods中,Wagner等人介绍了一种结合抗体-核糖体- mrna复合物、抗原细胞表面展示和单细胞RNA测序的方法,成功筛选了针对病毒受体蛋白文库的多种抗体基因文库。
{"title":"Expanding the landscape of antibody discovery.","authors":"Shelbe Johnson, Brandon J DeKosky","doi":"10.1016/j.crmeth.2024.100936","DOIUrl":"10.1016/j.crmeth.2024.100936","url":null,"abstract":"<p><p>Library:library screening technologies hold substantial promise for paired antibody:antigen discovery, but challenges have persisted. In this issue of Cell Reports Methods, Wagner et al. introduce a method that combines antibody-ribosome-mRNA complexes, antigen cell surface display, and single-cell RNA sequencing to successfully screen diverse antibody gene libraries against a library of viral receptor proteins.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"4 12","pages":"100936"},"PeriodicalIF":4.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0. 利用IOBR 2.0对肿瘤微环境进行多维解码,增强免疫肿瘤学研究。
IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-16 Epub Date: 2024-12-02 DOI: 10.1016/j.crmeth.2024.100910
Dongqiang Zeng, Yiran Fang, Wenjun Qiu, Peng Luo, Shixiang Wang, Rongfang Shen, Wenchao Gu, Xiatong Huang, Qianqian Mao, Gaofeng Wang, Yonghong Lai, Guangda Rong, Xi Xu, Min Shi, Zuqiang Wu, Guangchuang Yu, Wangjun Liao

The use of large transcriptome datasets has greatly improved our understanding of the tumor microenvironment (TME) and helped develop precise immunotherapies. The growing application of multi-omics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptome sequencing has led to many new insights, yet these findings still require clinical validation in large cohorts. To advance multi-omics integration in TME research, we have upgraded the Immuno-Oncology Biological Research (IOBR) package to IOBR 2.0, restructuring and standardizing its analytical workflow. IOBR 2.0 offers six modules for TME analysis based on multi-omics data, including data preprocessing, TME estimation, TME infiltration pattern identification, cellular interaction analysis, genome and TME interaction, and feature visualization, as well as modeling. Additionally, IOBR 2.0 enables constructing gene signatures and reference matrices from scRNA-seq data for TME deconvolution. The user-friendly pipeline provides comprehensive insights into tumor-immune interactions, and a detailed GitBook(https://iobr.github.io/book/) offers a complete manual and analysis guide for each module.

大型转录组数据集的使用极大地提高了我们对肿瘤微环境(TME)的理解,并有助于开发精确的免疫疗法。随着多组学、单细胞RNA测序(scRNA-seq)和空间转录组测序的应用越来越广泛,这些发现带来了许多新的见解,但这些发现仍需要在大型队列中进行临床验证。为了推进多组学在TME研究中的整合,我们将免疫肿瘤生物学研究(IOBR)包升级到IOBR 2.0,重组和标准化了其分析工作流程。IOBR 2.0为基于多组学数据的TME分析提供了6个模块,包括数据预处理、TME估计、TME浸润模式识别、细胞相互作用分析、基因组与TME相互作用、特征可视化和建模。此外,IOBR 2.0可以从scRNA-seq数据中构建基因签名和参考矩阵,用于TME反卷积。用户友好的管道提供了对肿瘤免疫相互作用的全面见解,详细的GitBook(https://iobr.github.io/book/)为每个模块提供了完整的手册和分析指南。
{"title":"Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0.","authors":"Dongqiang Zeng, Yiran Fang, Wenjun Qiu, Peng Luo, Shixiang Wang, Rongfang Shen, Wenchao Gu, Xiatong Huang, Qianqian Mao, Gaofeng Wang, Yonghong Lai, Guangda Rong, Xi Xu, Min Shi, Zuqiang Wu, Guangchuang Yu, Wangjun Liao","doi":"10.1016/j.crmeth.2024.100910","DOIUrl":"10.1016/j.crmeth.2024.100910","url":null,"abstract":"<p><p>The use of large transcriptome datasets has greatly improved our understanding of the tumor microenvironment (TME) and helped develop precise immunotherapies. The growing application of multi-omics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptome sequencing has led to many new insights, yet these findings still require clinical validation in large cohorts. To advance multi-omics integration in TME research, we have upgraded the Immuno-Oncology Biological Research (IOBR) package to IOBR 2.0, restructuring and standardizing its analytical workflow. IOBR 2.0 offers six modules for TME analysis based on multi-omics data, including data preprocessing, TME estimation, TME infiltration pattern identification, cellular interaction analysis, genome and TME interaction, and feature visualization, as well as modeling. Additionally, IOBR 2.0 enables constructing gene signatures and reference matrices from scRNA-seq data for TME deconvolution. The user-friendly pipeline provides comprehensive insights into tumor-immune interactions, and a detailed GitBook(https://iobr.github.io/book/) offers a complete manual and analysis guide for each module.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100910"},"PeriodicalIF":4.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142772889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled aggregative assembly to form self-organizing macroscopic human intestine from induced pluripotent stem cells. 诱导多能干细胞控制聚集组装形成自组织宏观人肠。
IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-16 Epub Date: 2024-12-10 DOI: 10.1016/j.crmeth.2024.100930
Junichi Takahashi, Hady Yuki Sugihara, Shu Kato, Sho Kawasaki, Sayaka Nagata, Ryuichi Okamoto, Tomohiro Mizutani

Human intestinal organoids (HIOs) derived from human pluripotent stem cells (hPSCs) are promising resources for intestinal regenerative therapy as they recapitulate both endodermal and mesodermal components of the intestine. However, due to their hPSC-line-dependent mesenchymal development and spherical morphology, HIOs have limited applicability beyond basic research and development. Here, we demonstrate the incorporation of separately differentiated mesodermal and mid/hindgut cells into assembled spheroids to stabilize mesenchymal growth in HIOs. In parallel, we generate tubular intestinal constructs (assembled human intestinal tubules [a-HITs]) by leveraging the high aggregative property of assembled spheroids. Through rotational culture in a bioreactor, a-HITs self-organize to develop epithelium and supportive mesenchyme. Upon mesenteric transplantation, a-HITs mature into centimeter-scale tubular intestinal tissue with complex architectures. Our aggregation- and suspension-based approach offers basic technology for engineering tubular intestinal tissue from hPSCs, which could be ultimately applied to the generation of the human intestine for clinical application.

来源于人多能干细胞(hPSCs)的人类肠道类器官(HIOs)具有肠道的内胚层和中胚层成分,是肠道再生治疗的重要资源。然而,由于其依赖于hpsc系的间充质发育和球形形态,HIOs在基础研究和开发之外的适用性有限。在本研究中,我们证明了将分离分化的中胚层细胞和中/后肠细胞整合成球状体,以稳定HIOs中间充质细胞的生长。与此同时,我们利用组装球体的高聚集特性生成了管状肠道构建体(组装人肠管[a-HITs])。通过在生物反应器中旋转培养,a- hit自组织形成上皮和支持间质。肠系膜移植后,a- hit成熟为具有复杂结构的厘米级管状肠组织。我们基于聚合和悬浮的方法为从人造血干细胞中提取肠管组织提供了基础技术,最终可用于临床应用的人肠的生成。
{"title":"Controlled aggregative assembly to form self-organizing macroscopic human intestine from induced pluripotent stem cells.","authors":"Junichi Takahashi, Hady Yuki Sugihara, Shu Kato, Sho Kawasaki, Sayaka Nagata, Ryuichi Okamoto, Tomohiro Mizutani","doi":"10.1016/j.crmeth.2024.100930","DOIUrl":"10.1016/j.crmeth.2024.100930","url":null,"abstract":"<p><p>Human intestinal organoids (HIOs) derived from human pluripotent stem cells (hPSCs) are promising resources for intestinal regenerative therapy as they recapitulate both endodermal and mesodermal components of the intestine. However, due to their hPSC-line-dependent mesenchymal development and spherical morphology, HIOs have limited applicability beyond basic research and development. Here, we demonstrate the incorporation of separately differentiated mesodermal and mid/hindgut cells into assembled spheroids to stabilize mesenchymal growth in HIOs. In parallel, we generate tubular intestinal constructs (assembled human intestinal tubules [a-HITs]) by leveraging the high aggregative property of assembled spheroids. Through rotational culture in a bioreactor, a-HITs self-organize to develop epithelium and supportive mesenchyme. Upon mesenteric transplantation, a-HITs mature into centimeter-scale tubular intestinal tissue with complex architectures. Our aggregation- and suspension-based approach offers basic technology for engineering tubular intestinal tissue from hPSCs, which could be ultimately applied to the generation of the human intestine for clinical application.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100930"},"PeriodicalIF":4.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142814496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patient-derived tumor organoid and fibroblast assembloid models for interrogation of the tumor microenvironment in esophageal adenocarcinoma. 食管癌患者源性肿瘤类器官和成纤维细胞组装体模型研究肿瘤微环境。
IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-16 Epub Date: 2024-11-27 DOI: 10.1016/j.crmeth.2024.100909
Benjamin P Sharpe, Liliya A Nazlamova, Carmen Tse, David A Johnston, Jaya Thomas, Rhianna Blyth, Oliver J Pickering, Ben Grace, Jack Harrington, Rushda Rajak, Matthew Rose-Zerilli, Zoe S Walters, Tim J Underwood

The tumor microenvironment (TME) comprises all non-tumor elements of cancer and strongly influences disease progression and phenotype. To understand tumor biology and accurately test new therapeutic strategies, representative models should contain both tumor cells and normal cells of the TME. Here, we describe and characterize co-culture tumor-derived organoids and cancer-associated fibroblasts (CAFs), a major component of the TME, in matrix-embedded assembloid models of esophageal adenocarcinoma (EAC). We demonstrate that the assembloid models faithfully recapitulate the differentiation status of EAC and different CAF phenotypes found in the EAC patient TME. We evaluate cell phenotypes by combining tissue-clearing techniques with whole-mount immunofluorescence and histology, providing a practical framework for the characterization of cancer assembloids.

肿瘤微环境(TME)包括癌症的所有非肿瘤因素,并强烈影响疾病的进展和表型。为了更好地理解肿瘤生物学,准确地测试新的治疗策略,有代表性的模型应该同时包含肿瘤细胞和TME的正常细胞。在这里,我们描述并表征了食管腺癌(EAC)基质嵌入组装体模型中共培养的肿瘤衍生类器官和癌症相关成纤维细胞(CAFs),这是TME的主要组成部分。我们证明,组装体模型忠实地概括了EAC和EAC患者TME中发现的不同CAF表型的分化状态。我们通过将组织清除技术与全挂载免疫荧光和组织学相结合来评估细胞表型,为癌症组合体的表征提供了一个实用的框架。
{"title":"Patient-derived tumor organoid and fibroblast assembloid models for interrogation of the tumor microenvironment in esophageal adenocarcinoma.","authors":"Benjamin P Sharpe, Liliya A Nazlamova, Carmen Tse, David A Johnston, Jaya Thomas, Rhianna Blyth, Oliver J Pickering, Ben Grace, Jack Harrington, Rushda Rajak, Matthew Rose-Zerilli, Zoe S Walters, Tim J Underwood","doi":"10.1016/j.crmeth.2024.100909","DOIUrl":"10.1016/j.crmeth.2024.100909","url":null,"abstract":"<p><p>The tumor microenvironment (TME) comprises all non-tumor elements of cancer and strongly influences disease progression and phenotype. To understand tumor biology and accurately test new therapeutic strategies, representative models should contain both tumor cells and normal cells of the TME. Here, we describe and characterize co-culture tumor-derived organoids and cancer-associated fibroblasts (CAFs), a major component of the TME, in matrix-embedded assembloid models of esophageal adenocarcinoma (EAC). We demonstrate that the assembloid models faithfully recapitulate the differentiation status of EAC and different CAF phenotypes found in the EAC patient TME. We evaluate cell phenotypes by combining tissue-clearing techniques with whole-mount immunofluorescence and histology, providing a practical framework for the characterization of cancer assembloids.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100909"},"PeriodicalIF":4.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704619/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A statistical approach for systematic identification of transition cells from scRNA-seq data. 从scRNA-seq数据中系统鉴定过渡细胞的统计方法。
IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-16 Epub Date: 2024-12-06 DOI: 10.1016/j.crmeth.2024.100913
Yuanxin Wang, Merve Dede, Vakul Mohanty, Jinzhuang Dou, Ziyi Li, Ken Chen

Decoding cellular state transitions is crucial for understanding complex biological processes in development and disease. While recent advancements in single-cell RNA sequencing (scRNA-seq) offer insights into cellular trajectories, existing tools primarily study expressional rather than regulatory state shifts. We present CellTran, a statistical approach utilizing paired-gene expression correlations to detect transition cells from scRNA-seq data without explicitly resolving gene regulatory networks. Applying our approach to various contexts, including tissue regeneration, embryonic development, preinvasive lesions, and humoral responses post-vaccination, reveals transition cells and their distinct gene expression profiles. Our study sheds light on the underlying molecular mechanisms driving cellular state transitions, enhancing our ability to identify therapeutic targets for disease interventions.

解码细胞状态转换对于理解发育和疾病中的复杂生物过程至关重要。虽然单细胞RNA测序(scRNA-seq)的最新进展提供了对细胞轨迹的深入了解,但现有的工具主要研究表达状态而不是调节状态的变化。我们提出CellTran,这是一种统计方法,利用配对基因表达相关性从scRNA-seq数据中检测过渡细胞,而无需明确解决基因调控网络。将我们的方法应用于各种情况,包括组织再生、胚胎发育、侵袭前病变和疫苗接种后的体液反应,揭示了过渡细胞及其独特的基因表达谱。我们的研究揭示了驱动细胞状态转变的潜在分子机制,增强了我们识别疾病干预治疗靶点的能力。
{"title":"A statistical approach for systematic identification of transition cells from scRNA-seq data.","authors":"Yuanxin Wang, Merve Dede, Vakul Mohanty, Jinzhuang Dou, Ziyi Li, Ken Chen","doi":"10.1016/j.crmeth.2024.100913","DOIUrl":"10.1016/j.crmeth.2024.100913","url":null,"abstract":"<p><p>Decoding cellular state transitions is crucial for understanding complex biological processes in development and disease. While recent advancements in single-cell RNA sequencing (scRNA-seq) offer insights into cellular trajectories, existing tools primarily study expressional rather than regulatory state shifts. We present CellTran, a statistical approach utilizing paired-gene expression correlations to detect transition cells from scRNA-seq data without explicitly resolving gene regulatory networks. Applying our approach to various contexts, including tissue regeneration, embryonic development, preinvasive lesions, and humoral responses post-vaccination, reveals transition cells and their distinct gene expression profiles. Our study sheds light on the underlying molecular mechanisms driving cellular state transitions, enhancing our ability to identify therapeutic targets for disease interventions.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100913"},"PeriodicalIF":4.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704623/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intact protein barcoding enables one-shot identification of CRISPRi strains and their metabolic state. 完整的蛋白质条形码可以一次性识别 CRISPRi 菌株及其代谢状态。
IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-16 Epub Date: 2024-11-26 DOI: 10.1016/j.crmeth.2024.100908
Vanessa Pahl, Paul Lubrano, Felicia Troßmann, Daniel Petras, Hannes Link

Detecting strain-specific barcodes with mass spectrometry can facilitate the screening of genetically engineered bacterial libraries. Here, we introduce intact protein barcoding, a method to measure protein-based library barcodes and metabolites using flow injection mass spectrometry (FI-MS). Protein barcodes are based on ubiquitin with N-terminal tags of six amino acids. We demonstrate that FI-MS detects intact ubiquitin proteins and identifies the mass of N-terminal barcodes. In the same analysis, we measured relative concentrations of primary metabolites. We constructed six ubiquitin-barcoded CRISPR interference (CRISPRi) strains targeting metabolic enzymes and analyzed their metabolic profiles and ubiquitin barcodes. FI-MS detected barcodes and distinct metabolome changes in CRISPRi-targeted pathways. We demonstrate the scalability of intact protein barcoding by measuring 132 ubiquitin barcodes in microtiter plates. These results show that intact protein barcoding enables fast and simultaneous detection of library barcodes and intracellular metabolites, opening up new possibilities for mass spectrometry-based barcoding.

利用质谱检测菌株特异性条形码有助于筛选基因工程细菌文库。在此,我们介绍一种利用流动注射质谱(FI-MS)测量基于蛋白质的文库条形码和代谢物的方法--完整蛋白质条形码。蛋白质条形码以泛素为基础,N-末端有六个氨基酸标签。我们证明 FI-MS 可以检测完整的泛素蛋白,并识别 N 端条形码的质量。在同一分析中,我们测量了初级代谢物的相对浓度。我们构建了六个针对代谢酶的泛素条形码 CRISPR 干扰(CRISPRi)菌株,并分析了它们的代谢概况和泛素条形码。FI-MS 检测了 CRISPRi 靶向通路中的条形码和独特的代谢组变化。我们在微孔板中测量了 132 个泛素条形码,证明了完整蛋白质条形码的可扩展性。这些结果表明,完整蛋白质条形码能快速、同时检测文库条形码和细胞内代谢物,为基于质谱的条形码开辟了新的可能性。
{"title":"Intact protein barcoding enables one-shot identification of CRISPRi strains and their metabolic state.","authors":"Vanessa Pahl, Paul Lubrano, Felicia Troßmann, Daniel Petras, Hannes Link","doi":"10.1016/j.crmeth.2024.100908","DOIUrl":"10.1016/j.crmeth.2024.100908","url":null,"abstract":"<p><p>Detecting strain-specific barcodes with mass spectrometry can facilitate the screening of genetically engineered bacterial libraries. Here, we introduce intact protein barcoding, a method to measure protein-based library barcodes and metabolites using flow injection mass spectrometry (FI-MS). Protein barcodes are based on ubiquitin with N-terminal tags of six amino acids. We demonstrate that FI-MS detects intact ubiquitin proteins and identifies the mass of N-terminal barcodes. In the same analysis, we measured relative concentrations of primary metabolites. We constructed six ubiquitin-barcoded CRISPR interference (CRISPRi) strains targeting metabolic enzymes and analyzed their metabolic profiles and ubiquitin barcodes. FI-MS detected barcodes and distinct metabolome changes in CRISPRi-targeted pathways. We demonstrate the scalability of intact protein barcoding by measuring 132 ubiquitin barcodes in microtiter plates. These results show that intact protein barcoding enables fast and simultaneous detection of library barcodes and intracellular metabolites, opening up new possibilities for mass spectrometry-based barcoding.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100908"},"PeriodicalIF":4.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Reports Methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1