The study investigated the denitrification effect of the iron autotrophic denitrification process for removing nitrite under anaerobic conditions, utilizing sponge iron as the electron donor. When the C/N ratio equaled 1, defined as the ratio of chemical oxygen demand to total nitrogen (TN), and the influent nitrite nitrogen (NO2−-N) was at 80 mg/L, the average steady-state TN effluent concentration of this system was 41.94 mg/L during the 79-day experiment. The TN value exhibited a significant decrease compared to both the sponge iron system (68.69 mg/L) and the carbon source system (56.50 mg/L). Sponge iron is beneficial for providing an electron donor and ensuring an anaerobic system, fostering an environment that promotes microorganism growth while effectively inhibiting the conversion of nitrite to nitrate. In addition, carbon sources play a vital role in ensuring microorganism growth and reproduction, thereby aiding in TN removal. The optimal parameters based on the effectiveness of TN removal in the iron autotrophic denitrification system were determined to be s-Fe0 dosage of 30 g/L and C/N = 1.5. These results suggest that the iron autotrophic denitrification process, driven by sponge iron, can effectively remove nitrite under anaerobic conditions.
{"title":"Iron-based autotrophic denitrification driven by sponge iron for nitrite removal in an anaerobic bioreactor: effect of iron and carbon source","authors":"Shuang Ren, Peng Wang, Wenxuan Li, Hongjuan Zhu, Kaiyao Hu, Hao Mu, Xiaoyi Gao","doi":"10.2166/wst.2024.041","DOIUrl":"https://doi.org/10.2166/wst.2024.041","url":null,"abstract":"\u0000 \u0000 The study investigated the denitrification effect of the iron autotrophic denitrification process for removing nitrite under anaerobic conditions, utilizing sponge iron as the electron donor. When the C/N ratio equaled 1, defined as the ratio of chemical oxygen demand to total nitrogen (TN), and the influent nitrite nitrogen (NO2−-N) was at 80 mg/L, the average steady-state TN effluent concentration of this system was 41.94 mg/L during the 79-day experiment. The TN value exhibited a significant decrease compared to both the sponge iron system (68.69 mg/L) and the carbon source system (56.50 mg/L). Sponge iron is beneficial for providing an electron donor and ensuring an anaerobic system, fostering an environment that promotes microorganism growth while effectively inhibiting the conversion of nitrite to nitrate. In addition, carbon sources play a vital role in ensuring microorganism growth and reproduction, thereby aiding in TN removal. The optimal parameters based on the effectiveness of TN removal in the iron autotrophic denitrification system were determined to be s-Fe0 dosage of 30 g/L and C/N = 1.5. These results suggest that the iron autotrophic denitrification process, driven by sponge iron, can effectively remove nitrite under anaerobic conditions.","PeriodicalId":298320,"journal":{"name":"Water Science & Technology","volume":"16 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139846867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonio Francisco Francisco da Silva Junior, Katia Ribeiro, José Ermírio Ferreira de Moraes, W. S. Hanisch
The accelerated growth of cyanobacteria in water bodies is a global critical environmental issue caused by continuous discharges of effluents into the environment that are rich in phosphorus and nitrogen. So, cyanobacteria have found propitious conditions for proliferation, provoking significant ecological imbalances. Cyanobacteria produce cyanotoxins, which are harmful to life, and compounds like 2-methylisoborneol and geosmin that affect water's taste and odor. This study analyzed a long-term database of important environmental parameters from a tropical reservoir in São Paulo State, Brazil. The statistical methods of correlation matrices and principal component analysis were used. Data analysis revealed a significant relationship between cyanobacteria growth and high levels of phosphate and nitrogen. Furthermore, positive correlations were found among concentrations of biocidal elements like antimony, arsenic, and selenium related to cyanobacterial bloomings. These correlations can be attributed to agricultural wastewaters and/or possible algicide used to control these microorganisms.
{"title":"Statistical evaluation of trends of water quality monitoring parameters relevant to cyanobacterial blooms in the urban tropical reservoir","authors":"Antonio Francisco Francisco da Silva Junior, Katia Ribeiro, José Ermírio Ferreira de Moraes, W. S. Hanisch","doi":"10.2166/wst.2024.039","DOIUrl":"https://doi.org/10.2166/wst.2024.039","url":null,"abstract":"\u0000 \u0000 The accelerated growth of cyanobacteria in water bodies is a global critical environmental issue caused by continuous discharges of effluents into the environment that are rich in phosphorus and nitrogen. So, cyanobacteria have found propitious conditions for proliferation, provoking significant ecological imbalances. Cyanobacteria produce cyanotoxins, which are harmful to life, and compounds like 2-methylisoborneol and geosmin that affect water's taste and odor. This study analyzed a long-term database of important environmental parameters from a tropical reservoir in São Paulo State, Brazil. The statistical methods of correlation matrices and principal component analysis were used. Data analysis revealed a significant relationship between cyanobacteria growth and high levels of phosphate and nitrogen. Furthermore, positive correlations were found among concentrations of biocidal elements like antimony, arsenic, and selenium related to cyanobacterial bloomings. These correlations can be attributed to agricultural wastewaters and/or possible algicide used to control these microorganisms.","PeriodicalId":298320,"journal":{"name":"Water Science & Technology","volume":"75 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139853010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sijie Zhou, Lili Wang, Jin Liu, Chuanguo Zhang, Xianbin Liu
Prior to entering the water body, microplastics (MPs) are mostly collected at the sewage treatment plant and the biological treatment unit is the sewage treatment facility's central processing unit. This review aims to present a comprehensive analysis of the detrimental impacts of MPs on the biological treatment unit of a sewage treatment plant and it covers how MPs harm the effluent quality of biological treatment processes. The structure of microbial communities is altered by MPs presence and additive release, which reduces functional microbial activity. Extracellular polymers, oxidative stress, and enzyme activity are explored as micro views on the harmful mechanism of MPs on microorganisms, examining the toxicity of additives released by MPs and the harm caused to microorganisms by harmful compounds that have been adsorbed in the aqueous environment. This article offers a theoretical framework for a thorough understanding of the potential problems posed by MPs in sewage treatment plants and suggests countermeasures to mitigate those risks to the aquatic environment.
{"title":"Microplastics’ toxic effects and influencing factors on microorganisms in biological wastewater treatment units","authors":"Sijie Zhou, Lili Wang, Jin Liu, Chuanguo Zhang, Xianbin Liu","doi":"10.2166/wst.2024.040","DOIUrl":"https://doi.org/10.2166/wst.2024.040","url":null,"abstract":"\u0000 Prior to entering the water body, microplastics (MPs) are mostly collected at the sewage treatment plant and the biological treatment unit is the sewage treatment facility's central processing unit. This review aims to present a comprehensive analysis of the detrimental impacts of MPs on the biological treatment unit of a sewage treatment plant and it covers how MPs harm the effluent quality of biological treatment processes. The structure of microbial communities is altered by MPs presence and additive release, which reduces functional microbial activity. Extracellular polymers, oxidative stress, and enzyme activity are explored as micro views on the harmful mechanism of MPs on microorganisms, examining the toxicity of additives released by MPs and the harm caused to microorganisms by harmful compounds that have been adsorbed in the aqueous environment. This article offers a theoretical framework for a thorough understanding of the potential problems posed by MPs in sewage treatment plants and suggests countermeasures to mitigate those risks to the aquatic environment.","PeriodicalId":298320,"journal":{"name":"Water Science & Technology","volume":"83 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139852993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sijie Zhou, Lili Wang, Jin Liu, Chuanguo Zhang, Xianbin Liu
Prior to entering the water body, microplastics (MPs) are mostly collected at the sewage treatment plant and the biological treatment unit is the sewage treatment facility's central processing unit. This review aims to present a comprehensive analysis of the detrimental impacts of MPs on the biological treatment unit of a sewage treatment plant and it covers how MPs harm the effluent quality of biological treatment processes. The structure of microbial communities is altered by MPs presence and additive release, which reduces functional microbial activity. Extracellular polymers, oxidative stress, and enzyme activity are explored as micro views on the harmful mechanism of MPs on microorganisms, examining the toxicity of additives released by MPs and the harm caused to microorganisms by harmful compounds that have been adsorbed in the aqueous environment. This article offers a theoretical framework for a thorough understanding of the potential problems posed by MPs in sewage treatment plants and suggests countermeasures to mitigate those risks to the aquatic environment.
{"title":"Microplastics’ toxic effects and influencing factors on microorganisms in biological wastewater treatment units","authors":"Sijie Zhou, Lili Wang, Jin Liu, Chuanguo Zhang, Xianbin Liu","doi":"10.2166/wst.2024.040","DOIUrl":"https://doi.org/10.2166/wst.2024.040","url":null,"abstract":"\u0000 Prior to entering the water body, microplastics (MPs) are mostly collected at the sewage treatment plant and the biological treatment unit is the sewage treatment facility's central processing unit. This review aims to present a comprehensive analysis of the detrimental impacts of MPs on the biological treatment unit of a sewage treatment plant and it covers how MPs harm the effluent quality of biological treatment processes. The structure of microbial communities is altered by MPs presence and additive release, which reduces functional microbial activity. Extracellular polymers, oxidative stress, and enzyme activity are explored as micro views on the harmful mechanism of MPs on microorganisms, examining the toxicity of additives released by MPs and the harm caused to microorganisms by harmful compounds that have been adsorbed in the aqueous environment. This article offers a theoretical framework for a thorough understanding of the potential problems posed by MPs in sewage treatment plants and suggests countermeasures to mitigate those risks to the aquatic environment.","PeriodicalId":298320,"journal":{"name":"Water Science & Technology","volume":" 40","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139793075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Using electrolytic zero-valent iron-activated sodium hypochlorite (EZVI-NaClO) to pretreat sludge, the capillary suction time (CST) was utilized to evaluate sludge dewaterability. Ammonia nitrogen (NH4-N), dissolved phosphorus, and total phosphorus in the supernatant were used to analyze sludge disintegration. This approach aimed to evaluate the effectiveness of the pretreatment process and its impact on the sludge composition. The migration and transformation of extracellular polymeric substances (EPS), including dissolved EPS (S-EPS), loosely bound-EPS, and tightly bound-EPS (TB-EPS), were analyzed by detecting protein and polysaccharide concentrations and three-dimensional fluorescence excitation-emission spectroscopy (3D-EEM). The sludge particle properties, including sludge viscosity and particle size, were also analyzed. The results suggested that the optimal pH value, NaClO dosage, current, and reaction time were 2, 100 mg/gDS (dry sludge), 0.2A, and 30 min, respectively, with a CST reduction of 43%. Protein and polysaccharide contents in TB-EPS were significantly reduced in the EZVI-NaClO group. Conversely, the content of protein and polysaccharides in S-EPS increased, suggesting that EZVI-NaClO treatment could disrupt the EPS in the sludge. Besides, the viscosity of the treated sludge decreased from 195.4 to 54.9 mPa·S, indicating that sludge fluidity became better. ZEVI-NaClO could enhance sludge dewaterability by destructing protein and polysaccharide structure and improving sludge hydrophobicity.
{"title":"Effect of electrolytic zero-valent iron activated sodium hypochlorite on sludge dewatering performance","authors":"Shaodong Guo, Yuhang Wu, Zhangyu Wang, Xi Yin","doi":"10.2166/wst.2024.037","DOIUrl":"https://doi.org/10.2166/wst.2024.037","url":null,"abstract":"\u0000 \u0000 Using electrolytic zero-valent iron-activated sodium hypochlorite (EZVI-NaClO) to pretreat sludge, the capillary suction time (CST) was utilized to evaluate sludge dewaterability. Ammonia nitrogen (NH4-N), dissolved phosphorus, and total phosphorus in the supernatant were used to analyze sludge disintegration. This approach aimed to evaluate the effectiveness of the pretreatment process and its impact on the sludge composition. The migration and transformation of extracellular polymeric substances (EPS), including dissolved EPS (S-EPS), loosely bound-EPS, and tightly bound-EPS (TB-EPS), were analyzed by detecting protein and polysaccharide concentrations and three-dimensional fluorescence excitation-emission spectroscopy (3D-EEM). The sludge particle properties, including sludge viscosity and particle size, were also analyzed. The results suggested that the optimal pH value, NaClO dosage, current, and reaction time were 2, 100 mg/gDS (dry sludge), 0.2A, and 30 min, respectively, with a CST reduction of 43%. Protein and polysaccharide contents in TB-EPS were significantly reduced in the EZVI-NaClO group. Conversely, the content of protein and polysaccharides in S-EPS increased, suggesting that EZVI-NaClO treatment could disrupt the EPS in the sludge. Besides, the viscosity of the treated sludge decreased from 195.4 to 54.9 mPa·S, indicating that sludge fluidity became better. ZEVI-NaClO could enhance sludge dewaterability by destructing protein and polysaccharide structure and improving sludge hydrophobicity.","PeriodicalId":298320,"journal":{"name":"Water Science & Technology","volume":"24 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139852389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Using electrolytic zero-valent iron-activated sodium hypochlorite (EZVI-NaClO) to pretreat sludge, the capillary suction time (CST) was utilized to evaluate sludge dewaterability. Ammonia nitrogen (NH4-N), dissolved phosphorus, and total phosphorus in the supernatant were used to analyze sludge disintegration. This approach aimed to evaluate the effectiveness of the pretreatment process and its impact on the sludge composition. The migration and transformation of extracellular polymeric substances (EPS), including dissolved EPS (S-EPS), loosely bound-EPS, and tightly bound-EPS (TB-EPS), were analyzed by detecting protein and polysaccharide concentrations and three-dimensional fluorescence excitation-emission spectroscopy (3D-EEM). The sludge particle properties, including sludge viscosity and particle size, were also analyzed. The results suggested that the optimal pH value, NaClO dosage, current, and reaction time were 2, 100 mg/gDS (dry sludge), 0.2A, and 30 min, respectively, with a CST reduction of 43%. Protein and polysaccharide contents in TB-EPS were significantly reduced in the EZVI-NaClO group. Conversely, the content of protein and polysaccharides in S-EPS increased, suggesting that EZVI-NaClO treatment could disrupt the EPS in the sludge. Besides, the viscosity of the treated sludge decreased from 195.4 to 54.9 mPa·S, indicating that sludge fluidity became better. ZEVI-NaClO could enhance sludge dewaterability by destructing protein and polysaccharide structure and improving sludge hydrophobicity.
{"title":"Effect of electrolytic zero-valent iron activated sodium hypochlorite on sludge dewatering performance","authors":"Shaodong Guo, Yuhang Wu, Zhangyu Wang, Xi Yin","doi":"10.2166/wst.2024.037","DOIUrl":"https://doi.org/10.2166/wst.2024.037","url":null,"abstract":"\u0000 \u0000 Using electrolytic zero-valent iron-activated sodium hypochlorite (EZVI-NaClO) to pretreat sludge, the capillary suction time (CST) was utilized to evaluate sludge dewaterability. Ammonia nitrogen (NH4-N), dissolved phosphorus, and total phosphorus in the supernatant were used to analyze sludge disintegration. This approach aimed to evaluate the effectiveness of the pretreatment process and its impact on the sludge composition. The migration and transformation of extracellular polymeric substances (EPS), including dissolved EPS (S-EPS), loosely bound-EPS, and tightly bound-EPS (TB-EPS), were analyzed by detecting protein and polysaccharide concentrations and three-dimensional fluorescence excitation-emission spectroscopy (3D-EEM). The sludge particle properties, including sludge viscosity and particle size, were also analyzed. The results suggested that the optimal pH value, NaClO dosage, current, and reaction time were 2, 100 mg/gDS (dry sludge), 0.2A, and 30 min, respectively, with a CST reduction of 43%. Protein and polysaccharide contents in TB-EPS were significantly reduced in the EZVI-NaClO group. Conversely, the content of protein and polysaccharides in S-EPS increased, suggesting that EZVI-NaClO treatment could disrupt the EPS in the sludge. Besides, the viscosity of the treated sludge decreased from 195.4 to 54.9 mPa·S, indicating that sludge fluidity became better. ZEVI-NaClO could enhance sludge dewaterability by destructing protein and polysaccharide structure and improving sludge hydrophobicity.","PeriodicalId":298320,"journal":{"name":"Water Science & Technology","volume":" 48","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139792385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seith N. Mugume, Hilary Kibibi, Johanna Sorensen, David Butler
The need to enhance the resilience of urban drainage systems (UDSs) in view of emerging global climate change and urbanisation threats is well recognised. Blue-Green Infrastructure (BGI) provides a suitable strategy for building the resilience of existing UDSs. However, there are limited quantitative studies that provide evidence of their effectiveness for increased uptake in cities. In this research, coupled one-dimensional–two-dimensional (1D–2D) modelling is applied to assess the effectiveness of BGI that include rainwater harvesting systems, infiltration trenches, bioretention cells, and detention ponds using two case study UDSs located in Kampala that experience catastrophic pluvial flooding caused by extreme rainfall. The resulting flooding impacts are quantified considering ‘failed’ and ‘non-failed’ UDS initial states, using total flood volume and average flood duration as system performance indicators. The study results suggest that spatially distributed rainwater harvesting systems singularly lead to a reduction in total flood volume and average flood duration of 16–45% and 18–24% in the case study UDSs, respectively. Furthermore, the study results suggest that BGIs are more effective during moderate rainfall (T < 10 years). Based on the study findings, city scale implementation of multifunctional rainwater harvesting systems is recommended as a suitable strategy for enhancing UDSs’ resilience.
{"title":"Can Blue-Green Infrastructure enhance resilience in urban drainage systems during failure conditions?","authors":"Seith N. Mugume, Hilary Kibibi, Johanna Sorensen, David Butler","doi":"10.2166/wst.2024.032","DOIUrl":"https://doi.org/10.2166/wst.2024.032","url":null,"abstract":"\u0000 \u0000 The need to enhance the resilience of urban drainage systems (UDSs) in view of emerging global climate change and urbanisation threats is well recognised. Blue-Green Infrastructure (BGI) provides a suitable strategy for building the resilience of existing UDSs. However, there are limited quantitative studies that provide evidence of their effectiveness for increased uptake in cities. In this research, coupled one-dimensional–two-dimensional (1D–2D) modelling is applied to assess the effectiveness of BGI that include rainwater harvesting systems, infiltration trenches, bioretention cells, and detention ponds using two case study UDSs located in Kampala that experience catastrophic pluvial flooding caused by extreme rainfall. The resulting flooding impacts are quantified considering ‘failed’ and ‘non-failed’ UDS initial states, using total flood volume and average flood duration as system performance indicators. The study results suggest that spatially distributed rainwater harvesting systems singularly lead to a reduction in total flood volume and average flood duration of 16–45% and 18–24% in the case study UDSs, respectively. Furthermore, the study results suggest that BGIs are more effective during moderate rainfall (T < 10 years). Based on the study findings, city scale implementation of multifunctional rainwater harvesting systems is recommended as a suitable strategy for enhancing UDSs’ resilience.","PeriodicalId":298320,"journal":{"name":"Water Science & Technology","volume":"100 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139853091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonio Francisco Francisco da Silva Junior, Katia Ribeiro, José Ermírio Ferreira de Moraes, W. S. Hanisch
The accelerated growth of cyanobacteria in water bodies is a global critical environmental issue caused by continuous discharges of effluents into the environment that are rich in phosphorus and nitrogen. So, cyanobacteria have found propitious conditions for proliferation, provoking significant ecological imbalances. Cyanobacteria produce cyanotoxins, which are harmful to life, and compounds like 2-methylisoborneol and geosmin that affect water's taste and odor. This study analyzed a long-term database of important environmental parameters from a tropical reservoir in São Paulo State, Brazil. The statistical methods of correlation matrices and principal component analysis were used. Data analysis revealed a significant relationship between cyanobacteria growth and high levels of phosphate and nitrogen. Furthermore, positive correlations were found among concentrations of biocidal elements like antimony, arsenic, and selenium related to cyanobacterial bloomings. These correlations can be attributed to agricultural wastewaters and/or possible algicide used to control these microorganisms.
{"title":"Statistical evaluation of trends of water quality monitoring parameters relevant to cyanobacterial blooms in the urban tropical reservoir","authors":"Antonio Francisco Francisco da Silva Junior, Katia Ribeiro, José Ermírio Ferreira de Moraes, W. S. Hanisch","doi":"10.2166/wst.2024.039","DOIUrl":"https://doi.org/10.2166/wst.2024.039","url":null,"abstract":"\u0000 \u0000 The accelerated growth of cyanobacteria in water bodies is a global critical environmental issue caused by continuous discharges of effluents into the environment that are rich in phosphorus and nitrogen. So, cyanobacteria have found propitious conditions for proliferation, provoking significant ecological imbalances. Cyanobacteria produce cyanotoxins, which are harmful to life, and compounds like 2-methylisoborneol and geosmin that affect water's taste and odor. This study analyzed a long-term database of important environmental parameters from a tropical reservoir in São Paulo State, Brazil. The statistical methods of correlation matrices and principal component analysis were used. Data analysis revealed a significant relationship between cyanobacteria growth and high levels of phosphate and nitrogen. Furthermore, positive correlations were found among concentrations of biocidal elements like antimony, arsenic, and selenium related to cyanobacterial bloomings. These correlations can be attributed to agricultural wastewaters and/or possible algicide used to control these microorganisms.","PeriodicalId":298320,"journal":{"name":"Water Science & Technology","volume":" 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139793158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seith N. Mugume, Hilary Kibibi, Johanna Sorensen, David Butler
The need to enhance the resilience of urban drainage systems (UDSs) in view of emerging global climate change and urbanisation threats is well recognised. Blue-Green Infrastructure (BGI) provides a suitable strategy for building the resilience of existing UDSs. However, there are limited quantitative studies that provide evidence of their effectiveness for increased uptake in cities. In this research, coupled one-dimensional–two-dimensional (1D–2D) modelling is applied to assess the effectiveness of BGI that include rainwater harvesting systems, infiltration trenches, bioretention cells, and detention ponds using two case study UDSs located in Kampala that experience catastrophic pluvial flooding caused by extreme rainfall. The resulting flooding impacts are quantified considering ‘failed’ and ‘non-failed’ UDS initial states, using total flood volume and average flood duration as system performance indicators. The study results suggest that spatially distributed rainwater harvesting systems singularly lead to a reduction in total flood volume and average flood duration of 16–45% and 18–24% in the case study UDSs, respectively. Furthermore, the study results suggest that BGIs are more effective during moderate rainfall (T < 10 years). Based on the study findings, city scale implementation of multifunctional rainwater harvesting systems is recommended as a suitable strategy for enhancing UDSs’ resilience.
{"title":"Can Blue-Green Infrastructure enhance resilience in urban drainage systems during failure conditions?","authors":"Seith N. Mugume, Hilary Kibibi, Johanna Sorensen, David Butler","doi":"10.2166/wst.2024.032","DOIUrl":"https://doi.org/10.2166/wst.2024.032","url":null,"abstract":"\u0000 \u0000 The need to enhance the resilience of urban drainage systems (UDSs) in view of emerging global climate change and urbanisation threats is well recognised. Blue-Green Infrastructure (BGI) provides a suitable strategy for building the resilience of existing UDSs. However, there are limited quantitative studies that provide evidence of their effectiveness for increased uptake in cities. In this research, coupled one-dimensional–two-dimensional (1D–2D) modelling is applied to assess the effectiveness of BGI that include rainwater harvesting systems, infiltration trenches, bioretention cells, and detention ponds using two case study UDSs located in Kampala that experience catastrophic pluvial flooding caused by extreme rainfall. The resulting flooding impacts are quantified considering ‘failed’ and ‘non-failed’ UDS initial states, using total flood volume and average flood duration as system performance indicators. The study results suggest that spatially distributed rainwater harvesting systems singularly lead to a reduction in total flood volume and average flood duration of 16–45% and 18–24% in the case study UDSs, respectively. Furthermore, the study results suggest that BGIs are more effective during moderate rainfall (T < 10 years). Based on the study findings, city scale implementation of multifunctional rainwater harvesting systems is recommended as a suitable strategy for enhancing UDSs’ resilience.","PeriodicalId":298320,"journal":{"name":"Water Science & Technology","volume":" 44","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139793178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianping Wang, Yingbo Chen, Guangqiang Yao, Neng Li
This paper proposes an adaptive river discharge measurement method based on spatiotemporal image velocimetry (STIV) and optical flow to solve the problem of blurred texture features and limited measurement accuracy under complex natural environmental conditions. Optical flow tracking generates spatiotemporal images by following the flow mainstream direction of rivers with both regular and irregular natural banks. A texture similarity function filtering method effectively enhances spatiotemporal texture features. The proposed method is applied to a natural river, with measurement results from a propeller-type current meter used as truth values. It is evaluated and compared with three other methods regarding measurement accuracy, error, and other evaluation indices. The results demonstrate that the method significantly improves spatiotemporal image quality. Its estimation outcomes perform better across all evaluation metrics, enhancing the adaptability and accuracy of the flow measurement method.
{"title":"Adaptive river flow measurement method based on spatiotemporal image velocimetry and optical flow","authors":"Jianping Wang, Yingbo Chen, Guangqiang Yao, Neng Li","doi":"10.2166/wst.2024.038","DOIUrl":"https://doi.org/10.2166/wst.2024.038","url":null,"abstract":"\u0000 \u0000 This paper proposes an adaptive river discharge measurement method based on spatiotemporal image velocimetry (STIV) and optical flow to solve the problem of blurred texture features and limited measurement accuracy under complex natural environmental conditions. Optical flow tracking generates spatiotemporal images by following the flow mainstream direction of rivers with both regular and irregular natural banks. A texture similarity function filtering method effectively enhances spatiotemporal texture features. The proposed method is applied to a natural river, with measurement results from a propeller-type current meter used as truth values. It is evaluated and compared with three other methods regarding measurement accuracy, error, and other evaluation indices. The results demonstrate that the method significantly improves spatiotemporal image quality. Its estimation outcomes perform better across all evaluation metrics, enhancing the adaptability and accuracy of the flow measurement method.","PeriodicalId":298320,"journal":{"name":"Water Science & Technology","volume":"355 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139796435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}