Pub Date : 2024-01-24DOI: 10.1021/acsphyschemau.3c00058
Chi H. Mak*,
Base pairing complementarity is central to DNA function. G·C and A·T pair specificity is thought to originate from the different number of hydrogen bonds the pairs make. Quantifying how many hydrogen bonds exist can be difficult because water molecules in the surrounding can make up for or disrupt direct hydrogen bonds, and the hydration structures around A·T and G·C pairs on duplex DNA are distinct. Large-scale computer simulations have been used here to create a detailed map for the hydration structure on A·T and G·C base pairs in water. The contributions of specific hydration waters to the free energy of each of the hydrogen bonds in the A·T and G·C pairs were computed. Using the equilibrium fractions of hydrated versus unhydrated states from the hydration profiles, the impact of specific bound waters on each hydrogen bond can be uniquely quantified using a thermodynamic construction. The findings suggest that hydration water in the minor groove of an A·T pair can provide up to about 2 kcal/mol of free energy advantage, effectively making up for the missing third hydrogen bond in the A·T pair compared to G·C, rendering the intrinsic thermodynamic stability of the A·T pair almost synonymous with G·C.
{"title":"Hydration Waters Make Up for the Missing Third Hydrogen Bond in the A·T Base Pair","authors":"Chi H. Mak*, ","doi":"10.1021/acsphyschemau.3c00058","DOIUrl":"10.1021/acsphyschemau.3c00058","url":null,"abstract":"<p >Base pairing complementarity is central to DNA function. G·C and A·T pair specificity is thought to originate from the different number of hydrogen bonds the pairs make. Quantifying how many hydrogen bonds exist can be difficult because water molecules in the surrounding can make up for or disrupt direct hydrogen bonds, and the hydration structures around A·T and G·C pairs on duplex DNA are distinct. Large-scale computer simulations have been used here to create a detailed map for the hydration structure on A·T and G·C base pairs in water. The contributions of specific hydration waters to the free energy of each of the hydrogen bonds in the A·T and G·C pairs were computed. Using the equilibrium fractions of hydrated versus unhydrated states from the hydration profiles, the impact of specific bound waters on each hydrogen bond can be uniquely quantified using a thermodynamic construction. The findings suggest that hydration water in the minor groove of an A·T pair can provide up to about 2 kcal/mol of free energy advantage, effectively making up for the missing third hydrogen bond in the A·T pair compared to G·C, rendering the intrinsic thermodynamic stability of the A·T pair almost synonymous with G·C.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"4 2","pages":"180–190"},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139551978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-18DOI: 10.1021/acsphyschemau.3c00067
Shubin Liu*,
It is tenable to argue that nobody can predict the future with certainty, yet one can learn from the past and make informed projections for the years ahead. In this Perspective, we overview the status of how theory and computation can be exploited to obtain chemical understanding from wave function theory and density functional theory, and then outlook the likely impact of machine learning (ML) and quantum computers (QC) to appreciate traditional chemical concepts in decades to come. It is maintained that the development and maturation of ML and QC methods in theoretical and computational chemistry represent two paradigm shifts about how the Schrödinger equation can be solved. New chemical understanding can be harnessed in these two new paradigms by making respective use of ML features and QC qubits. Before that happens, however, we still have hurdles to face and obstacles to overcome in both ML and QC arenas. Possible pathways to tackle these challenges are proposed. We anticipate that hierarchical modeling, in contrast to multiscale modeling, will emerge and thrive, becoming the workhorse of in silico simulations in the next few decades.
可以说,没有人能够准确预测未来,但我们可以从过去的经验中汲取教训,对未来做出明智的预测。在本《视角》中,我们概述了如何利用理论和计算从波函数理论和密度泛函理论中获得化学理解的现状,然后展望了机器学习(ML)和量子计算机(QC)在未来几十年对理解传统化学概念可能产生的影响。我们认为,ML 和 QC 方法在理论化学和计算化学领域的发展和成熟,代表了关于如何求解薛定谔方程的两种范式转变。通过分别利用 ML 特征和 QC 量子,可以在这两种新范式中获得新的化学认识。不过,在此之前,我们在 ML 和 QC 领域仍有许多障碍需要克服。我们提出了应对这些挑战的可能途径。我们预计,与多尺度建模相比,分层建模将会出现并蓬勃发展,在未来几十年成为硅学模拟的主力军。
{"title":"Harvesting Chemical Understanding with Machine Learning and Quantum Computers","authors":"Shubin Liu*, ","doi":"10.1021/acsphyschemau.3c00067","DOIUrl":"10.1021/acsphyschemau.3c00067","url":null,"abstract":"<p >It is tenable to argue that nobody can predict the future with certainty, yet one can learn from the past and make informed projections for the years ahead. In this Perspective, we overview the status of how theory and computation can be exploited to obtain chemical understanding from wave function theory and density functional theory, and then outlook the likely impact of machine learning (ML) and quantum computers (QC) to appreciate traditional chemical concepts in decades to come. It is maintained that the development and maturation of ML and QC methods in theoretical and computational chemistry represent two paradigm shifts about how the Schrödinger equation can be solved. New chemical understanding can be harnessed in these two new paradigms by making respective use of ML features and QC qubits. Before that happens, however, we still have hurdles to face and obstacles to overcome in both ML and QC arenas. Possible pathways to tackle these challenges are proposed. We anticipate that hierarchical modeling, in contrast to multiscale modeling, will emerge and thrive, becoming the workhorse of <i>in silico</i> simulations in the next few decades.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"4 2","pages":"135–142"},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-18DOI: 10.1021/acsphyschemau.3c00051
Azadeh Alavizargar*, Maximilian Gass, Michael P. Krahn and Andreas Heuer,
Intrinsically disordered regions of proteins are responsible for many biological processes such as in the case of liver kinase B1 (LKB1)─a serine/threonine kinase relevant for cell proliferation and cell polarity. LKB1 becomes fully activated upon recruitment to the plasma membrane by binding of its disordered C-terminal polybasic motif consisting of eight lysines/arginines to phospholipids. Here, we present extensive molecular dynamics (MD) simulations of the polybasic motif interacting with a model membrane composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleyl phosphatidic acid (PA) and cell culture experiments. Protein–membrane binding effects are due to the electrostatic interactions between the polybasic amino acids and PAs. For significant binding, the first three lysines turn out to be dispensable, which was also recapitulated in cell culture using transfected GFP-LKB1 variants. LKB1–membrane binding results in nonmonotonous changes in the structure of the protein as well as the membrane, in particular, accumulation of PAs and reduced thickness at the protein–membrane contact area. The protein–lipid binding turns out to be highly dynamic due to an interplay of PA–PA repulsion and protein–PA attraction. The thermodynamics of this interplay is captured by a statistical fluctuation model, which allows the estimation of both energies. Quantification of the significance of each polar amino acid in the polybasic provides detailed insights into the molecular mechanism of protein–membrane binding of LKB1. These results can likely be transferred to other proteins, which interact by intrinsically disordered polybasic regions with anionic membranes.
蛋白质的内在无序区对许多生物过程都有影响,例如肝激酶 B1(LKB1)--一种与细胞增殖和细胞极性有关的丝氨酸/苏氨酸激酶。肝激酶 B1(LKB1)是一种与细胞增殖和细胞极性相关的丝氨酸/苏氨酸激酶。LKB1 通过其无序的 C 端由八个赖氨酸/精氨酸组成的多基序与磷脂结合而被招募到质膜上,从而被完全激活。在这里,我们展示了多基序与由 1-棕榈酰-2-油酰-sn-甘油-3-磷酸胆碱(POPC)和 1-棕榈酰-2-油酰磷脂酸(PA)组成的模型膜相互作用的大量分子动力学(MD)模拟以及细胞培养实验。蛋白质与膜的结合效应是由于多碱性氨基酸和 PA 之间的静电作用。要实现明显的结合,前三个赖氨酸是不可或缺的,这一点在使用转染的 GFP-LKB1 变体进行细胞培养时也得到了证实。LKB1 与膜结合会导致蛋白质结构和膜结构发生非单调变化,特别是 PA 的积累和蛋白质与膜接触区域厚度的减少。由于 PA-PA 相斥和蛋白质-PA 相吸的相互作用,蛋白质-脂质的结合被证明是高度动态的。这种相互作用的热力学是通过统计波动模型捕捉到的,该模型可以估算出两种能量。通过量化多碱基中每个极性氨基酸的重要性,可以详细了解 LKB1 蛋白质与膜结合的分子机制。这些结果很可能会应用于其他蛋白质,这些蛋白质通过内在无序的多基区与阴离子膜相互作用。
{"title":"Elucidating the Membrane Binding Process of a Disordered Protein: Dynamic Interplay of Anionic Lipids and the Polybasic Region","authors":"Azadeh Alavizargar*, Maximilian Gass, Michael P. Krahn and Andreas Heuer, ","doi":"10.1021/acsphyschemau.3c00051","DOIUrl":"10.1021/acsphyschemau.3c00051","url":null,"abstract":"<p >Intrinsically disordered regions of proteins are responsible for many biological processes such as in the case of liver kinase B1 (LKB1)─a serine/threonine kinase relevant for cell proliferation and cell polarity. LKB1 becomes fully activated upon recruitment to the plasma membrane by binding of its disordered C-terminal polybasic motif consisting of eight lysines/arginines to phospholipids. Here, we present extensive molecular dynamics (MD) simulations of the polybasic motif interacting with a model membrane composed of 1-palmitoyl-2-oleoyl-<i>sn</i>-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleyl phosphatidic acid (PA) and cell culture experiments. Protein–membrane binding effects are due to the electrostatic interactions between the polybasic amino acids and PAs. For significant binding, the first three lysines turn out to be dispensable, which was also recapitulated in cell culture using transfected GFP-LKB1 variants. LKB1–membrane binding results in nonmonotonous changes in the structure of the protein as well as the membrane, in particular, accumulation of PAs and reduced thickness at the protein–membrane contact area. The protein–lipid binding turns out to be highly dynamic due to an interplay of PA–PA repulsion and protein–PA attraction. The thermodynamics of this interplay is captured by a statistical fluctuation model, which allows the estimation of both energies. Quantification of the significance of each polar amino acid in the polybasic provides detailed insights into the molecular mechanism of protein–membrane binding of LKB1. These results can likely be transferred to other proteins, which interact by intrinsically disordered polybasic regions with anionic membranes.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"4 2","pages":"167–179"},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-16DOI: 10.1021/acsphyschemau.3c00068
Yoshifumi Hashikawa*, Shumpei Sadai and Yasujiro Murata*,
CO2 evolution is one of the urgent global issues; meanwhile, understanding of sorptive/dynamic behavior is crucial to create next-generation encapsulant materials with stable sorbent processes. Herein, we showcase molecular CO2 storage constructed by a [60]fullerenol nanopocket. The CO2 density reaches 2.401 g/cm3 within the nanopore, showing strong intramolecular interactions, which induce nanoconfinement effects such as forbidden translation, restricted rotation, and perturbed vibration of CO2. We also disclosed an equation of state for a molecular CO2 gas, revealing a very low pressure of 3.14 rPa (1 rPa = 10–27 Pa) generated by the rotation/vibration at 300 K. Curiously enough, the CO2 capture enabled to modulate an external property of the encapulant material itself, i.e., association of the [60]fullerenol via intercage hydrogen-bonding.
{"title":"Molecular CO2 Storage: State of a Single-Molecule Gas","authors":"Yoshifumi Hashikawa*, Shumpei Sadai and Yasujiro Murata*, ","doi":"10.1021/acsphyschemau.3c00068","DOIUrl":"10.1021/acsphyschemau.3c00068","url":null,"abstract":"<p >CO<sub>2</sub> evolution is one of the urgent global issues; meanwhile, understanding of sorptive/dynamic behavior is crucial to create next-generation encapsulant materials with stable sorbent processes. Herein, we showcase molecular CO<sub>2</sub> storage constructed by a [60]fullerenol nanopocket. The CO<sub>2</sub> density reaches 2.401 g/cm<sup>3</sup> within the nanopore, showing strong intramolecular interactions, which induce nanoconfinement effects such as forbidden translation, restricted rotation, and perturbed vibration of CO<sub>2</sub>. We also disclosed an equation of state for a molecular CO<sub>2</sub> gas, revealing a very low pressure of 3.14 rPa (1 rPa = 10<sup>–27</sup> Pa) generated by the rotation/vibration at 300 K. Curiously enough, the CO<sub>2</sub> capture enabled to modulate an external property of the encapulant material itself, i.e., association of the [60]fullerenol via intercage hydrogen-bonding.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"4 2","pages":"143–147"},"PeriodicalIF":0.0,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00068","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139501241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-03DOI: 10.1021/acsphyschemau.3c00039
Krysti L. Knoche Gupta, Heung Chan Lee and Johna Leddy*,
Hydrogen evolution reaction (HER) rates are higher where magnetic gradients are established at electrode surfaces. In comparison of literature data for metals with comparable work functions, we note 1000× higher rates for paramagnetic metals than diamagnetic metals. With unpaired electron spins, paramagnetic and ferromagnetic metals establish interfacial magnetic gradients. At diamagnetic electrodes, gradients are induced by addition of magnetized microparticles. Onset of hydrogen evolution for magnetized γ-Fe2O3 microparticles in Nafion on diamagnetic glassy carbon electrodes is lower by 190 mV (−18 kJ mol–1) relative to demagnetized microparticles. Chemically the same as demagnetized particles, the physical distinction of magnetic field and gradient at magnetized microparticles increases electron transfer rate. For magnetized Fe3O4 microparticles, the onset is lower by 280 mV (−27 kJ mol–1). Paramagnetic platinum electrodes are unaffected by addition of magnetized microparticles. Magnetoelectrocatalysis is established by magnetic gradients.
{"title":"Magnetoelectrocatalysis: Evidence from the Hydrogen Evolution Reaction","authors":"Krysti L. Knoche Gupta, Heung Chan Lee and Johna Leddy*, ","doi":"10.1021/acsphyschemau.3c00039","DOIUrl":"10.1021/acsphyschemau.3c00039","url":null,"abstract":"<p >Hydrogen evolution reaction (HER) rates are higher where magnetic gradients are established at electrode surfaces. In comparison of literature data for metals with comparable work functions, we note 1000× higher rates for paramagnetic metals than diamagnetic metals. With unpaired electron spins, paramagnetic and ferromagnetic metals establish interfacial magnetic gradients. At diamagnetic electrodes, gradients are induced by addition of magnetized microparticles. Onset of hydrogen evolution for magnetized γ-Fe<sub>2</sub>O<sub>3</sub> microparticles in Nafion on diamagnetic glassy carbon electrodes is lower by 190 mV (−18 kJ mol<sup>–1</sup>) relative to demagnetized microparticles. Chemically the same as demagnetized particles, the physical distinction of magnetic field and gradient at magnetized microparticles increases electron transfer rate. For magnetized Fe<sub>3</sub>O<sub>4</sub> microparticles, the onset is lower by 280 mV (−27 kJ mol<sup>–1</sup>). Paramagnetic platinum electrodes are unaffected by addition of magnetized microparticles. Magnetoelectrocatalysis is established by magnetic gradients.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"4 2","pages":"148–159"},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139082884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.1021/acsphyschemau.3c00049
Yu Wang, and , Wenjie Dou*,
Electron transfer (ET) at molecule–metal or molecule–semiconductor interfaces is a fundamental reaction that underlies all electrochemical processes and substrate-mediated surface photochemistry. In this study, we show that ET rates near a metal surface can be significantly manipulated by periodic driving (e.g., Floquet engineering). We employ the Floquet surface hopping and Floquet electronic friction algorithms developed previously to calculate the ET rates near the metal surface as a function of driving amplitudes and driving frequencies. We find that ET rates have a turnover effect when the driving frequencies increase. A Floquet Marcus theory is further formulated to analyze such a turnover effect. We then benchmark the Floquet Marcus theory against Floquet surface hopping and Floquet electronic friction methods, indicating that the Floquet Marcus theory works in the strong nonadiabatic regimes but fails in the weak nonadiabatic regimes. We hope these theoretical tools will be useful to study ET rates in the plasmonic cavity and plasmon-assisted photocatalysis.
分子-金属或分子-半导体界面上的电子转移(ET)是一种基本反应,是所有电化学过程和基底介导的表面光化学的基础。在本研究中,我们发现金属表面附近的 ET 速率可以通过周期性驱动(如 Floquet 工程)得到显著控制。我们采用之前开发的 Floquet 表面跳跃和 Floquet 电子摩擦算法,计算出金属表面附近的 ET 率与驱动振幅和驱动频率的函数关系。我们发现,当驱动频率增加时,ET 率会产生周转效应。我们进一步提出了 Floquet Marcus 理论来分析这种周转效应。然后,我们将 Floquet Marcus 理论与 Floquet 表面跳跃法和 Floquet 电子摩擦法进行对比,结果表明 Floquet Marcus 理论在强非绝热状态下有效,但在弱非绝热状态下失效。我们希望这些理论工具将有助于研究质子腔和质子辅助光催化中的 ET 速率。
{"title":"Electron Transfer at Molecule–Metal Interfaces under Floquet Engineering: Rate Constant and Floquet Marcus Theory","authors":"Yu Wang, and , Wenjie Dou*, ","doi":"10.1021/acsphyschemau.3c00049","DOIUrl":"10.1021/acsphyschemau.3c00049","url":null,"abstract":"<p >Electron transfer (ET) at molecule–metal or molecule–semiconductor interfaces is a fundamental reaction that underlies all electrochemical processes and substrate-mediated surface photochemistry. In this study, we show that ET rates near a metal surface can be significantly manipulated by periodic driving (e.g., Floquet engineering). We employ the Floquet surface hopping and Floquet electronic friction algorithms developed previously to calculate the ET rates near the metal surface as a function of driving amplitudes and driving frequencies. We find that ET rates have a turnover effect when the driving frequencies increase. A Floquet Marcus theory is further formulated to analyze such a turnover effect. We then benchmark the Floquet Marcus theory against Floquet surface hopping and Floquet electronic friction methods, indicating that the Floquet Marcus theory works in the strong nonadiabatic regimes but fails in the weak nonadiabatic regimes. We hope these theoretical tools will be useful to study ET rates in the plasmonic cavity and plasmon-assisted photocatalysis.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"4 2","pages":"160–166"},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138823514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-08DOI: 10.1021/acsphyschemau.3c00043
Ryan C. Fortenberry*,
By 2050, many, but not nearly all, unattributed astronomical spectral features will be conclusively linked to molecular carriers (as opposed to nearly none today in the visible and IR); amino acids will have been observed remotely beyond our solar system; the largest observatories ever constructed on the surface of the Earth or launched beyond it will be operational; high-throughput computation either from brute force or machine learning will provide unprecedented amounts of reference spectral and chemical reaction data; and the chemical fingerprints of the universe delivered by those of us who call ourselves astrochemists will provide astrophysicists with unprecedented resolution for determining how the stars evolve, planets form, and molecules that lead to life originate. Astrochemistry is a relatively young field, but with the entire universe as its playground, the discipline promises to persist as long as telescopic observations are made that require reference data and complementary chemical modeling. While the recent commissionings of the James Webb Space Telescope and Atacama Large Millimeter Array are ushering in the second “golden age” of astrochemistry (with the first being the radio telescopic boom period of the 1970s), this current period of discovery should facilitate unprecedented advances within the next 25 years. Astrochemistry forces the asking of hard questions beyond the physical conditions of our “pale blue dot”, and such questions require creative solutions that are influential beyond astrophysics. By 2050, more creative solutions will have been provided, but even more will be needed to answer the continuing question of our astrochemical ignorance.
到 2050 年,许多(但不是几乎所有)未归因的天文光谱特征都将与分子载体有确凿的联系(而目前在可见光和红外光谱中几乎没有);氨基酸将在太阳系外被远程观测到;有史以来在地球表面建造或发射到地球以外的最大天文台将投入使用;我们这些自称为天体化学家的人所提供的宇宙化学指纹将为天体物理学家提供前所未有的分辨率,以确定恒星是如何演化的、行星是如何形成的,以及导致生命的分子是如何起源的。天体化学是一个相对年轻的领域,但由于整个宇宙都是它的游乐场,只要望远镜观测需要参考数据和补充化学建模,这门学科就有望继续存在下去。詹姆斯-韦伯太空望远镜(James Webb Space Telescope)和阿塔卡马大型毫米波阵列(Atacama Large Millimeter Array)最近的投入使用,使天体化学迎来了第二个 "黄金时代"(第一个黄金时代是 20 世纪 70 年代的射电望远镜繁荣期),而当前的发现期将促进在未来 25 年内取得前所未有的进展。天体化学迫使人们提出超越我们 "苍白蓝点 "物理条件的难题,而这些问题需要有创造性的、超越天体物理学影响的解决方案。到 2050 年,将会有更多创造性的解决方案,但还需要更多的解决方案来回答我们对天体化学的无知这一持续性问题。
{"title":"A Vision for the Future of Astrochemistry in the Interstellar Medium by 2050","authors":"Ryan C. Fortenberry*, ","doi":"10.1021/acsphyschemau.3c00043","DOIUrl":"10.1021/acsphyschemau.3c00043","url":null,"abstract":"<p >By 2050, many, but not nearly all, unattributed astronomical spectral features will be conclusively linked to molecular carriers (as opposed to nearly none today in the visible and IR); amino acids will have been observed remotely beyond our solar system; the largest observatories ever constructed on the surface of the Earth or launched beyond it will be operational; high-throughput computation either from brute force or machine learning will provide unprecedented amounts of reference spectral and chemical reaction data; and the chemical fingerprints of the universe delivered by those of us who call ourselves astrochemists will provide astrophysicists with unprecedented resolution for determining how the stars evolve, planets form, and molecules that lead to life originate. Astrochemistry is a relatively young field, but with the entire universe as its playground, the discipline promises to persist as long as telescopic observations are made that require reference data and complementary chemical modeling. While the recent commissionings of the <i>James Webb Space Telescope</i> and Atacama Large Millimeter Array are ushering in the second “golden age” of astrochemistry (with the first being the radio telescopic boom period of the 1970s), this current period of discovery should facilitate unprecedented advances within the next 25 years. Astrochemistry forces the asking of hard questions beyond the physical conditions of our “pale blue dot”, and such questions require creative solutions that are influential beyond astrophysics. By 2050, more creative solutions will have been provided, but even more will be needed to answer the continuing question of our astrochemical ignorance.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"4 1","pages":"31–39"},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138589420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-08DOI: 10.1021/acsphyschemau.3c00055
Baluchamy Tamilselvi, Durvas Seshian Bhuvaneshwari*, Periyakaruppan Karuppasamy*, Sethuramasamy Padmavathy, Santhosh Nikhil, Surendra Boppanahalli Siddegowda and H C Ananda Murthy*,
Corrosion inhibition of mild steel (MS) was studied using Lachancea fermentati isolate in 0.5 M H2SO4, which was isolated from rotten grapes (Vitis vinifera) via biofilm formation. Biofilm over the MS surface was asserted by employing FT-IR and FE-SEM with EDXS, electrochemical impedance spectroscopy (EIS), AFM, and DFT-ESP techniques. The weight loss experiments and temperature studies supported the physical adsorption behavior of the corrosion inhibitors. The maximum inhibition efficiency (IE) value (90%) was observed at 293 K for 9 × 106 cfu/mL of Lachancea fermentati isolate. The adsorption of Lachancea fermentati isolate on the surface of MS confirms Langmuir’s adsorption isotherm model, and the −ΔG values indicate the spontaneous adsorption of inhibitor over the MS surface. Electrochemical studies, such as potentiodynamic polarization (PDP) and EIS were carried out to investigate the charge transfer (CT) reaction of the Lachancea fermentati isolate. Tafel polarization curves reveal that the Lachancea fermentati isolate acts as a mixed type of inhibitor. The Nyquist plots (EIS) indicate the increase in charge transfer resistance (Rct) and decrease of double-layer capacitance (Cdl) values when increasing the concentration of Lachancea fermentati isolate. The spectral studies, such as UV–vis and FT-IR, confirm the formation of a complex between MS and the Lachancea fermentati isolate inhibitor. The formation of biofilm on the MS surface was confirmed by FE-SEM, EDXS, and XPS analysis. The proposed bioinhibitor shows great potential for the corrosion inhibition of mild steel in acid media.
在 0.5 M H2SO4 溶液中使用 Lachancea fermentati 分离物对低碳钢(MS)的腐蚀抑制作用进行了研究,该分离物是从腐烂葡萄(葡萄属)中通过生物膜形成分离出来的。通过使用傅立叶变换红外光谱(FT-IR)、FE-SEM、EDXS、电化学阻抗光谱(EIS)、原子力显微镜(AFM)和 DFT-ESP 技术,确定了 MS 表面的生物膜。失重实验和温度研究证实了缓蚀剂的物理吸附行为。在 293 K 下,9 × 106 cfu/mL 的 Lachancea fermentati 分离物的抑制效率(IE)值最大(90%)。Lachancea fermentati 分离物在 MS 表面的吸附证实了 Langmuir 吸附等温线模型,-ΔG 值表明抑制剂在 MS 表面的自发吸附。为了研究 Lachancea fermentati 分离物的电荷转移(CT)反应,还进行了电位极化(PDP)和 EIS 等电化学研究。塔菲尔极化曲线显示,Lachancea fermentati 分离物是一种混合型抑制剂。奈奎斯特图(EIS)表明,当 Lachancea fermentati 分离物的浓度增加时,电荷转移电阻(Rct)增加,双层电容(Cdl)值降低。紫外-可见光和傅立叶变换红外光谱等光谱研究证实,MS 与 Lachancea fermentati 分离物抑制剂之间形成了复合物。FE-SEM、EDXS 和 XPS 分析证实了 MS 表面生物膜的形成。所提出的生物抑制剂在酸性介质中抑制低碳钢腐蚀方面显示出巨大的潜力。
{"title":"Investigation of Corrosion Inhibition of Mild Steel in 0.5 M H2SO4 with Lachancea fermentati Inhibitor Extracted from Rotten Grapefruits (Vitis vinifera): Adsorption, Thermodynamic, Electrochemical, and Quantum Chemical Studies","authors":"Baluchamy Tamilselvi, Durvas Seshian Bhuvaneshwari*, Periyakaruppan Karuppasamy*, Sethuramasamy Padmavathy, Santhosh Nikhil, Surendra Boppanahalli Siddegowda and H C Ananda Murthy*, ","doi":"10.1021/acsphyschemau.3c00055","DOIUrl":"10.1021/acsphyschemau.3c00055","url":null,"abstract":"<p >Corrosion inhibition of mild steel (MS) was studied using <i>Lachancea fermentati</i> isolate in 0.5 M H<sub>2</sub>SO<sub>4</sub>, which was isolated from rotten grapes (<i>Vitis vinifera</i>) via biofilm formation. Biofilm over the MS surface was asserted by employing FT-IR and FE-SEM with EDXS, electrochemical impedance spectroscopy (EIS), AFM, and DFT-ESP techniques. The weight loss experiments and temperature studies supported the physical adsorption behavior of the corrosion inhibitors. The maximum inhibition efficiency (IE) value (90%) was observed at 293 K for 9 × 10<sup>6</sup> cfu/mL of <i>Lachancea fermentati</i> isolate. The adsorption of <i>Lachancea fermentati</i> isolate on the surface of MS confirms Langmuir’s adsorption isotherm model, and the −Δ<i>G</i> values indicate the spontaneous adsorption of inhibitor over the MS surface. Electrochemical studies, such as potentiodynamic polarization (PDP) and EIS were carried out to investigate the charge transfer (CT) reaction of the <i>Lachancea fermentati</i> isolate. Tafel polarization curves reveal that the <i>Lachancea fermentati</i> isolate acts as a mixed type of inhibitor. The Nyquist plots (EIS) indicate the increase in charge transfer resistance (<i>R</i><sub>ct</sub>) and decrease of double-layer capacitance (<i>C</i><sub>dl</sub>) values when increasing the concentration of <i>Lachancea fermentati</i> isolate. The spectral studies, such as UV–vis and FT-IR, confirm the formation of a complex between MS and the <i>Lachancea fermentati</i> isolate inhibitor. The formation of biofilm on the MS surface was confirmed by FE-SEM, EDXS, and XPS analysis. The proposed bioinhibitor shows great potential for the corrosion inhibition of mild steel in acid media.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"4 1","pages":"67–84"},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138581297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-22DOI: 10.1021/acsphyschemau.3c00050
Pamela Knoll*, Bin Ouyang* and Oliver Steinbock*,
The universe is a complex fabric of repeating patterns that unfold their beauty in system-specific diversity. The periodic table, crystallography, and the genetic code are classic examples that illustrate how even a small number of rules generate a vast range of shapes and structures. Today, we are on the brink of an AI-driven revolution that will reveal an unprecedented number of novel patterns, many of which will escape human intuition and expertise. We suggest that in the second half of the 21st century, the challenge for Physical Chemistry will be to guide and interpret these advances in the broader context of physical sciences and materials-related engineering. If we succeed in this role, Physical Chemistry will be able to extend to new horizons. In this article, we will discuss examples that strike us as particularly promising, specifically the discovery of high-entropy and far-from-equilibrium materials as well as applications to origins-of-life research and the search for life on other planets.
{"title":"Patterns Lead the Way to Far-from-Equilibrium Materials","authors":"Pamela Knoll*, Bin Ouyang* and Oliver Steinbock*, ","doi":"10.1021/acsphyschemau.3c00050","DOIUrl":"10.1021/acsphyschemau.3c00050","url":null,"abstract":"<p >The universe is a complex fabric of repeating patterns that unfold their beauty in system-specific diversity. The periodic table, crystallography, and the genetic code are classic examples that illustrate how even a small number of rules generate a vast range of shapes and structures. Today, we are on the brink of an AI-driven revolution that will reveal an unprecedented number of novel patterns, many of which will escape human intuition and expertise. We suggest that in the second half of the 21st century, the challenge for Physical Chemistry will be to guide and interpret these advances in the broader context of physical sciences and materials-related engineering. If we succeed in this role, Physical Chemistry will be able to extend to new horizons. In this article, we will discuss examples that strike us as particularly promising, specifically the discovery of high-entropy and far-from-equilibrium materials as well as applications to origins-of-life research and the search for life on other planets.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"4 1","pages":"19–30"},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138518807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}