首页 > 最新文献

Annual Review of Biomedical Data Science最新文献

英文 中文
Defining Phenotypes from Clinical Data to Drive Genomic Research. 从临床数据中定义表型以驱动基因组研究。
IF 6 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2018-07-01 Epub Date: 2018-04-25 DOI: 10.1146/annurev-biodatasci-080917-013335
Jamie R Robinson, Wei-Qi Wei, Dan M Roden, Joshua C Denny

The rise in available longitudinal patient information in electronic health records (EHRs) and their coupling to DNA biobanks has resulted in a dramatic increase in genomic research using EHR data for phenotypic information. EHRs have the benefit of providing a deep and broad data source of health-related phenotypes, including drug response traits, expanding the phenome available to researchers for discovery. The earliest efforts at repurposing EHR data for research involved manual chart review of limited numbers of patients but now typically involve applications of rule-based and machine learning algorithms operating on sometimes huge corpora for both genome-wide and phenome-wide approaches. We highlight here the current methods, impact, challenges, and opportunities for repurposing clinical data to define patient phenotypes for genomics discovery. Use of EHR data has proven a powerful method for elucidation of genomic influences on diseases, traits, and drug-response phenotypes and will continue to have increasing applications in large cohort studies.

电子健康记录(EHRs)中可用的纵向患者信息的增加及其与DNA生物库的耦合导致了使用电子健康记录数据进行表型信息的基因组研究的急剧增加。电子病历的好处是提供了与健康相关的表型(包括药物反应特征)的深入和广泛的数据源,扩大了研究人员可用于发现的表型。将EHR数据重新用于研究的最早努力涉及对有限数量的患者进行手动图表审查,但现在通常涉及基于规则和机器学习算法的应用,这些算法有时用于全基因组和全现象方法的巨大语料库。我们在这里强调当前的方法,影响,挑战和机会,重新利用临床数据来定义基因组学发现的患者表型。电子病历数据的使用已被证明是阐明基因组对疾病、性状和药物反应表型影响的有力方法,并将继续在大型队列研究中得到越来越多的应用。
{"title":"Defining Phenotypes from Clinical Data to Drive Genomic Research.","authors":"Jamie R Robinson,&nbsp;Wei-Qi Wei,&nbsp;Dan M Roden,&nbsp;Joshua C Denny","doi":"10.1146/annurev-biodatasci-080917-013335","DOIUrl":"https://doi.org/10.1146/annurev-biodatasci-080917-013335","url":null,"abstract":"<p><p>The rise in available longitudinal patient information in electronic health records (EHRs) and their coupling to DNA biobanks has resulted in a dramatic increase in genomic research using EHR data for phenotypic information. EHRs have the benefit of providing a deep and broad data source of health-related phenotypes, including drug response traits, expanding the phenome available to researchers for discovery. The earliest efforts at repurposing EHR data for research involved manual chart review of limited numbers of patients but now typically involve applications of rule-based and machine learning algorithms operating on sometimes huge corpora for both genome-wide and phenome-wide approaches. We highlight here the current methods, impact, challenges, and opportunities for repurposing clinical data to define patient phenotypes for genomics discovery. Use of EHR data has proven a powerful method for elucidation of genomic influences on diseases, traits, and drug-response phenotypes and will continue to have increasing applications in large cohort studies.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"1 ","pages":"69-92"},"PeriodicalIF":6.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-biodatasci-080917-013335","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39011670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
Privacy Policy and Technology in Biomedical Data Science. 生物医学数据科学中的隐私政策与技术。
IF 6 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2018-07-01 DOI: 10.1146/annurev-biodatasci-080917-013416
April Moreno Arellano, Wenrui Dai, Shuang Wang, Xiaoqian Jiang, Lucila Ohno-Machado

Privacyis an important consideration when sharing clinical data, which often contain sensitive information. Adequate protection to safeguard patient privacy and to increase public trust in biomedical research is paramount. This review covers topics in policy and technology in the context of clinical data sharing. We review policy articles related to (a) the Common Rule, HIPAA privacy and security rules, and governance; (b) patients' viewpoints and consent practices; and (c) research ethics. We identify key features of the revised Common Rule and the most notable changes since its previous version. We address data governance for research in addition to the increasing emphasis on ethical and social implications. Research ethics topics include data sharing best practices, use of data from populations of low socioeconomic status (SES), recent updates to institutional review board (IRB) processes to protect human subjects' data, and important concerns about the limitations of current policies to address data deidentification. In terms of technology, we focus on articles that have applicability in real world health care applications: deidentification methods that comply with HIPAA, data anonymization approaches to satisfy well-acknowledged issues in deidentified data, encryption methods to safeguard data analyses, and privacy-preserving predictive modeling. The first two technology topics are mostly relevant to methodologies that attempt to sanitize structured or unstructured data. The third topic includes analysis on encrypted data. The last topic includes various mechanisms to build statistical models without sharing raw data.

隐私是共享临床数据时的一个重要考虑因素,这些数据通常包含敏感信息。充分保护患者隐私和增加公众对生物医学研究的信任至关重要。这篇综述涵盖了临床数据共享背景下的政策和技术主题。我们审查了与(a)通用规则、HIPAA隐私和安全规则以及治理相关的政策文章;(b) 患者的观点和同意做法;以及(c)研究伦理。我们确定了修订后的共同规则的主要特点以及自上一版本以来最显著的变化。除了越来越重视伦理和社会影响外,我们还致力于研究数据治理。研究伦理主题包括数据共享最佳实践、低社会经济地位人群(SES)数据的使用、机构审查委员会(IRB)保护人类受试者数据程序的最新更新,以及对当前解决数据去识别问题的政策局限性的重要关注。在技术方面,我们专注于在现实世界的医疗保健应用中具有适用性的文章:符合HIPAA的去识别方法,满足去识别数据中公认问题的数据匿名方法,保护数据分析的加密方法,以及保护隐私的预测建模。前两个技术主题主要与试图净化结构化或非结构化数据的方法论有关。第三个主题包括对加密数据的分析。最后一个主题包括在不共享原始数据的情况下构建统计模型的各种机制。
{"title":"Privacy Policy and Technology in Biomedical Data Science.","authors":"April Moreno Arellano, Wenrui Dai, Shuang Wang, Xiaoqian Jiang, Lucila Ohno-Machado","doi":"10.1146/annurev-biodatasci-080917-013416","DOIUrl":"10.1146/annurev-biodatasci-080917-013416","url":null,"abstract":"<p><p>Privacyis an important consideration when sharing clinical data, which often contain sensitive information. Adequate protection to safeguard patient privacy and to increase public trust in biomedical research is paramount. This review covers topics in policy and technology in the context of clinical data sharing. We review policy articles related to (<i>a</i>) the Common Rule, HIPAA privacy and security rules, and governance; (<i>b</i>) patients' viewpoints and consent practices; and (<i>c</i>) research ethics. We identify key features of the revised Common Rule and the most notable changes since its previous version. We address data governance for research in addition to the increasing emphasis on ethical and social implications. Research ethics topics include data sharing best practices, use of data from populations of low socioeconomic status (SES), recent updates to institutional review board (IRB) processes to protect human subjects' data, and important concerns about the limitations of current policies to address data deidentification. In terms of technology, we focus on articles that have applicability in real world health care applications: deidentification methods that comply with HIPAA, data anonymization approaches to satisfy well-acknowledged issues in deidentified data, encryption methods to safeguard data analyses, and privacy-preserving predictive modeling. The first two technology topics are mostly relevant to methodologies that attempt to sanitize structured or unstructured data. The third topic includes analysis on encrypted data. The last topic includes various mechanisms to build statistical models without sharing raw data.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"1 ","pages":"115-129"},"PeriodicalIF":6.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497413/pdf/nihms-1021989.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37216509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Annual Review of Biomedical Data Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1