Pub Date : 2023-08-10Epub Date: 2023-05-17DOI: 10.1146/annurev-biodatasci-020222-021705
Aurélie Cobat, Qian Zhang, Laurent Abel, Jean-Laurent Casanova, Jacques Fellay
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is silent or benign in most infected individuals, but causes hypoxemic COVID-19 pneumonia in about 10% of cases. We review studies of the human genetics of life-threatening COVID-19 pneumonia, focusing on both rare and common variants. Large-scale genome-wide association studies have identified more than 20 common loci robustly associated with COVID-19 pneumonia with modest effect sizes, some implicating genes expressed in the lungs or leukocytes. The most robust association, on chromosome 3, concerns a haplotype inherited from Neanderthals. Sequencing studies focusing on rare variants with a strong effect have been particularly successful, identifying inborn errors of type I interferon (IFN) immunity in 1-5% of unvaccinated patients with critical pneumonia, and their autoimmune phenocopy, autoantibodies against type I IFN, in another 15-20% of cases. Our growing understanding of the impact of human genetic variation on immunity to SARS-CoV-2 is enabling health systems to improve protection for individuals and populations.
{"title":"Human Genomics of COVID-19 Pneumonia: Contributions of Rare and Common Variants.","authors":"Aurélie Cobat, Qian Zhang, Laurent Abel, Jean-Laurent Casanova, Jacques Fellay","doi":"10.1146/annurev-biodatasci-020222-021705","DOIUrl":"10.1146/annurev-biodatasci-020222-021705","url":null,"abstract":"<p><p>SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is silent or benign in most infected individuals, but causes hypoxemic COVID-19 pneumonia in about 10% of cases. We review studies of the human genetics of life-threatening COVID-19 pneumonia, focusing on both rare and common variants. Large-scale genome-wide association studies have identified more than 20 common loci robustly associated with COVID-19 pneumonia with modest effect sizes, some implicating genes expressed in the lungs or leukocytes. The most robust association, on chromosome 3, concerns a haplotype inherited from Neanderthals. Sequencing studies focusing on rare variants with a strong effect have been particularly successful, identifying inborn errors of type I interferon (IFN) immunity in 1-5% of unvaccinated patients with critical pneumonia, and their autoimmune phenocopy, autoantibodies against type I IFN, in another 15-20% of cases. Our growing understanding of the impact of human genetic variation on immunity to SARS-CoV-2 is enabling health systems to improve protection for individuals and populations.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"6 ","pages":"465-486"},"PeriodicalIF":7.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9960534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-10DOI: 10.1146/annurev-biodatasci-020722-092748
Alex A Nguyen, Anne Marie McCarthy, Despina Kontos
Breast cancer risk is highly variable within the population and current research is leading the shift toward personalized medicine. By accurately assessing an individual woman's risk, we can reduce the risk of over/undertreatment by preventing unnecessary procedures or by elevating screening procedures. Breast density measured from conventional mammography has been established as one of the most dominant risk factors for breast cancer; however, it is currently limited by its ability to characterize more complex breast parenchymal patterns that have been shown to provide additional information to strengthen cancer risk models. Molecular factors ranging from high penetrance, or high likelihood that a mutation will show signs and symptoms of the disease, to combinations of gene mutations with low penetrance have shown promise for augmenting risk assessment. Although imaging biomarkers and molecular biomarkers have both individually demonstrated improved performance in risk assessment, few studies have evaluated them together. This review aims to highlight the current state of the art in breast cancer risk assessment using imaging and genetic biomarkers.
{"title":"Combining Molecular and Radiomic Features for Risk Assessment in Breast Cancer.","authors":"Alex A Nguyen, Anne Marie McCarthy, Despina Kontos","doi":"10.1146/annurev-biodatasci-020722-092748","DOIUrl":"https://doi.org/10.1146/annurev-biodatasci-020722-092748","url":null,"abstract":"<p><p>Breast cancer risk is highly variable within the population and current research is leading the shift toward personalized medicine. By accurately assessing an individual woman's risk, we can reduce the risk of over/undertreatment by preventing unnecessary procedures or by elevating screening procedures. Breast density measured from conventional mammography has been established as one of the most dominant risk factors for breast cancer; however, it is currently limited by its ability to characterize more complex breast parenchymal patterns that have been shown to provide additional information to strengthen cancer risk models. Molecular factors ranging from high penetrance, or high likelihood that a mutation will show signs and symptoms of the disease, to combinations of gene mutations with low penetrance have shown promise for augmenting risk assessment. Although imaging biomarkers and molecular biomarkers have both individually demonstrated improved performance in risk assessment, few studies have evaluated them together. This review aims to highlight the current state of the art in breast cancer risk assessment using imaging and genetic biomarkers.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"6 ","pages":"299-311"},"PeriodicalIF":6.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9967073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-10DOI: 10.1146/annurev-biodatasci-122120-110102
Remo Monti, Uwe Ohler
Understanding the noncoding part of the genome, which encodes gene regulation, is necessary to identify genetic mechanisms of disease and translate findings from genome-wide association studies into actionable results for treatments and personalized care. Here we provide an overview of the computational analysis of noncoding regions, starting from gene-regulatory mechanisms and their representation in data. Deep learning methods, when applied to these data, highlight important regulatory sequence elements and predict the functional effects of genetic variants. These and other algorithms are used to predict damaging sequence variants. Finally, we introduce rare-variant association tests that incorporate functional annotations and predictions in order to increase interpretability and statistical power.
{"title":"Toward Identification of Functional Sequences and Variants in Noncoding DNA.","authors":"Remo Monti, Uwe Ohler","doi":"10.1146/annurev-biodatasci-122120-110102","DOIUrl":"https://doi.org/10.1146/annurev-biodatasci-122120-110102","url":null,"abstract":"<p><p>Understanding the noncoding part of the genome, which encodes gene regulation, is necessary to identify genetic mechanisms of disease and translate findings from genome-wide association studies into actionable results for treatments and personalized care. Here we provide an overview of the computational analysis of noncoding regions, starting from gene-regulatory mechanisms and their representation in data. Deep learning methods, when applied to these data, highlight important regulatory sequence elements and predict the functional effects of genetic variants. These and other algorithms are used to predict damaging sequence variants. Finally, we introduce rare-variant association tests that incorporate functional annotations and predictions in order to increase interpretability and statistical power.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"6 ","pages":"191-210"},"PeriodicalIF":6.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10024242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-10DOI: 10.1146/annurev-biodatasci-020722-041304
Rishi Bedi, Nicholas L Bayless, Jacob Glanville
Viruses evolve to evade prior immunity, causing significant disease burden. Vaccine effectiveness deteriorates as pathogens mutate, requiring redesign. This is a problem that has grown worse due to population increase, global travel, and farming practices. Thus, there is significant interest in developing broad-spectrum vaccines that mitigate disease severity and ideally inhibit disease transmission without requiring frequent updates. Even in cases where vaccines against rapidly mutating pathogens have been somewhat effective, such as seasonal influenza and SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), designing vaccines that provide broad-spectrum immunity against routinely observed viral variation remains a desirable but not yet achieved goal. This review highlights the key theoretical advances in understanding the interplay between polymorphism and vaccine efficacy, challenges in designing broad-spectrum vaccines, and technology advances and possible avenues forward. We also discuss data-driven approaches for monitoring vaccine efficacy and predicting viral escape from vaccine-induced protection. In each case, we consider illustrative examples in vaccine development from influenza, SARS-CoV-2, and HIV (human immunodeficiency virus)-three examples of highly prevalent rapidly mutating viruses with distinct phylogenetics and unique histories of vaccine technology development.
{"title":"Challenges and Progress in Designing Broad-Spectrum Vaccines Against Rapidly Mutating Viruses.","authors":"Rishi Bedi, Nicholas L Bayless, Jacob Glanville","doi":"10.1146/annurev-biodatasci-020722-041304","DOIUrl":"https://doi.org/10.1146/annurev-biodatasci-020722-041304","url":null,"abstract":"<p><p>Viruses evolve to evade prior immunity, causing significant disease burden. Vaccine effectiveness deteriorates as pathogens mutate, requiring redesign. This is a problem that has grown worse due to population increase, global travel, and farming practices. Thus, there is significant interest in developing broad-spectrum vaccines that mitigate disease severity and ideally inhibit disease transmission without requiring frequent updates. Even in cases where vaccines against rapidly mutating pathogens have been somewhat effective, such as seasonal influenza and SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), designing vaccines that provide broad-spectrum immunity against routinely observed viral variation remains a desirable but not yet achieved goal. This review highlights the key theoretical advances in understanding the interplay between polymorphism and vaccine efficacy, challenges in designing broad-spectrum vaccines, and technology advances and possible avenues forward. We also discuss data-driven approaches for monitoring vaccine efficacy and predicting viral escape from vaccine-induced protection. In each case, we consider illustrative examples in vaccine development from influenza, SARS-CoV-2, and HIV (human immunodeficiency virus)-three examples of highly prevalent rapidly mutating viruses with distinct phylogenetics and unique histories of vaccine technology development.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"6 ","pages":"419-441"},"PeriodicalIF":6.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9960533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-10Epub Date: 2023-05-03DOI: 10.1146/annurev-biodatasci-020722-125454
Peter Washington, Dennis P Wall
Autism spectrum disorder (autism) is a neurodevelopmental delay that affects at least 1 in 44 children. Like many neurological disorder phenotypes, the diagnostic features are observable, can be tracked over time, and can be managed or even eliminated through proper therapy and treatments. However, there are major bottlenecks in the diagnostic, therapeutic, and longitudinal tracking pipelines for autism and related neurodevelopmental delays, creating an opportunity for novel data science solutions to augment and transform existing workflows and provide increased access to services for affected families. Several efforts previously conducted by a multitude of research labs have spawned great progress toward improved digital diagnostics and digital therapies for children with autism. We review the literature on digital health methods for autism behavior quantification and beneficial therapies using data science. We describe both case-control studies and classification systems for digital phenotyping. We then discuss digital diagnostics and therapeutics that integrate machine learning models of autism-related behaviors, including the factors that must be addressed for translational use. Finally, we describe ongoing challenges and potential opportunities for the field of autism data science. Given the heterogeneous nature of autism and the complexities of the relevant behaviors, this review contains insights that are relevant to neurological behavior analysis and digital psychiatry more broadly.
{"title":"A Review of and Roadmap for Data Science and Machine Learning for the Neuropsychiatric Phenotype of Autism.","authors":"Peter Washington, Dennis P Wall","doi":"10.1146/annurev-biodatasci-020722-125454","DOIUrl":"10.1146/annurev-biodatasci-020722-125454","url":null,"abstract":"<p><p>Autism spectrum disorder (autism) is a neurodevelopmental delay that affects at least 1 in 44 children. Like many neurological disorder phenotypes, the diagnostic features are observable, can be tracked over time, and can be managed or even eliminated through proper therapy and treatments. However, there are major bottlenecks in the diagnostic, therapeutic, and longitudinal tracking pipelines for autism and related neurodevelopmental delays, creating an opportunity for novel data science solutions to augment and transform existing workflows and provide increased access to services for affected families. Several efforts previously conducted by a multitude of research labs have spawned great progress toward improved digital diagnostics and digital therapies for children with autism. We review the literature on digital health methods for autism behavior quantification and beneficial therapies using data science. We describe both case-control studies and classification systems for digital phenotyping. We then discuss digital diagnostics and therapeutics that integrate machine learning models of autism-related behaviors, including the factors that must be addressed for translational use. Finally, we describe ongoing challenges and potential opportunities for the field of autism data science. Given the heterogeneous nature of autism and the complexities of the relevant behaviors, this review contains insights that are relevant to neurological behavior analysis and digital psychiatry more broadly.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"6 ","pages":"211-228"},"PeriodicalIF":7.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9960498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-10Epub Date: 2023-04-26DOI: 10.1146/annurev-biodatasci-020722-014310
Taotao Tan, Elizabeth G Atkinson
Admixed populations constitute a large portion of global human genetic diversity, yet they are often left out of genomics analyses. This exclusion is problematic, as it leads to disparities in the understanding of the genetic structure and history of diverse cohorts and the performance of genomic medicine across populations. Admixed populations have particular statistical challenges, as they inherit genomic segments from multiple source populations-the primary reason they have historically been excluded from genetic studies. In recent years, however, an increasing number of statistical methods and software tools have been developed to account for and leverage admixture in the context of genomics analyses. Here, we provide a survey of such computational strategies for the informed consideration of admixture to allow for the well-calibrated inclusion of mixed ancestry populations in large-scale genomics studies, and we detail persisting gaps in existing tools.
{"title":"Strategies for the Genomic Analysis of Admixed Populations.","authors":"Taotao Tan, Elizabeth G Atkinson","doi":"10.1146/annurev-biodatasci-020722-014310","DOIUrl":"10.1146/annurev-biodatasci-020722-014310","url":null,"abstract":"<p><p>Admixed populations constitute a large portion of global human genetic diversity, yet they are often left out of genomics analyses. This exclusion is problematic, as it leads to disparities in the understanding of the genetic structure and history of diverse cohorts and the performance of genomic medicine across populations. Admixed populations have particular statistical challenges, as they inherit genomic segments from multiple source populations-the primary reason they have historically been excluded from genetic studies. In recent years, however, an increasing number of statistical methods and software tools have been developed to account for and leverage admixture in the context of genomics analyses. Here, we provide a survey of such computational strategies for the informed consideration of admixture to allow for the well-calibrated inclusion of mixed ancestry populations in large-scale genomics studies, and we detail persisting gaps in existing tools.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"6 ","pages":"105-127"},"PeriodicalIF":7.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10871708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10023273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-10Epub Date: 2023-04-26DOI: 10.1146/annurev-biodatasci-020722-100353
Hongtu Zhu, Tengfei Li, Bingxin Zhao
The aim of this review is to provide a comprehensive survey of statistical challenges in neuroimaging data analysis, from neuroimaging techniques to large-scale neuroimaging studies and statistical learning methods. We briefly review eight popular neuroimaging techniques and their potential applications in neuroscience research and clinical translation. We delineate four themes of neuroimaging data and review major image processing analysis methods for processing neuroimaging data at the individual level. We briefly review four large-scale neuroimaging-related studies and a consortium on imaging genomics and discuss four themes of neuroimaging data analysis at the population level. We review nine major population-based statistical analysis methods and their associated statistical challenges and present recent progress in statistical methodology to address these challenges.
{"title":"Statistical Learning Methods for Neuroimaging Data Analysis with Applications.","authors":"Hongtu Zhu, Tengfei Li, Bingxin Zhao","doi":"10.1146/annurev-biodatasci-020722-100353","DOIUrl":"10.1146/annurev-biodatasci-020722-100353","url":null,"abstract":"<p><p>The aim of this review is to provide a comprehensive survey of statistical challenges in neuroimaging data analysis, from neuroimaging techniques to large-scale neuroimaging studies and statistical learning methods. We briefly review eight popular neuroimaging techniques and their potential applications in neuroscience research and clinical translation. We delineate four themes of neuroimaging data and review major image processing analysis methods for processing neuroimaging data at the individual level. We briefly review four large-scale neuroimaging-related studies and a consortium on imaging genomics and discuss four themes of neuroimaging data analysis at the population level. We review nine major population-based statistical analysis methods and their associated statistical challenges and present recent progress in statistical methodology to address these challenges.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"6 ","pages":"73-104"},"PeriodicalIF":7.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11962820/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10023733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-10Epub Date: 2023-05-09DOI: 10.1146/annurev-biodatasci-020422-050645
Emily Flynn, Ana Almonte-Loya, Gabriela K Fragiadakis
Single-cell RNA sequencing methods have led to improved understanding of the heterogeneity and transcriptomic states present in complex biological systems. Recently, the development of novel single-cell technologies for assaying additional modalities, specifically genomic, epigenomic, proteomic, and spatial data, allows for unprecedented insight into cellular biology. While certain technologies collect multiple measurements from the same cells simultaneously, even when modalities are separately assayed in different cells, we can apply novel computational methods to integrate these data. The application of computational integration methods to multimodal paired and unpaired data results in rich information about the identities of the cells present and the interactions between different levels of biology, such as between genetic variation and transcription. In this review, we both discuss the single-cell technologies for measuring these modalities and describe and characterize a variety of computational integration methods for combining the resulting data to leverage multimodal information toward greater biological insight.
{"title":"Single-Cell Multiomics.","authors":"Emily Flynn, Ana Almonte-Loya, Gabriela K Fragiadakis","doi":"10.1146/annurev-biodatasci-020422-050645","DOIUrl":"10.1146/annurev-biodatasci-020422-050645","url":null,"abstract":"<p><p>Single-cell RNA sequencing methods have led to improved understanding of the heterogeneity and transcriptomic states present in complex biological systems. Recently, the development of novel single-cell technologies for assaying additional modalities, specifically genomic, epigenomic, proteomic, and spatial data, allows for unprecedented insight into cellular biology. While certain technologies collect multiple measurements from the same cells simultaneously, even when modalities are separately assayed in different cells, we can apply novel computational methods to integrate these data. The application of computational integration methods to multimodal paired and unpaired data results in rich information about the identities of the cells present and the interactions between different levels of biology, such as between genetic variation and transcription. In this review, we both discuss the single-cell technologies for measuring these modalities and describe and characterize a variety of computational integration methods for combining the resulting data to leverage multimodal information toward greater biological insight.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"6 ","pages":"313-337"},"PeriodicalIF":6.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146013/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9960510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-10DOI: 10.1146/annurev-biodatasci-020222-025013
Christoph Gorgulla
Drug development is a wide scientific field that faces many challenges these days. Among them are extremely high development costs, long development times, and a small number of new drugs that are approved each year. New and innovative technologies are needed to solve these problems that make the drug discovery process of small molecules more time and cost efficient, and that allow previously undruggable receptor classes to be targeted, such as protein-protein interactions. Structure-based virtual screenings (SBVSs) have become a leading contender in this context. In this review, we give an introduction to the foundations of SBVSs and survey their progress in the past few years with a focus on ultralarge virtual screenings (ULVSs). We outline key principles of SBVSs, recent success stories, new screening techniques, available deep learning-based docking methods, and promising future research directions. ULVSs have an enormous potential for the development of new small-molecule drugs and are already starting to transform early-stage drug discovery.
{"title":"Recent Developments in Ultralarge and Structure-Based Virtual Screening Approaches.","authors":"Christoph Gorgulla","doi":"10.1146/annurev-biodatasci-020222-025013","DOIUrl":"https://doi.org/10.1146/annurev-biodatasci-020222-025013","url":null,"abstract":"<p><p>Drug development is a wide scientific field that faces many challenges these days. Among them are extremely high development costs, long development times, and a small number of new drugs that are approved each year. New and innovative technologies are needed to solve these problems that make the drug discovery process of small molecules more time and cost efficient, and that allow previously undruggable receptor classes to be targeted, such as protein-protein interactions. Structure-based virtual screenings (SBVSs) have become a leading contender in this context. In this review, we give an introduction to the foundations of SBVSs and survey their progress in the past few years with a focus on ultralarge virtual screenings (ULVSs). We outline key principles of SBVSs, recent success stories, new screening techniques, available deep learning-based docking methods, and promising future research directions. ULVSs have an enormous potential for the development of new small-molecule drugs and are already starting to transform early-stage drug discovery.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"6 ","pages":"229-258"},"PeriodicalIF":6.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9960543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-10DOI: 10.1146/annurev-biodatasci-020722-120642
Shuai Ma, Xu Chi, Yusheng Cai, Zhejun Ji, Si Wang, Jie Ren, Guang-Hui Liu
Organismal aging exhibits wide-ranging hallmarks in divergent cell types across tissues, organs, and systems. The advancement of single-cell technologies and generation of rich datasets have afforded the scientific community the opportunity to decode these hallmarks of aging at an unprecedented scope and resolution. In this review, we describe the technological advancements and bioinformatic methodologies enabling data interpretation at the cellular level. Then, we outline the application of such technologies for decoding aging hallmarks and potential intervention targets and summarize common themes and context-specific molecular features in representative organ systems across the body. Finally, we provide a brief summary of available databases relevant for aging research and present an outlook on the opportunities in this emerging field.
{"title":"Decoding Aging Hallmarks at the Single-Cell Level.","authors":"Shuai Ma, Xu Chi, Yusheng Cai, Zhejun Ji, Si Wang, Jie Ren, Guang-Hui Liu","doi":"10.1146/annurev-biodatasci-020722-120642","DOIUrl":"https://doi.org/10.1146/annurev-biodatasci-020722-120642","url":null,"abstract":"<p><p>Organismal aging exhibits wide-ranging hallmarks in divergent cell types across tissues, organs, and systems. The advancement of single-cell technologies and generation of rich datasets have afforded the scientific community the opportunity to decode these hallmarks of aging at an unprecedented scope and resolution. In this review, we describe the technological advancements and bioinformatic methodologies enabling data interpretation at the cellular level. Then, we outline the application of such technologies for decoding aging hallmarks and potential intervention targets and summarize common themes and context-specific molecular features in representative organ systems across the body. Finally, we provide a brief summary of available databases relevant for aging research and present an outlook on the opportunities in this emerging field.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"6 ","pages":"129-152"},"PeriodicalIF":6.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10023274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}