Medical Body Area Networks (MBANs), a specialized subset of Wireless Body Area Networks (WBANs), are crucial for enabling medical data collection, processing, and transmission. The IEEE 802.15.6 standard governs these networks but falls short in practical MBAN scenarios. This paper introduces ASAP, a Lightweight Authenticated Secure Association Protocol integrated with IEEE 802.15.6. ASAP prioritizes patient privacy with randomized node ID generation and temporary shared keys, preventing node tracking and privacy violations. It optimizes network performance by consolidating Master Keys (MK), Pairwise Temporal Keys (PTK), and Group Temporal Keys (GTK) creation into a unified process, ensuring the efficiency of the standard four-message association protocol. ASAP enhances security by eliminating the need for pre-shared keys, reducing the attack surface, and improving forward secrecy. The protocol achieves mutual authentication without pre-shared keys or passwords and supports advanced cryptographic algorithms on nodes with limited processing capabilities. Additionally, it imposes connection initiation restrictions, requiring valid certificates for nodes, thereby addressing gaps in IEEE 802.15.6. Formal verification using Verifpal confirms ASAP's resilience against various attacks. Implementation results show ASAP's superiority over standard IEEE 802.15.6 protocols, establishing it as a robust solution for securing MBAN communications in medical environments.
In traditional IoT applications, energy saving is essential while high bandwidth is not always required. However, a new wave of IoT applications exhibit stricter requirements in terms of bandwidth and latency. Broadband technologies like Wi-Fi could meet such requirements. Nevertheless, these technologies come with limitations: high energy consumption and limited coverage range. In order to address these two shortcomings, and based on the recent IEEE 802.11ba amendment, we propose a Wi-Fi-based mesh architecture where devices are outfitted with a supplementary Wake-up Radio (WuR) interface. According to our analytical and simulation studies, this design maintains latency figures comparable to conventional single-interface networks while significantly reducing energy consumption (by up to almost two orders of magnitude). Additionally, we verify via real device measurements that battery lifetime can be increased by as much as 500% with our approach.
Training a deep learning model generally requires a huge amount of memory and processing power. Once trained, the learned model can make predictions very fast with very little resource consumption. The learned weights can be fitted into a microcontroller to build affordable embedded intelligence systems which is also known as TinyML. Although few attempts have been made, the limits of the state-of-the-art training of a deep learning model within a microcontroller can be pushed further. Generally deep learning models are trained with gradient optimizers which predict with high accuracy but require a very high amount of resources. On the other hand, nature-inspired meta-heuristic optimizers can be used to build a fast approximation of the model’s optimal solution with low resources. After a rigorous test, we have found that Grey Wolf Optimizer can be modified for enhanced uses of main memory, paging and swap space among and wolves. This modification saved up to 71% memory requirements compared to gradient optimizers. We have used this modification to train the TinyML model within a microcontroller of 256KB RAM. The performances of the proposed framework have been meticulously benchmarked on 13 open-sourced datasets.
Networked health systems are often the victims of cyberattacks with serious consequences for patients and healthcare costs, with the Internet of Things (IoT) being an additional prime target. In future systems we can imagine that the Internet of Vehicles (IoV) will also be used for conveying patients for diagnosis and treatment in an integrated manner. Thus the medical field poses very significant and specific challenges since even for a single patient, several providers may carry out tests or offer healthcare services, and may have distinct interconnected sub-contractors for services such as ambulances and connected cars, connected devices or temporary staff providers, that have distinct confidentiality requirements on top of possible commercial competition. On the other hand, these distinct entities can be subject to similar or coordinated attacks, and could benefit from each others’ cybersecurity experience to better detect and mitigate cyberattacks. Thus the present work proposes a novel Distributed Self-Supervised Federated Intrusion Detection Algorithm (DISFIDA), with Online Self-Supervised Federated Learning, that uses Dense Random Neural Networks (DRNN). In DISFIDA learning data is private, and neuronal weights are shared among Federated partners. Each partner in DISFIDA combines its synaptic weights with those it receives other partners, with a preference for those weights that have closer numerical values to its own weights which it has learned on its own. DISFIDA is tested with three open-access datasets against five benchmark methods, for two relevant IoT healthcare applications: networks of devices (e.g., body sensors), and Connected Smart Vehicles (e.g., ambulances that transport patients). These tests show that the DISFIDA approach offers 100% True Positive Rate for attacks (one percentage point better than comparable state of the art methods which attain 99%) so that it does better at detecting attacks, with 99% True Negative Rate similar to state-of-the-art Federated Learning, for Distributed Denial of Service (DDoS) attacks.
The Internet of Things (IoT) has revolutionized the healthcare system by connecting medical sensors to the internet, while also posing challenges to the security of medical sensor networks (MSN). Given the extreme sensitivity of medical data, any vulnerability may result in data breaches and misuse, impacting patient safety and privacy. Therefore, safeguarding MSN security is critical. As medical sensor devices rely on smart healthcare software systems for data management and communication, precisely detecting system code vulnerabilities is essential to ensuring network security. Effective software vulnerability detection targets two key objectives: (i) achieving high accuracy and (ii) directly identifying vulnerable code lines for developers to fix. To address these challenges, we introduce Vulcoder, a novel vulnerability-oriented, encoder-driven model based on the Bidirectional Encoder Representations from Transformers (BERT) architecture. We propose a one-to-one mapping function to capture code semantics through abstract syntax trees (AST). Combined with multi-head attention, Vulcoder achieves precise function- and line-level detection of software vulnerabilities in MSN. This accelerates the vulnerability remediation process, thereby strengthening network security. Experimental results on various datasets demonstrate that Vulcoder outperforms previous models in identifying vulnerabilities within MSN. Specifically, it achieves a 1%–419% improvement in function-level prediction F1 scores and a 12.5%–380% increase in line-level localization precision. Therefore, Vulcoder helps enhance security defenses and safeguard patient privacy in MSN, facilitating the development of smart healthcare.
The Internet of Robotic Things (IoRT) integrates robots and autonomous devices, transforming industries such as manufacturing, healthcare, and transportation. However, security vulnerabilities in IoRT systems pose significant challenges to data privacy and system integrity. To address these issues, encryption is essential for protecting sensitive data transmitted between devices. By converting data into ciphertext, encryption ensures confidentiality and integrity, reducing the risk of unauthorized access and data breaches. Blockchain technology also enhances IoRT security by offering decentralized, tamper-proof data storage solutions. By offering comprehensive insights, practical recommendations, and future directions, this paper aims to contribute to the advancement of knowledge and practice in securing interconnected robotic systems, thereby ensuring the integrity and confidentiality of data exchanged within IoRT ecosystems. Through a thorough examination of encryption requisites, scopes, and current implementations in IoRT, this paper provides valuable insights for researchers, engineers, and policymakers involved in IoRT security efforts. By integrating encryption and blockchain technologies into IoRT systems, stakeholders can foster a secure and dependable environment, effectively manage risks, bolster user confidence, and expedite the widespread adoption of IoRT across diverse sectors. The findings of this study underscore the critical role of encryption and blockchain technology in IoRT security enhancement and highlight potential avenues for further exploration and innovation. Furthermore, this paper suggests future research areas, such as threat intelligence and analytics, security by design, multi-factor authentication, and AI for threat detection. These recommendations support ongoing innovation in securing the evolving IoRT landscape.
Recently, wireless sensor networks (WSNs) have been proven as an efficient and low-cost solution for monitoring various kind of applications. However, the massive amount of data collected and transmitted by the sensor nodes, which are mostly redundant, will quickly consume their limited battery power, which is sometimes difficult to replace or recharge. Although the huge efforts made by researchers to solve such problem, most of the proposed techniques suffer from their accuracy and their complexity, which is not suitable for limited-resources sensors. Therefore, designing new data reduction techniques to reduce the raw data collected in such networks is becoming essential to increase their lifetime. In this paper, we propose a CLuster-based node correlation for sAmpling Rate adaptation and fAult tolerance, abbreviated CLARA, mechanism dedicated to periodic sensor network applications. Mainly, CLARA works on two stages: node correlation and fault tolerance. The first stage introduces a data clustering method that aims to search the correlation among neighboring nodes. Then, it accordingly adapts their sensing frequencies in a way to reduce the amount of data collected in such networks while preserving the information integrity at the sink. In the second stage, a fault tolerance model is proposed that allows the sink to regenerate the raw sensor data based on two methods: moving average (MA) and exponential smoothing (ES). We demonstrated the efficiency of our technique through both simulations and experiments. The best obtained results show that the first stage can reduce the sensor sampling rate, and accordingly the sensor energy, up to 64% while the second stage can accurately regenerate the raw data with an error loss less than 0.15.