首页 > 最新文献

ACS Physical Chemistry Au最新文献

英文 中文
IF 3.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-05-28
{"title":"","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 3","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.7,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/pgv005i003_1940647","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144448907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 3.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-05-28
Victor A. S. daMata*, Giseli M. Moreira, Adevânia J. da Silva, Romarly F. da Costa, Luiz A. V. Mendes and Manoel G. P. Homem, 
{"title":"","authors":"Victor A. S. daMata*, Giseli M. Moreira, Adevânia J. da Silva, Romarly F. da Costa, Luiz A. V. Mendes and Manoel G. P. Homem, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 3","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.7,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsphyschemau.5c00006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144448904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 3.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-05-28
Yidong Liu, Abhinav Chandresh and Lars Heinke*, 
{"title":"","authors":"Yidong Liu, Abhinav Chandresh and Lars Heinke*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 3","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.7,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsphyschemau.4c00104","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144448906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 3.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-05-28
{"title":"","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 3","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.7,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/pgv005i003_1940646","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144448912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 3.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-05-28
Mariana B. M. S. Medeiros, Josenilton N. Sousa, Manuela S. Arruda, Milton M. Fujimoto, Manoel G. P. Homem, Helder K. Tanaka, Bruno Credidio, Ricardo R. T. Marinho and Frederico V. Prudente*, 
{"title":"","authors":"Mariana B. M. S. Medeiros, Josenilton N. Sousa, Manuela S. Arruda, Milton M. Fujimoto, Manoel G. P. Homem, Helder K. Tanaka, Bruno Credidio, Ricardo R. T. Marinho and Frederico V. Prudente*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 3","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.7,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsphyschemau.4c00101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144448911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 3.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-05-28
Guillaume P. Laurent, Samuel L. Leonard, Mita Halder, Damien B. Culver, Peng Xu, Mark S. Gordon and Frédéric A. Perras*, 
{"title":"","authors":"Guillaume P. Laurent, Samuel L. Leonard, Mita Halder, Damien B. Culver, Peng Xu, Mark S. Gordon and Frédéric A. Perras*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 3","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.7,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsphyschemau.5c00007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144448905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 3.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-05-28
Karinna Mendanha,  and , Guilherme Colherinhas*, 
{"title":"","authors":"Karinna Mendanha,  and , Guilherme Colherinhas*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 3","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.7,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsphyschemau.5c00028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144448909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 3.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-05-28
Clark Otey, Mukund Sharma, Jazmine Prana, Thomas M. Czyszczon-Burton, Alejandro Hernandez, María Camarasa-Gómez*, Daniel Hernangómez-Pérez* and Michael S. Inkpen*, 
{"title":"","authors":"Clark Otey, Mukund Sharma, Jazmine Prana, Thomas M. Czyszczon-Burton, Alejandro Hernandez, María Camarasa-Gómez*, Daniel Hernangómez-Pérez* and Michael S. Inkpen*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 3","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.7,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsphyschemau.5c00021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144448910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Highly Water-Soluble C60-Oligo-Lysine Conjugate as a Type I and Type II Photosensitizer with Enhanced ROS Generation and Photocytotoxicity 一种高水溶性c60 -寡聚赖氨酸偶联物作为I型和II型光敏剂,具有增强ROS生成和光细胞毒性。
IF 4.3 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-05-27 DOI: 10.1021/acsphyschemau.5c00023
Yue Ma, Lorenzo Persi, Kateryna A. Tolmachova, Maxim Yulikov, Miroslav Peterek, Stephan Handschin, Nicola Armaroli, Barbara Ventura* and Yoko Yamakoshi*, 

C60 has been regarded as a suitable photosensitizer for photodynamic therapy due to its excitation in the phototherapeutic window (650–900 nm), high quantum yields of 1O2 generation, and low dark toxicity. However, the use of this molecule in biomedical applications has been limited by its high aggregation tendency in polar solvents (e.g., water), resulting in quenching of its excited states. In this study, a C60-peptide conjugate, C60-oligo-Lys, with a lower aggregation tendency was investigated by chemical, physical, and photophysical methods in comparison to a previously reported water-soluble C60-PEG conjugate. Photoinduced 1O2 generation was evaluated by both phosphorescence at 1274 nm and the electron spin resonance method in an aqueous solution, with comparison to the control C60-PEG, revealing the superior capacity of the C60-oligo-Lys conjugate. Importantly, the photoinduced type I electron transfer reaction is occurring in C60-oligo-Lys very efficiently, even in the absence of an e donor, presumably due to the partially unprotonated amines in the peptide, to form O2•– and OH, which are generated in a further enhanced way by the addition of a physiological concentration of NADH. These species are more harmful to the target cells, including hypoxic tissues with limited oxygen concentration. Femtosecond transient absorption spectroscopy revealed different excited state dynamics for C60-oligo-Lys and C60-PEG at short time scales in water. By an in vitro cellular assay, significant cytotoxicity of C60-oligo-Lys was observed (IC50 < 1 μM) on HeLa cells under visible light irradiation (527, 630, and 660 nm), while very limited cytotoxicity was observed for C60-PEG (IC50 > 25 μM) under the same conditions. The strongly enhanced photocytotoxicity of C60-oligo-Lys can be ascribed to the higher generation of both type I and type II ROS in addition to the potential affinity of the positively charged oligo-Lys moiety for the negatively charged cell membrane. The C60-oligo-Lys conjugate reported in this study therefore shows high potential as a core photosensitizer for photodynamic therapy.

C60具有在650 ~ 900 nm光疗窗口激发、高量子产率、低暗毒性等优点,被认为是一种适合于光动力治疗的光敏剂。然而,该分子在生物医学应用中的使用受到其在极性溶剂(例如水)中的高聚集倾向的限制,导致其激发态猝灭。在本研究中,通过化学、物理和光物理方法研究了具有较低聚集倾向的c60 -肽偶联物C60-oligo-Lys,并与先前报道的水溶性C60-PEG偶联物进行了比较。通过1274 nm的磷光和水溶液中的电子自旋共振法来评价光诱导1O2的产生,并与对照C60-PEG进行比较,揭示了C60-oligo-Lys共轭物的优越容量。重要的是,光诱导的I型电子转移反应在c60寡聚赖氨酸中非常有效地发生,即使在没有电子供体的情况下,可能是由于肽中部分未质子化的胺,形成O2•-和•OH,通过添加生理浓度的NADH以进一步增强的方式产生。这些物种对靶细胞更有害,包括氧浓度有限的缺氧组织。飞秒瞬态吸收光谱揭示了C60-oligo-Lys和C60-PEG在短时间尺度下不同的激发态动力学。体外细胞实验发现,C60-oligo-Lys在527、630和660 nm的可见光照射下对HeLa细胞具有显著的细胞毒性(IC50 < 1 μM),而C60-PEG (IC50 bb0 25 μM)在相同条件下对HeLa细胞的细胞毒性非常有限。C60-oligo-Lys光细胞毒性的增强可以归因于I型和II型ROS的生成,以及带正电的oligo-Lys部分对带负电的细胞膜的潜在亲和力。因此,本研究报道的C60-oligo-Lys偶联物作为光动力治疗的核心光敏剂具有很高的潜力。
{"title":"A Highly Water-Soluble C60-Oligo-Lysine Conjugate as a Type I and Type II Photosensitizer with Enhanced ROS Generation and Photocytotoxicity","authors":"Yue Ma,&nbsp;Lorenzo Persi,&nbsp;Kateryna A. Tolmachova,&nbsp;Maxim Yulikov,&nbsp;Miroslav Peterek,&nbsp;Stephan Handschin,&nbsp;Nicola Armaroli,&nbsp;Barbara Ventura* and Yoko Yamakoshi*,&nbsp;","doi":"10.1021/acsphyschemau.5c00023","DOIUrl":"10.1021/acsphyschemau.5c00023","url":null,"abstract":"<p >C<sub>60</sub> has been regarded as a suitable photosensitizer for photodynamic therapy due to its excitation in the phototherapeutic window (650–900 nm), high quantum yields of <sup>1</sup>O<sub>2</sub> generation, and low dark toxicity. However, the use of this molecule in biomedical applications has been limited by its high aggregation tendency in polar solvents (e.g., water), resulting in quenching of its excited states. In this study, a C<sub>60</sub>-peptide conjugate, C<sub>60</sub>-oligo-Lys, with a lower aggregation tendency was investigated by chemical, physical, and photophysical methods in comparison to a previously reported water-soluble C<sub>60</sub>-PEG conjugate. Photoinduced <sup>1</sup>O<sub>2</sub> generation was evaluated by both phosphorescence at 1274 nm and the electron spin resonance method in an aqueous solution, with comparison to the control C<sub>60</sub>-PEG, revealing the superior capacity of the C<sub>60</sub>-oligo-Lys conjugate. Importantly, the photoinduced type I electron transfer reaction is occurring in C60-oligo-Lys very efficiently, even in the absence of an e<sup>–</sup> donor, presumably due to the partially unprotonated amines in the peptide, to form O<sub>2</sub><sup>•–</sup> and <sup>•</sup>OH, which are generated in a further enhanced way by the addition of a physiological concentration of NADH. These species are more harmful to the target cells, including hypoxic tissues with limited oxygen concentration. Femtosecond transient absorption spectroscopy revealed different excited state dynamics for C<sub>60</sub>-oligo-Lys and C<sub>60</sub>-PEG at short time scales in water. By an in vitro cellular assay, significant cytotoxicity of C<sub>60</sub>-oligo-Lys was observed (IC<sub>50</sub> &lt; 1 μM) on HeLa cells under visible light irradiation (527, 630, and 660 nm), while very limited cytotoxicity was observed for C<sub>60</sub>-PEG (IC<sub>50</sub> &gt; 25 μM) under the same conditions. The strongly enhanced photocytotoxicity of C<sub>60</sub>-oligo-Lys can be ascribed to the higher generation of both type I and type II ROS in addition to the potential affinity of the positively charged oligo-Lys moiety for the negatively charged cell membrane. The C<sub>60</sub>-oligo-Lys conjugate reported in this study therefore shows high potential as a core photosensitizer for photodynamic therapy.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 4","pages":"398–409"},"PeriodicalIF":4.3,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12291136/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144733635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear Spectroscopy in Chlorophyll Dimers Embedded in an Asymmetric Phonon Bath 非对称声子槽中叶绿素二聚体的非线性光谱研究。
IF 4.3 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-05-24 DOI: 10.1021/acsphyschemau.4c00085
Mohamad Toutounji*, 

The electronic transition dipole moment 4-point time correlation function for a dimeric photosynthetic complex, from which nonlinear optical time-domain signals may be obtained. This 4-point time correlation function draws on an experimentally fit spectral density of the surrounding phonons of the photosynthetic protein. The spectral density of the photosynthetic phonons renders a phonon-sideband characterized by its asymmetry, caused by the unequal contribution from the photosynthetic phonons (bath) to the low- and high-energy sides of the optical signals. This spectral density manifests its asymmetry explicitly in the 1-phonon profile, due to the intimate spectral connection between them, which will in turn reflect in the entire phononic part of the absorption spectrum. The asymmetry plays an important role in characterizing the exciton–phonon coupling strength and the phonon relaxation mechanism, thereby providing flexibility in modeling the degree of symmetry needed for the bath and imparting the capability of fine-tuning the nature of electron–phonon coupling caused by pigment–protein interaction. To this end, the obtained nonlinear optical electronic transition dipole moment time correlation functions (Liouville space pathways) whereby both excitonic and exciton–phonon couplings are accounted for are deemed convenient, more tractable, and computationally expedient, a unique advantageous feature in the case of a multimode system, which is often the case in photosynthetic complexes. Linear spectra and photon echo signals to probe pigment–protein complexes, in which pure electronic dephasing, vibrational relaxation effects, 1-phonon profile asymmetry, exciton–exciton coupling, and exciton–phonon coupling in bacterial reaction centers and photosynthetic complexes are provided.

二聚体光合配合物的电子跃迁偶极矩4点时间相关函数,从中可以得到非线性光学时域信号。这个4点时间相关函数利用了光合作用蛋白周围声子的实验拟合光谱密度。光合声子的光谱密度呈现出声子边带的不对称性,这是由于光合声子对光信号的低能和高能的贡献不相等造成的。由于它们之间密切的光谱联系,这种光谱密度在1声子剖面中明显表现出不对称性,这反过来又反映在吸收光谱的整个声子部分。这种不对称性在表征激子-声子耦合强度和声子弛豫机制方面起着重要作用,从而为模拟该槽所需的对称程度提供了灵活性,并赋予了微调由色素-蛋白质相互作用引起的电子-声子耦合性质的能力。为此,所获得的非线性光电跃迁偶极矩时间相关函数(Liouville空间路径)被认为是方便的,更易于处理,并且计算方便,这是多模系统中独特的优势特征,这通常是光合复合体的情况。用于探测色素-蛋白质复合物的线性光谱和光子回波信号,其中提供了纯电子减相、振动弛豫效应、1声子剖面不对称、激子-激子耦合以及细菌反应中心和光合复合物中的激子-声子耦合。
{"title":"Nonlinear Spectroscopy in Chlorophyll Dimers Embedded in an Asymmetric Phonon Bath","authors":"Mohamad Toutounji*,&nbsp;","doi":"10.1021/acsphyschemau.4c00085","DOIUrl":"10.1021/acsphyschemau.4c00085","url":null,"abstract":"<p >The electronic transition dipole moment 4-point time correlation function for a dimeric photosynthetic complex, from which nonlinear optical time-domain signals may be obtained. This 4-point time correlation function draws on an experimentally fit spectral density of the surrounding phonons of the photosynthetic protein. The spectral density of the photosynthetic phonons renders a phonon-sideband characterized by its <i>asymmetry</i>, caused by the unequal contribution from the photosynthetic phonons (bath) to the low- and high-energy sides of the optical signals. This spectral density manifests its asymmetry explicitly in the 1-phonon profile, due to the intimate spectral connection between them, which will in turn reflect in the entire phononic part of the absorption spectrum. The asymmetry plays an important role in characterizing the exciton–phonon coupling strength and the phonon relaxation mechanism, thereby providing flexibility in modeling the degree of symmetry needed for the bath and imparting the capability of fine-tuning the nature of electron–phonon coupling caused by pigment–protein interaction. To this end, the obtained nonlinear optical electronic transition dipole moment time correlation functions (Liouville space pathways) whereby both excitonic and exciton–phonon couplings are accounted for are deemed convenient, more tractable, and computationally expedient, a unique advantageous feature in the case of a multimode system, which is often the case in photosynthetic complexes. Linear spectra and photon echo signals to probe pigment–protein complexes, in which pure electronic dephasing, vibrational relaxation effects, 1-phonon profile asymmetry, exciton–exciton coupling, and exciton–phonon coupling in bacterial reaction centers and photosynthetic complexes are provided.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 4","pages":"327–337"},"PeriodicalIF":4.3,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12291140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144733642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Physical Chemistry Au
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1