首页 > 最新文献

WIREs Mechanisms of Disease最新文献

英文 中文
Computational modeling of angiogenesis: The importance of cell rearrangements during vascular growth. 血管生成的计算模型:血管生长过程中细胞重排的重要性
IF 3.1 3区 医学 Q2 Medicine Pub Date : 2024-03-01 Epub Date: 2023-12-12 DOI: 10.1002/wsbm.1634
Daria Stepanova, Helen M Byrne, Philip K Maini, Tomás Alarcón

Angiogenesis is the process wherein endothelial cells (ECs) form sprouts that elongate from the pre-existing vasculature to create new vascular networks. In addition to its essential role in normal development, angiogenesis plays a vital role in pathologies such as cancer, diabetes and atherosclerosis. Mathematical and computational modeling has contributed to unraveling its complexity. Many existing theoretical models of angiogenic sprouting are based on the "snail-trail" hypothesis. This framework assumes that leading ECs positioned at sprout tips migrate toward low-oxygen regions while other ECs in the sprout passively follow the leaders' trails and proliferate to maintain sprout integrity. However, experimental results indicate that, contrary to the snail-trail assumption, ECs exchange positions within developing vessels, and the elongation of sprouts is primarily driven by directed migration of ECs. The functional role of cell rearrangements remains unclear. This review of the theoretical modeling of angiogenesis is the first to focus on the phenomenon of cell mixing during early sprouting. We start by describing the biological processes that occur during early angiogenesis, such as phenotype specification, cell rearrangements and cell interactions with the microenvironment. Next, we provide an overview of various theoretical approaches that have been employed to model angiogenesis, with particular emphasis on recent in silico models that account for the phenomenon of cell mixing. Finally, we discuss when cell mixing should be incorporated into theoretical models and what essential modeling components such models should include in order to investigate its functional role. This article is categorized under: Cardiovascular Diseases > Computational Models Cancer > Computational Models.

血管生成是指内皮细胞(EC)形成新芽的过程,这些新芽从原有的血管中延伸出来,形成新的血管网络。除了在正常发育过程中发挥重要作用外,血管生成在癌症、糖尿病和动脉粥样硬化等病症中也发挥着至关重要的作用。数学和计算模型有助于揭示血管生成的复杂性。许多现有的血管新生萌芽理论模型都基于 "蜗牛轨迹 "假说。这一框架假定,位于萌芽顶端的带头EC向低氧区域迁移,而萌芽中的其他EC则被动地跟随带头EC的轨迹增殖,以保持萌芽的完整性。然而,实验结果表明,与蜗牛轨迹假设相反,心肌细胞在发育中的血管内会交换位置,萌芽的伸长主要是由心肌细胞的定向迁移驱动的。细胞重排的功能作用仍不清楚。这篇关于血管生成理论模型的综述首次聚焦于早期萌芽过程中的细胞混合现象。我们首先描述了早期血管生成过程中发生的生物过程,如表型规范、细胞重排和细胞与微环境的相互作用。接下来,我们概述了血管生成建模所采用的各种理论方法,并特别强调了最近解释细胞混合现象的硅学模型。最后,我们讨论了何时应将细胞混合纳入理论模型,以及此类模型应包括哪些基本建模组件,以研究其功能作用。本文归类于心血管疾病 > 计算模型 癌症 > 计算模型。
{"title":"Computational modeling of angiogenesis: The importance of cell rearrangements during vascular growth.","authors":"Daria Stepanova, Helen M Byrne, Philip K Maini, Tomás Alarcón","doi":"10.1002/wsbm.1634","DOIUrl":"10.1002/wsbm.1634","url":null,"abstract":"<p><p>Angiogenesis is the process wherein endothelial cells (ECs) form sprouts that elongate from the pre-existing vasculature to create new vascular networks. In addition to its essential role in normal development, angiogenesis plays a vital role in pathologies such as cancer, diabetes and atherosclerosis. Mathematical and computational modeling has contributed to unraveling its complexity. Many existing theoretical models of angiogenic sprouting are based on the \"snail-trail\" hypothesis. This framework assumes that leading ECs positioned at sprout tips migrate toward low-oxygen regions while other ECs in the sprout passively follow the leaders' trails and proliferate to maintain sprout integrity. However, experimental results indicate that, contrary to the snail-trail assumption, ECs exchange positions within developing vessels, and the elongation of sprouts is primarily driven by directed migration of ECs. The functional role of cell rearrangements remains unclear. This review of the theoretical modeling of angiogenesis is the first to focus on the phenomenon of cell mixing during early sprouting. We start by describing the biological processes that occur during early angiogenesis, such as phenotype specification, cell rearrangements and cell interactions with the microenvironment. Next, we provide an overview of various theoretical approaches that have been employed to model angiogenesis, with particular emphasis on recent in silico models that account for the phenomenon of cell mixing. Finally, we discuss when cell mixing should be incorporated into theoretical models and what essential modeling components such models should include in order to investigate its functional role. This article is categorized under: Cardiovascular Diseases > Computational Models Cancer > Computational Models.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138810544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Appropriate patient population for future visual system axon regeneration therapies. 未来视觉系统轴突再生疗法的适当患者人群。
IF 3.1 3区 医学 Q2 Medicine Pub Date : 2024-03-01 Epub Date: 2023-12-13 DOI: 10.1002/wsbm.1637
Sanjoy K Bhattacharya, Chrisfouad Raif Alabiad, Krishna Kishor

A number of blinding diseases caused by damage to the optic nerve result in progressive vision loss or loss of visual acuity. Secondary glaucoma results from traumatic injuries, pseudoexfoliation or pigmentary dispersion syndrome. Progressive peripheral vision loss is common to all secondary glaucoma irrespective of the initial event. Axon regeneration is a potential therapeutic avenue to restore lost vision in these patients. In contrast to the usual approach of having the worst possible patient population for initial therapies, axon regeneration may require consideration of appropriate patient population even for initial treatment trials. The current state of axon regeneration therapies, their potential future and suitable patient population when ready is discussed in this perspective. The selection of patients are important for adoption of axon regeneration specifically in the areas of central nervous system regenerative medicine. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Neurological Diseases > Biomedical Engineering Metabolic Diseases > Molecular and Cellular Physiology.

许多致盲性疾病都是由于视神经受损而导致视力逐渐减退或丧失。继发性青光眼由外伤、假性角膜剥脱或色素分散综合征引起。继发性青光眼的共同特征是进行性周边视力丧失,而与最初发生的事件无关。轴突再生是恢复这些患者视力的潜在治疗途径。与通常的初始疗法尽可能选择最差的患者人群不同,轴突再生疗法可能需要考虑适当的患者人群,甚至在初始治疗试验中也是如此。本视角将讨论轴突再生疗法的现状、其潜在的未来以及准备就绪后的合适患者人群。患者的选择对于中枢神经系统再生医学领域采用轴突再生疗法非常重要。本文归类于神经系统疾病 > 分子与细胞生理学 神经系统疾病 > 生物医学工程 新陈代谢疾病 > 分子与细胞生理学。
{"title":"Appropriate patient population for future visual system axon regeneration therapies.","authors":"Sanjoy K Bhattacharya, Chrisfouad Raif Alabiad, Krishna Kishor","doi":"10.1002/wsbm.1637","DOIUrl":"10.1002/wsbm.1637","url":null,"abstract":"<p><p>A number of blinding diseases caused by damage to the optic nerve result in progressive vision loss or loss of visual acuity. Secondary glaucoma results from traumatic injuries, pseudoexfoliation or pigmentary dispersion syndrome. Progressive peripheral vision loss is common to all secondary glaucoma irrespective of the initial event. Axon regeneration is a potential therapeutic avenue to restore lost vision in these patients. In contrast to the usual approach of having the worst possible patient population for initial therapies, axon regeneration may require consideration of appropriate patient population even for initial treatment trials. The current state of axon regeneration therapies, their potential future and suitable patient population when ready is discussed in this perspective. The selection of patients are important for adoption of axon regeneration specifically in the areas of central nervous system regenerative medicine. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Neurological Diseases > Biomedical Engineering Metabolic Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939871/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138810540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A perspective on translating genomic discoveries into targets for brain-machine interface and deep brain stimulation devices. 将基因组发现转化为脑机接口和深部脑刺激设备靶点的展望。
IF 3.1 3区 医学 Q2 Medicine Pub Date : 2024-03-01 Epub Date: 2023-12-07 DOI: 10.1002/wsbm.1635
Wander L Valentim, Daniel S Tylee, Renato Polimanti

Mental illnesses have a huge impact on individuals, families, and society, so there is a growing need for more efficient treatments. In this context, brain-computer interface (BCI) technology has the potential to revolutionize the options for neuropsychiatric therapies. However, the development of BCI-based therapies faces enormous challenges, such as power dissipation constraints, lack of credible feedback mechanisms, uncertainty of which brain areas and frequencies to target, and even which patients to treat. Some of these setbacks are due to the large gap in our understanding of brain function. In recent years, large-scale genomic analyses uncovered an unprecedented amount of information regarding the biology of the altered brain function observed across the psychopathology spectrum. We believe findings from genetic studies can be useful to refine BCI technology to develop novel treatment options for mental illnesses. Here, we assess the latest advancements in both fields, the possibilities that can be generated from their intersection, and the challenges that these research areas will need to address to ensure that translational efforts can lead to effective and reliable interventions. Specifically, starting from highlighting the overlap between mechanisms uncovered by large-scale genetic studies and the current targets of deep brain stimulation treatments, we describe the steps that could help to translate genomic discoveries into BCI targets. Because these two research areas have not been previously presented together, the present article can provide a novel perspective for scientists with different research backgrounds. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Biomedical Engineering.

精神疾病对个人、家庭和社会都有巨大的影响,因此越来越需要更有效的治疗方法。在这种情况下,脑机接口(BCI)技术有可能彻底改变神经精神治疗的选择。然而,基于bci的治疗方法的发展面临着巨大的挑战,例如功耗限制,缺乏可靠的反馈机制,不确定目标脑区和频率,甚至治疗哪些患者。其中一些挫折是由于我们对大脑功能的理解存在巨大差距。近年来,大规模的基因组分析揭示了前所未有的大量关于在精神病理谱上观察到的脑功能改变的生物学信息。我们相信,基因研究的发现有助于改进脑机接口技术,为精神疾病开发新的治疗方案。在这里,我们评估了这两个领域的最新进展,它们的交叉可能产生的可能性,以及这些研究领域需要解决的挑战,以确保转化工作能够导致有效和可靠的干预措施。具体来说,从强调大规模遗传研究发现的机制与当前深部脑刺激治疗目标之间的重叠开始,我们描述了有助于将基因组发现转化为BCI目标的步骤。由于这两个研究领域以前没有一起提出过,因此本文可以为不同研究背景的科学家提供一个新的视角。本文分类如下:神经系统疾病>遗传学/基因组学/表观遗传学神经系统疾病>生物医学工程。
{"title":"A perspective on translating genomic discoveries into targets for brain-machine interface and deep brain stimulation devices.","authors":"Wander L Valentim, Daniel S Tylee, Renato Polimanti","doi":"10.1002/wsbm.1635","DOIUrl":"10.1002/wsbm.1635","url":null,"abstract":"<p><p>Mental illnesses have a huge impact on individuals, families, and society, so there is a growing need for more efficient treatments. In this context, brain-computer interface (BCI) technology has the potential to revolutionize the options for neuropsychiatric therapies. However, the development of BCI-based therapies faces enormous challenges, such as power dissipation constraints, lack of credible feedback mechanisms, uncertainty of which brain areas and frequencies to target, and even which patients to treat. Some of these setbacks are due to the large gap in our understanding of brain function. In recent years, large-scale genomic analyses uncovered an unprecedented amount of information regarding the biology of the altered brain function observed across the psychopathology spectrum. We believe findings from genetic studies can be useful to refine BCI technology to develop novel treatment options for mental illnesses. Here, we assess the latest advancements in both fields, the possibilities that can be generated from their intersection, and the challenges that these research areas will need to address to ensure that translational efforts can lead to effective and reliable interventions. Specifically, starting from highlighting the overlap between mechanisms uncovered by large-scale genetic studies and the current targets of deep brain stimulation treatments, we describe the steps that could help to translate genomic discoveries into BCI targets. Because these two research areas have not been previously presented together, the present article can provide a novel perspective for scientists with different research backgrounds. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Biomedical Engineering.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138499610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Walking with giants: The challenges of variant impact assessment in the giant sarcomeric protein titin. 与巨人同行:巨型肉瘤蛋白 titin 变异影响评估的挑战。
IF 3.1 3区 医学 Q2 Medicine Pub Date : 2024-03-01 Epub Date: 2023-12-29 DOI: 10.1002/wsbm.1638
Timir G R Weston, Martin Rees, Mathias Gautel, Franca Fraternali

Titin, the so-called "third filament" of the sarcomere, represents a difficult challenge for the determination of damaging genetic variants. A single titin molecule extends across half the length of a sarcomere in striated muscle, fulfilling a variety of vital structural and signaling roles, and has been linked to an equally varied range of myopathies, resulting in a significant burden on individuals and healthcare systems alike. While the consequences of truncating variants of titin are well-documented, the ramifications of the missense variants prevalent in the general population are less so. We here present a compendium of titin missense variants-those that result in a single amino-acid substitution in coding regions-reported to be pathogenic and discuss these in light of the nature of titin and the variant position within the sarcomere and their domain, the structural, pathological, and biophysical characteristics that define them, and the methods used for characterization. Finally, we discuss the current knowledge and integration of the multiple fields that have contributed to our understanding of titin-related pathology and offer suggestions as to how these concurrent methodologies may aid the further development in our understanding of titin and hopefully extend to other, less well-studied giant proteins. This article is categorized under: Cardiovascular Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology.

被称为肌节 "第三丝 "的 Titin 是确定损伤性遗传变异的一个难题。单个 titin 分子横跨横纹肌肌节长度的一半,发挥着各种重要的结构和信号作用,并与同样多种多样的肌病有关,给个人和医疗系统造成了巨大负担。尽管泰汀截短变体的后果已得到充分证实,但普遍存在于普通人群中的错义变体的后果却鲜为人知。我们在此汇编了据报道具有致病性的滴定蛋白错义变体--编码区中导致单个氨基酸置换的变体,并根据滴定蛋白的性质、变体在肌节及其结构域中的位置、结构、病理和生物物理特征以及表征所用的方法对这些变体进行了讨论。最后,我们讨论了当前的知识以及多个领域的整合,这些知识和整合有助于我们理解与 titin 相关的病理学,并就这些并行方法如何帮助我们进一步理解 titin 并有望扩展到其他研究较少的巨蛋白提出了建议。本文归类于心血管疾病 > 遗传学/基因组学/表观遗传学 先天性疾病 > 遗传学/基因组学/表观遗传学 先天性疾病 > 分子和细胞生理学。
{"title":"Walking with giants: The challenges of variant impact assessment in the giant sarcomeric protein titin.","authors":"Timir G R Weston, Martin Rees, Mathias Gautel, Franca Fraternali","doi":"10.1002/wsbm.1638","DOIUrl":"10.1002/wsbm.1638","url":null,"abstract":"<p><p>Titin, the so-called \"third filament\" of the sarcomere, represents a difficult challenge for the determination of damaging genetic variants. A single titin molecule extends across half the length of a sarcomere in striated muscle, fulfilling a variety of vital structural and signaling roles, and has been linked to an equally varied range of myopathies, resulting in a significant burden on individuals and healthcare systems alike. While the consequences of truncating variants of titin are well-documented, the ramifications of the missense variants prevalent in the general population are less so. We here present a compendium of titin missense variants-those that result in a single amino-acid substitution in coding regions-reported to be pathogenic and discuss these in light of the nature of titin and the variant position within the sarcomere and their domain, the structural, pathological, and biophysical characteristics that define them, and the methods used for characterization. Finally, we discuss the current knowledge and integration of the multiple fields that have contributed to our understanding of titin-related pathology and offer suggestions as to how these concurrent methodologies may aid the further development in our understanding of titin and hopefully extend to other, less well-studied giant proteins. This article is categorized under: Cardiovascular Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139058840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MHC class III lymphocyte antigens 6 as endogenous immunotoxins: Unlocking immunotherapy in proficient mismatch repair colorectal cancer. MHC III类淋巴细胞抗原6作为内源性免疫毒素:解锁免疫疗法在熟练错配修复结直肠癌癌症中的应用。
IF 3.1 3区 医学 Q2 Medicine Pub Date : 2024-01-01 Epub Date: 2023-10-11 DOI: 10.1002/wsbm.1631
Guido Giordano, Massimo Pancione

A majority of cancers, including colorectal cancer (CRC) with intact DNA mismatch repair, exhibit a paralyzed antitumor immune response and resistance to immune checkpoint inhibitors. Members of MHC class III lymphocyte antigen 6G (LY6G) encode glycosylphosphatidylinositol (GPI) proteins anchored to the membrane. Snake venom neurotoxins and LY6G proteins share a three-finger (3F) folding domain. LY6 proteins such as LY6G6D are gaining a reputation as excellent tumor-associated antigens that can potently inhibit anti-tumor immunity in cancers with proficient mismatch repair. Thus, we called MHC class III LY6G endogenous immunotoxins. Since the discovery of LY6G6D as a tumor-associated antigen, T-cell engagers (TcEs) have been developed to simultaneously bind LY6G6D on cancer cells and CD3 on T cells, improving the treatment of metastatic solid tumors that are resistant to ICIs. We present a current understanding of how alterations in MHC class III genes inhibit antitumor immunity, and how these understandings can be turned into effective treatments for patients who are refractory to standard immunotherapy. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics Cancer > Molecular and Cellular Physiology.

大多数癌症,包括具有完整DNA错配修复的癌症(CRC),表现出瘫痪的抗肿瘤免疫反应和对免疫检查点抑制剂的抵抗。MHC III类淋巴细胞抗原6G(LY6G)的成员编码锚定在膜上的糖基磷脂酰肌醇(GPI)蛋白。蛇毒神经毒素和LY6G蛋白共有一个三指(3F)折叠结构域。LY6蛋白如LY6G6D被誉为优秀的肿瘤相关抗原,可以通过熟练的错配修复有效抑制癌症的抗肿瘤免疫。因此,我们称MHC III类为LY6G内源性免疫毒素。自从发现LY6G6D作为肿瘤相关抗原以来,T细胞结合物(TcEs)已被开发为同时结合癌症细胞上的LY6GPD和T细胞上的CD3,从而改善了对ICIs具有耐药性的转移性实体瘤的治疗。我们目前了解了MHC III类基因的改变如何抑制抗肿瘤免疫,以及如何将这些理解转化为对标准免疫疗法难治的患者的有效治疗。本文分类为:癌症>遗传学/基因组学/表观遗传学癌症>分子和细胞生理学。
{"title":"MHC class III lymphocyte antigens 6 as endogenous immunotoxins: Unlocking immunotherapy in proficient mismatch repair colorectal cancer.","authors":"Guido Giordano, Massimo Pancione","doi":"10.1002/wsbm.1631","DOIUrl":"10.1002/wsbm.1631","url":null,"abstract":"<p><p>A majority of cancers, including colorectal cancer (CRC) with intact DNA mismatch repair, exhibit a paralyzed antitumor immune response and resistance to immune checkpoint inhibitors. Members of MHC class III lymphocyte antigen 6G (LY6G) encode glycosylphosphatidylinositol (GPI) proteins anchored to the membrane. Snake venom neurotoxins and LY6G proteins share a three-finger (3F) folding domain. LY6 proteins such as LY6G6D are gaining a reputation as excellent tumor-associated antigens that can potently inhibit anti-tumor immunity in cancers with proficient mismatch repair. Thus, we called MHC class III LY6G endogenous immunotoxins. Since the discovery of LY6G6D as a tumor-associated antigen, T-cell engagers (TcEs) have been developed to simultaneously bind LY6G6D on cancer cells and CD3 on T cells, improving the treatment of metastatic solid tumors that are resistant to ICIs. We present a current understanding of how alterations in MHC class III genes inhibit antitumor immunity, and how these understandings can be turned into effective treatments for patients who are refractory to standard immunotherapy. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics Cancer > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41214661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rationalizing a prospective coupling effect of cannabinoids with the current pharmacotherapy for melanoma treatment. 合理化大麻素与当前黑色素瘤药物治疗的前瞻性耦合效应。
IF 3.1 3区 医学 Q2 Medicine Pub Date : 2024-01-01 Epub Date: 2023-11-03 DOI: 10.1002/wsbm.1633
Ava Bachari, Nazim Nassar, Ellen Schanknecht, Srinivasareddy Telukutla, Terrence Jerald Piva, Nitin Mantri

Melanoma is one of the leading fatal forms of cancer, yet from a treatment perspective, we have minimal control over its reoccurrence and resistance to current pharmacotherapies. The endocannabinoid system (ECS) has recently been accepted as a multifaceted homeostatic regulator, influencing various physiological processes across different biological compartments, including the skin. This review presents an overview of the pathophysiology of melanoma, current pharmacotherapy used for treatment, and the challenges associated with the different pharmacological approaches. Furthermore, it highlights the utility of cannabinoids as an additive remedy for melanoma by restoring the balance between downregulated immunomodulatory pathways and elevated inflammatory cytokines during chronic skin conditions as one of the suggested critical approaches in treating this immunogenic tumor. This article is categorized under: Cancer > Molecular and Cellular Physiology.

黑色素瘤是癌症的主要致命形式之一,但从治疗的角度来看,我们对其复发和对当前药物疗法的耐药性的控制很小。内源性大麻素系统(ECS)最近被认为是一种多方面的稳态调节因子,影响包括皮肤在内的不同生物区室的各种生理过程。这篇综述概述了黑色素瘤的病理生理学,目前用于治疗的药物治疗,以及与不同药物方法相关的挑战。此外,它强调了大麻素作为黑色素瘤的添加剂疗法的效用,通过在慢性皮肤病期间恢复下调的免疫调节途径和升高的炎性细胞因子之间的平衡,大麻素是治疗这种免疫原性肿瘤的关键方法之一。本文分类为:癌症>分子和细胞生理学。
{"title":"Rationalizing a prospective coupling effect of cannabinoids with the current pharmacotherapy for melanoma treatment.","authors":"Ava Bachari, Nazim Nassar, Ellen Schanknecht, Srinivasareddy Telukutla, Terrence Jerald Piva, Nitin Mantri","doi":"10.1002/wsbm.1633","DOIUrl":"10.1002/wsbm.1633","url":null,"abstract":"<p><p>Melanoma is one of the leading fatal forms of cancer, yet from a treatment perspective, we have minimal control over its reoccurrence and resistance to current pharmacotherapies. The endocannabinoid system (ECS) has recently been accepted as a multifaceted homeostatic regulator, influencing various physiological processes across different biological compartments, including the skin. This review presents an overview of the pathophysiology of melanoma, current pharmacotherapy used for treatment, and the challenges associated with the different pharmacological approaches. Furthermore, it highlights the utility of cannabinoids as an additive remedy for melanoma by restoring the balance between downregulated immunomodulatory pathways and elevated inflammatory cytokines during chronic skin conditions as one of the suggested critical approaches in treating this immunogenic tumor. This article is categorized under: Cancer > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71427417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two decades of heart regeneration research: Cardiomyocyte proliferation and beyond. 二十年心脏再生研究:心肌细胞增殖及其后的发展。
IF 3.1 3区 医学 Q2 Medicine Pub Date : 2024-01-01 Epub Date: 2023-09-12 DOI: 10.1002/wsbm.1629
Herman Huang, Guo N Huang, Alexander Y Payumo

Interest in vertebrate cardiac regeneration has exploded over the past two decades since the discovery that adult zebrafish are capable of complete heart regeneration, contrasting the limited regenerative potential typically observed in adult mammalian hearts. Undercovering the mechanisms that both support and limit cardiac regeneration across the animal kingdom may provide unique insights in how we may unlock this capacity in adult humans. In this review, we discuss key discoveries in the heart regeneration field over the last 20 years. Initially, seminal findings revealed that pre-existing cardiomyocytes are the major source of regenerated cardiac muscle, drawing interest into the intrinsic mechanisms regulating cardiomyocyte proliferation. Moreover, recent studies have identified the importance of intercellular interactions and physiological adaptations, which highlight the vast complexity of the cardiac regenerative process. Finally, we compare strategies that have been tested to increase the regenerative capacity of the adult mammalian heart. This article is categorized under: Cardiovascular Diseases > Stem Cells and Development.

自从发现成年斑马鱼能够完成心脏再生以来,人们对脊椎动物心脏再生的兴趣在过去二十年里激增,这与通常在成年哺乳动物心脏中观察到的有限再生潜力形成了鲜明对比。揭示整个动物界支持和限制心脏再生的机制,可能会为我们如何在成年人类中释放这种能力提供独特的见解。在这篇综述中,我们讨论了过去20年来心脏再生领域的关键发现 年。最初,开创性的发现表明,预先存在的心肌细胞是再生心肌的主要来源,这引起了人们对调节心肌细胞增殖的内在机制的兴趣。此外,最近的研究已经确定了细胞间相互作用和生理适应的重要性,这突出了心脏再生过程的巨大复杂性。最后,我们比较了已经测试过的提高成年哺乳动物心脏再生能力的策略。这篇文章分类在:心血管疾病>干细胞与发育。
{"title":"Two decades of heart regeneration research: Cardiomyocyte proliferation and beyond.","authors":"Herman Huang, Guo N Huang, Alexander Y Payumo","doi":"10.1002/wsbm.1629","DOIUrl":"10.1002/wsbm.1629","url":null,"abstract":"<p><p>Interest in vertebrate cardiac regeneration has exploded over the past two decades since the discovery that adult zebrafish are capable of complete heart regeneration, contrasting the limited regenerative potential typically observed in adult mammalian hearts. Undercovering the mechanisms that both support and limit cardiac regeneration across the animal kingdom may provide unique insights in how we may unlock this capacity in adult humans. In this review, we discuss key discoveries in the heart regeneration field over the last 20 years. Initially, seminal findings revealed that pre-existing cardiomyocytes are the major source of regenerated cardiac muscle, drawing interest into the intrinsic mechanisms regulating cardiomyocyte proliferation. Moreover, recent studies have identified the importance of intercellular interactions and physiological adaptations, which highlight the vast complexity of the cardiac regenerative process. Finally, we compare strategies that have been tested to increase the regenerative capacity of the adult mammalian heart. This article is categorized under: Cardiovascular Diseases > Stem Cells and Development.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840678/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10226809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secondary glaucoma: Toward interventions based on molecular underpinnings. 继发性青光眼:基于分子基础的干预措施。
IF 3.1 3区 医学 Q2 Medicine Pub Date : 2024-01-01 Epub Date: 2023-09-05 DOI: 10.1002/wsbm.1628
Anna Mueller, Isabel Lam, Krishna Kishor, Richard K Lee, Sanjoy Bhattacharya

Glaucoma is a heterogeneous group of progressive diseases that leads to irreversible blindness. Secondary glaucoma refers to glaucoma caused by a known underlying condition. Pseudoexfoliation and pigment dispersion syndromes are common causes of secondary glaucoma. Their respective deposits may obstruct the trabecular meshwork, leading to aqueous humor outflow resistance, ocular hypertension, and optic neuropathy. There are no disease-specific interventions available for either. Pseudoexfoliation syndrome is characterized by fibrillar deposits (pseudoexfoliative material) on anterior segment structures. Over a decade of multiomics analyses taken together with the current knowledge on pseudoexfoliative glaucoma warrant a re-think of mechanistic possibilities. We propose that the presence of nucleation centers (e.g., vitamin D binding protein), crosslinking enzymes (e.g., transglutaminase 2), aberrant extracellular matrix, flawed endocytosis, and abnormal aqueous-blood barrier contribute to the formation of proteolytically resistant pseudoexfoliative material. Pigment dispersion syndrome is characterized by abnormal iridolenticular contact that disrupts iris pigment epithelium and liberates melanin granules. Iris melanogenesis is aberrant in this condition. Cytotoxic melanogenesis intermediates leak out of melanosomes and cause iris melanocyte and pigment epithelium cell death. Targeting melanogenesis can likely decrease the risk of pigmentary glaucoma. Skin and melanoma research provides insights into potential therapeutics. We propose that specific prostanoid agonists and fenofibrates may reduce melanogenesis by inhibiting cholesterol internalization and de novo synthesis. Additionally, melatonin is a potent melanogenesis suppressor, antioxidant, and hypotensive agent, rendering it a valuable agent for pigmentary glaucoma. In pseudoexfoliative glaucoma, where environmental insults drive pseudoexfoliative material formation, melatonin's antioxidant and hypotensive properties may offer adjunct therapeutic benefits. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.

青光眼是一组异质性的渐进性疾病,会导致不可逆转的失明。继发性青光眼是指由已知的潜在疾病引起的青光眼。假性角膜剥脱和色素分散综合征是继发性青光眼的常见病因。它们各自的沉积物可能会阻塞小梁网,导致房水外流阻力、眼压升高和视神经病变。目前还没有针对这两种疾病的干预措施。假性角膜剥脱综合征的特征是前段结构上的纤维状沉积物(假性角膜剥脱物)。经过十多年的多组学分析,加上目前对假剥脱性青光眼的了解,我们有理由重新思考其机理的可能性。我们提出,成核中心(如维生素 D 结合蛋白)、交联酶(如转谷氨酰胺酶 2)、异常细胞外基质、有缺陷的内吞和异常水-血屏障的存在有助于形成抗蛋白分解的假性外叶物质。色素散失综合征的特征是虹膜与虹膜耳的异常接触,这种接触会破坏虹膜色素上皮,释放出黑色素颗粒。在这种情况下,虹膜黑色素生成异常。细胞毒性黑色素生成中间产物从黑色素小体中漏出,导致虹膜黑色素细胞和色素上皮细胞死亡。针对黑色素生成的治疗可能会降低色素性青光眼的风险。皮肤和黑色素瘤研究为潜在疗法提供了启示。我们认为,特定的类前列腺素激动剂和非诺贝特类药物可以通过抑制胆固醇内化和新合成来减少黑色素生成。此外,褪黑素是一种强效的黑色素生成抑制剂、抗氧化剂和降血压剂,因此是治疗色素性青光眼的重要药物。在假性角膜外翻性青光眼中,环境损伤会导致假性角膜外翻物质的形成,褪黑素的抗氧化和降压特性可能会带来辅助治疗效果。本文归类于神经系统疾病 > 分子和细胞生理学。
{"title":"Secondary glaucoma: Toward interventions based on molecular underpinnings.","authors":"Anna Mueller, Isabel Lam, Krishna Kishor, Richard K Lee, Sanjoy Bhattacharya","doi":"10.1002/wsbm.1628","DOIUrl":"10.1002/wsbm.1628","url":null,"abstract":"<p><p>Glaucoma is a heterogeneous group of progressive diseases that leads to irreversible blindness. Secondary glaucoma refers to glaucoma caused by a known underlying condition. Pseudoexfoliation and pigment dispersion syndromes are common causes of secondary glaucoma. Their respective deposits may obstruct the trabecular meshwork, leading to aqueous humor outflow resistance, ocular hypertension, and optic neuropathy. There are no disease-specific interventions available for either. Pseudoexfoliation syndrome is characterized by fibrillar deposits (pseudoexfoliative material) on anterior segment structures. Over a decade of multiomics analyses taken together with the current knowledge on pseudoexfoliative glaucoma warrant a re-think of mechanistic possibilities. We propose that the presence of nucleation centers (e.g., vitamin D binding protein), crosslinking enzymes (e.g., transglutaminase 2), aberrant extracellular matrix, flawed endocytosis, and abnormal aqueous-blood barrier contribute to the formation of proteolytically resistant pseudoexfoliative material. Pigment dispersion syndrome is characterized by abnormal iridolenticular contact that disrupts iris pigment epithelium and liberates melanin granules. Iris melanogenesis is aberrant in this condition. Cytotoxic melanogenesis intermediates leak out of melanosomes and cause iris melanocyte and pigment epithelium cell death. Targeting melanogenesis can likely decrease the risk of pigmentary glaucoma. Skin and melanoma research provides insights into potential therapeutics. We propose that specific prostanoid agonists and fenofibrates may reduce melanogenesis by inhibiting cholesterol internalization and de novo synthesis. Additionally, melatonin is a potent melanogenesis suppressor, antioxidant, and hypotensive agent, rendering it a valuable agent for pigmentary glaucoma. In pseudoexfoliative glaucoma, where environmental insults drive pseudoexfoliative material formation, melatonin's antioxidant and hypotensive properties may offer adjunct therapeutic benefits. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10217842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synaptic plasticity and the role of astrocytes in central metabolic circuits. 突触可塑性和星形胶质细胞在中枢代谢回路中的作用。
IF 3.1 3区 医学 Q2 Medicine Pub Date : 2024-01-01 Epub Date: 2023-10-13 DOI: 10.1002/wsbm.1632
Dominique Ameroso, Maribel Rios

Neural circuits in the brain, primarily in the hypothalamus, are paramount to the homeostatic control of feeding and energy utilization. They integrate hunger, satiety, and body adiposity cues from the periphery and mediate the appropriate behavioral and physiological responses to satisfy the energy demands of the animal. Notably, perturbations in central homeostatic circuits have been linked to the etiology of excessive feeding and obesity. Considering the ever-changing energy requirements of the animal and required adaptations, it is not surprising that brain-feeding circuits remain plastic in adulthood and are subject to changes in synaptic strength as a consequence of nutritional status. Indeed, synapse density, probability of presynaptic transmitter release, and postsynaptic responses in hypothalamic energy balance centers are tailored to behavioral and physiological responses required to sustain survival. Mounting evidence supports key roles of astrocytes facilitating some of this plasticity. Here we discuss these synaptic plasticity mechanisms and the emerging roles of astrocytes influencing energy and glucose balance control in health and disease. This article is categorized under: Cancer > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.

大脑中的神经回路,主要是下丘脑,对进食和能量利用的稳态控制至关重要。它们整合了来自外围的饥饿、饱腹感和身体肥胖信号,并介导适当的行为和生理反应,以满足动物的能量需求。值得注意的是,中枢稳态回路的紊乱与过量进食和肥胖的病因有关。考虑到动物不断变化的能量需求和所需的适应能力,大脑进食回路在成年后保持可塑性,并因营养状况而发生突触强度的变化,这并不奇怪。事实上,下丘脑能量平衡中心的突触密度、突触前递质释放的概率和突触后反应是根据维持生存所需的行为和生理反应而定的。越来越多的证据支持星形胶质细胞在促进这种可塑性方面的关键作用。在这里,我们讨论了这些突触可塑性机制,以及星形胶质细胞在健康和疾病中影响能量和葡萄糖平衡控制的新作用。本文分类为:癌症>分子和细胞生理学神经疾病>分子和分子细胞生理学。
{"title":"Synaptic plasticity and the role of astrocytes in central metabolic circuits.","authors":"Dominique Ameroso, Maribel Rios","doi":"10.1002/wsbm.1632","DOIUrl":"10.1002/wsbm.1632","url":null,"abstract":"<p><p>Neural circuits in the brain, primarily in the hypothalamus, are paramount to the homeostatic control of feeding and energy utilization. They integrate hunger, satiety, and body adiposity cues from the periphery and mediate the appropriate behavioral and physiological responses to satisfy the energy demands of the animal. Notably, perturbations in central homeostatic circuits have been linked to the etiology of excessive feeding and obesity. Considering the ever-changing energy requirements of the animal and required adaptations, it is not surprising that brain-feeding circuits remain plastic in adulthood and are subject to changes in synaptic strength as a consequence of nutritional status. Indeed, synapse density, probability of presynaptic transmitter release, and postsynaptic responses in hypothalamic energy balance centers are tailored to behavioral and physiological responses required to sustain survival. Mounting evidence supports key roles of astrocytes facilitating some of this plasticity. Here we discuss these synaptic plasticity mechanisms and the emerging roles of astrocytes influencing energy and glucose balance control in health and disease. This article is categorized under: Cancer > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10842964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41214662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
iPSCs as a groundbreaking tool for the study of adverse drug reactions: A new avenue for personalized therapy. iPSC作为研究药物不良反应的开创性工具:个性化治疗的新途径。
IF 3.1 3区 医学 Q2 Medicine Pub Date : 2024-01-01 Epub Date: 2023-09-28 DOI: 10.1002/wsbm.1630
Paola Rispoli, Tatiana Scandiuzzi Piovesan, Giuliana Decorti, Gabriele Stocco, Marianna Lucafò

Induced pluripotent stem cells (iPSCs), obtained by reprogramming different somatic cell types, represent a promising tool for the study of drug toxicities, especially in the context of personalized medicine. Indeed, these cells retain the same genetic heritage of the donor, allowing the development of personalized models. In addition, they represent a useful tool for the study of adverse drug reactions (ADRs) in special populations, such as pediatric patients, which are often poorly represented in clinical trials due to ethical issues. Particularly, iPSCs can be differentiated into any tissue of the human body, following several protocols which use different stimuli to induce specific differentiation processes. Differentiated cells also maintain the genetic heritage of the donor, and therefore are suitable for personalized pharmacological studies; moreover, iPSC-derived differentiated cells are a valuable tool for the investigation of the mechanisms underlying the physiological differentiation processes. iPSCs-derived organoids represent another important tool for the study of ADRs. Precisely, organoids are in vitro 3D models which better represent the native organ, both from a structural and a functional point of view. Moreover, in the same way as iPSC-derived 2D models, iPSC-derived organoids are appropriate personalized models since they retain the genetic heritage of the donor. In comparison to other in vitro models, iPSC-derived organoids present advantages in terms of versatility, patient-specificity, and ethical issues. This review aims to provide an updated report of the employment of iPSCs, and 2D and 3D models derived from these, for the study of ADRs. This article is categorized under: Cancer > Stem Cells and Development.

通过对不同的体细胞类型进行重新编程获得的诱导多能干细胞(iPSC)是研究药物毒性的一种很有前途的工具,尤其是在个性化医学的背景下。事实上,这些细胞保留了捐赠者相同的遗传遗产,从而可以开发个性化的模型。此外,它们是研究特殊人群药物不良反应(ADR)的有用工具,如儿科患者,由于伦理问题,这些患者在临床试验中的代表性往往很差。特别地,iPSC可以分化为人体的任何组织,遵循几种使用不同刺激来诱导特定分化过程的方案。分化细胞还保持供体的遗传遗产,因此适合进行个性化的药理学研究;此外,iPSC衍生的分化细胞是研究生理分化过程机制的有价值的工具。iPSC衍生的类器官是研究ADR的另一个重要工具。确切地说,类器官是体外3D模型,从结构和功能的角度来看,它更好地代表了天然器官。此外,与iPSC衍生的2D模型相同,iPSC衍生类器官是合适的个性化模型,因为它们保留了供体的遗传遗产。与其他体外模型相比,iPSC衍生的类器官在多功能性、患者特异性和伦理问题方面具有优势。本综述旨在提供一份关于iPSC使用情况的最新报告,以及由此衍生的2D和3D模型,用于ADR研究。本文分类为:癌症>干细胞与发育。
{"title":"iPSCs as a groundbreaking tool for the study of adverse drug reactions: A new avenue for personalized therapy.","authors":"Paola Rispoli, Tatiana Scandiuzzi Piovesan, Giuliana Decorti, Gabriele Stocco, Marianna Lucafò","doi":"10.1002/wsbm.1630","DOIUrl":"10.1002/wsbm.1630","url":null,"abstract":"<p><p>Induced pluripotent stem cells (iPSCs), obtained by reprogramming different somatic cell types, represent a promising tool for the study of drug toxicities, especially in the context of personalized medicine. Indeed, these cells retain the same genetic heritage of the donor, allowing the development of personalized models. In addition, they represent a useful tool for the study of adverse drug reactions (ADRs) in special populations, such as pediatric patients, which are often poorly represented in clinical trials due to ethical issues. Particularly, iPSCs can be differentiated into any tissue of the human body, following several protocols which use different stimuli to induce specific differentiation processes. Differentiated cells also maintain the genetic heritage of the donor, and therefore are suitable for personalized pharmacological studies; moreover, iPSC-derived differentiated cells are a valuable tool for the investigation of the mechanisms underlying the physiological differentiation processes. iPSCs-derived organoids represent another important tool for the study of ADRs. Precisely, organoids are in vitro 3D models which better represent the native organ, both from a structural and a functional point of view. Moreover, in the same way as iPSC-derived 2D models, iPSC-derived organoids are appropriate personalized models since they retain the genetic heritage of the donor. In comparison to other in vitro models, iPSC-derived organoids present advantages in terms of versatility, patient-specificity, and ethical issues. This review aims to provide an updated report of the employment of iPSCs, and 2D and 3D models derived from these, for the study of ADRs. This article is categorized under: Cancer > Stem Cells and Development.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41157974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
WIREs Mechanisms of Disease
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1