Pub Date : 2024-11-20Epub Date: 2024-10-12DOI: 10.1021/acs.bioconjchem.4c00413
Dylan Chapeau, Savanne Beekman, Amber Piet, Le Li, Corrina de Ridder, Debra Stuurman, Yann Seimbille
Background: The main challenges of conventional chemotherapy lie in its lack of selectivity and specificity, leading to significant side effects. Using a small-molecule drug conjugate (SMDC) ensures specific delivery of a cytotoxic drug to the tumor site by coupling it to a targeting vector. This promising strategy can be applied to neuroendocrine tumors (NETs) by choosing a targeting vector that binds specifically to somatostatin receptor subtype 2 (SSTR2). Additionally, incorporation of a bifunctional chelate into the molecule enables complexation of both diagnostic and therapeutic radionuclides. Thus, it facilitates monitoring of the distribution of the SMDC in the body and allows for the implementation of combination therapy. In our study, we designed eSOMA-DM1, a SMDC combining the SSTR2-targeted octreotate peptide and the cytotoxic agent DM1 via a chelate-bridged linker (N3-Py-DOTAGA). This approach warrants conjugation of the targeting vector and the drug at opposite sites to avoid undesired steric hindrance effects. Methods: Synthesis of the DM1 moiety (4) involved a three-step synthetic route, followed by the conjugation to the cyclic peptide, N3-Py-DOTAGA-d-Phe-cyclo[Cys-Tyr-d-Trp-Lys-Thr-Cys]-Thr-OH, through a copper-free click reaction, resulting in eSOMA-DM1. Subsequent labeling with [111In]InCl3 gave a high radiochemical yield and purity. In vitro assessments of eSOMA-DM1 binding, uptake, and internalization were conducted in SSTR2-transfected U2OS cells. Ex vivo biodistribution and fluorescence imaging were performed in H69-tumor bearing mice. Results: eSOMA-DM1 exhibited an IC50 value for SSTR2 similar to the gold standard DOTA-TATE. The uptake of [111In]In-eSOMA-DM1 in U2OS.SSTR2 cells was 1.2-fold lower than that of [111In]In-DOTA-TATE. Tumor uptake in H69-xenografted mice was higher for [111In]In-eSOMA-DM1 at all-time points compared to [111In]In-DOTA-TATE. Prolonged blood circulation led to increased accumulation of [111In]In-eSOMA-DM1 in highly vascularized tissues, such as the lungs, skin, and heart. Excretion through the kidneys, liver, and spleen was also observed. Conclusion: eSOMA-DM1 is a SMDC developed for NET showing promising characteristics in vitro. However, the in vivo results obtained with [111In]In-eSOMA-DM1 suggest the need for adjustments to optimize its distribution.
{"title":"eSOMA-DM1, a Maytansinoid-Based Theranostic Small-Molecule Drug Conjugate for Neuroendocrine Tumors.","authors":"Dylan Chapeau, Savanne Beekman, Amber Piet, Le Li, Corrina de Ridder, Debra Stuurman, Yann Seimbille","doi":"10.1021/acs.bioconjchem.4c00413","DOIUrl":"10.1021/acs.bioconjchem.4c00413","url":null,"abstract":"<p><p><i>Background:</i> The main challenges of conventional chemotherapy lie in its lack of selectivity and specificity, leading to significant side effects. Using a small-molecule drug conjugate (SMDC) ensures specific delivery of a cytotoxic drug to the tumor site by coupling it to a targeting vector. This promising strategy can be applied to neuroendocrine tumors (NETs) by choosing a targeting vector that binds specifically to somatostatin receptor subtype 2 (SSTR2). Additionally, incorporation of a bifunctional chelate into the molecule enables complexation of both diagnostic and therapeutic radionuclides. Thus, it facilitates monitoring of the distribution of the SMDC in the body and allows for the implementation of combination therapy. In our study, we designed eSOMA-DM1, a SMDC combining the SSTR2-targeted octreotate peptide and the cytotoxic agent DM1 via a chelate-bridged linker (N<sub>3</sub>-Py-DOTAGA). This approach warrants conjugation of the targeting vector and the drug at opposite sites to avoid undesired steric hindrance effects. <i>Methods:</i> Synthesis of the DM1 moiety (<b>4</b>) involved a three-step synthetic route, followed by the conjugation to the cyclic peptide, N<sub>3</sub>-Py-DOTAGA-d-Phe-cyclo[Cys-Tyr-d-Trp-Lys-Thr-Cys]-Thr-OH, through a copper-free click reaction, resulting in eSOMA-DM1. Subsequent labeling with [<sup>111</sup>In]InCl<sub>3</sub> gave a high radiochemical yield and purity. In vitro assessments of eSOMA-DM1 binding, uptake, and internalization were conducted in SSTR2-transfected U2OS cells. Ex vivo biodistribution and fluorescence imaging were performed in H69-tumor bearing mice. <i>Results:</i> eSOMA-DM1 exhibited an IC<sub>50</sub> value for SSTR2 similar to the gold standard DOTA-TATE. The uptake of [<sup>111</sup>In]In-eSOMA-DM1 in U2OS.SSTR2 cells was 1.2-fold lower than that of [<sup>111</sup>In]In-DOTA-TATE. Tumor uptake in H69-xenografted mice was higher for [<sup>111</sup>In]In-eSOMA-DM1 at all-time points compared to [<sup>111</sup>In]In-DOTA-TATE. Prolonged blood circulation led to increased accumulation of [<sup>111</sup>In]In-eSOMA-DM1 in highly vascularized tissues, such as the lungs, skin, and heart. Excretion through the kidneys, liver, and spleen was also observed. <i>Conclusion:</i> eSOMA-DM1 is a SMDC developed for NET showing promising characteristics in vitro. However, the in vivo results obtained with [<sup>111</sup>In]In-eSOMA-DM1 suggest the need for adjustments to optimize its distribution.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":" ","pages":"1823-1834"},"PeriodicalIF":4.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20Epub Date: 2024-10-30DOI: 10.1021/acs.bioconjchem.4c00383
Shuzhang Liu, Peng Zou
Fluorescent voltage indicators enable the optical recording of electrophysiology across large cell populations with subcellular resolution; however, their application is often constrained by a limited photon budget. To address this limitation, advanced bioconjugation methods have been employed to site-specifically attach bright and photostable organic dyes to cell-specific protein scaffolds in live cells. The resulting chemigenetic hybrid voltage indicators enable sustained monitoring of voltage fluctuations with an exceptional signal-to-noise ratio, both in vitro and in vivo. This Viewpoint discusses recent advancements in the development of these indicators through bioconjugation chemistry.
{"title":"Recent Development of Chemigenetic Hybrid Voltage Indicators Enabled by Bioconjugation Chemistry.","authors":"Shuzhang Liu, Peng Zou","doi":"10.1021/acs.bioconjchem.4c00383","DOIUrl":"10.1021/acs.bioconjchem.4c00383","url":null,"abstract":"<p><p>Fluorescent voltage indicators enable the optical recording of electrophysiology across large cell populations with subcellular resolution; however, their application is often constrained by a limited photon budget. To address this limitation, advanced bioconjugation methods have been employed to site-specifically attach bright and photostable organic dyes to cell-specific protein scaffolds in live cells. The resulting chemigenetic hybrid voltage indicators enable sustained monitoring of voltage fluctuations with an exceptional signal-to-noise ratio, both <i>in vitro</i> and <i>in vivo</i>. This Viewpoint discusses recent advancements in the development of these indicators through bioconjugation chemistry.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":" ","pages":"1711-1715"},"PeriodicalIF":4.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20Epub Date: 2024-10-28DOI: 10.1021/acs.bioconjchem.4c00326
Nicholas W Kreofsky, Punarbasu Roy, Theresa M Reineke
Quinine is a promising building block for creating polymer carriers for intracellular nucleic acid delivery. This is due to its ability to bind to genetic material through intercalation and electrostatic interactions and the balance of hydrophobicity and hydrophilicity dependent on the pH/charge state. Yet, studies utilizing cinchona alkaloid natural products in gene delivery are limited. Herein, we present the incorporation of a quinine functionalized monomer (Q) into block polymer architectures to form self-assembled micelles for highly efficient gene delivery. Q was incorporated into the core and/or the shell of the micelles to introduce the unique advantages of quinine to the system. We found that incorporation of Q into the core of the micelle resulted in acid-induced disassembly of the micelle and a boost in transfection efficiency by promoting endosomal escape. This effect was especially evident in the cancerous cell line, A549, which has a more acidic intracellular environment. Incorporation of Q into the shell of the micelles resulted in intercalative binding to the genetic payload as well as larger micelle-DNA complexes (micelleplexes) from the hydrophobicity of Q in the shell. These factors enable the micelleplexes to be more resistant to serum and have more persistent protein expression post-transfection. Overall, this study is the first to demonstrate the benefits of including quinine functionalities into self-assembled micelles for highly efficient gene delivery and presents a platform for inclusion of other natural products with similar properties into micellar systems.
{"title":"pH-Responsive Micelles Containing Quinine Functionalities Enhance Intracellular Gene Delivery and Expression.","authors":"Nicholas W Kreofsky, Punarbasu Roy, Theresa M Reineke","doi":"10.1021/acs.bioconjchem.4c00326","DOIUrl":"10.1021/acs.bioconjchem.4c00326","url":null,"abstract":"<p><p>Quinine is a promising building block for creating polymer carriers for intracellular nucleic acid delivery. This is due to its ability to bind to genetic material through intercalation and electrostatic interactions and the balance of hydrophobicity and hydrophilicity dependent on the pH/charge state. Yet, studies utilizing cinchona alkaloid natural products in gene delivery are limited. Herein, we present the incorporation of a quinine functionalized monomer (Q) into block polymer architectures to form self-assembled micelles for highly efficient gene delivery. Q was incorporated into the core and/or the shell of the micelles to introduce the unique advantages of quinine to the system. We found that incorporation of Q into the core of the micelle resulted in acid-induced disassembly of the micelle and a boost in transfection efficiency by promoting endosomal escape. This effect was especially evident in the cancerous cell line, A549, which has a more acidic intracellular environment. Incorporation of Q into the shell of the micelles resulted in intercalative binding to the genetic payload as well as larger micelle-DNA complexes (micelleplexes) from the hydrophobicity of Q in the shell. These factors enable the micelleplexes to be more resistant to serum and have more persistent protein expression post-transfection. Overall, this study is the first to demonstrate the benefits of including quinine functionalities into self-assembled micelles for highly efficient gene delivery and presents a platform for inclusion of other natural products with similar properties into micellar systems.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":" ","pages":"1762-1778"},"PeriodicalIF":4.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20Epub Date: 2024-10-15DOI: 10.1021/acs.bioconjchem.4c00375
Kaini Zhang, Qingmei Li, Kun Wang, Qiaoli Zhang, Chengkun Ma, Guiwen Yang, Yanxia Xie, Michael G Mauk, Shanji Fu, Lei Chen
The incidence of cervical cancer caused by human papillomavirus (HPV) infection has increased in recent years. More than half of all cervical cancer cases are due to HPV16 and HPV18 infection, so HPV16 and HPV18 testing is essential to prevent cervical cancer. HPV testing is mainly carried out in hospitals, but it is subject to time and specialized medical facilities. On the other hand, home self-testing using simple diagnostics would present an attractive alternative due to privacy and flexibility with regard to time and place, provided sufficient sensitivity and specificity can be achieved. In this work, a dual lateral flow assay based on RPA-CRISPR-Cas12a/13a (named RC-LFA) for HPV detection was described. Taking advantage of the cleavage specificity of Cas12a and Cas13a, a CRISPR-Cas12a/Cas13a system was designed to detect HPV16 and HPV18. The lateral flow strip with two test lines was designed to suit the CRISPR-Cas12a/Cas13 system. RC-LFA achieves rapid and simultaneous detection of HPV16 and HPV18 with high specificity and sensitivity (10 copies/μL) in about 40 min from the extraction of nucleic acid to an instrument-free readout. RC-LFA is user-friendly and instrument-free, making it a promising method for HPV self-tests at home.
{"title":"RPA-CRISPR-Cas-Mediated Dual Lateral Flow Assay for the Point-of-Care Testing of HPV16 and HPV18.","authors":"Kaini Zhang, Qingmei Li, Kun Wang, Qiaoli Zhang, Chengkun Ma, Guiwen Yang, Yanxia Xie, Michael G Mauk, Shanji Fu, Lei Chen","doi":"10.1021/acs.bioconjchem.4c00375","DOIUrl":"10.1021/acs.bioconjchem.4c00375","url":null,"abstract":"<p><p>The incidence of cervical cancer caused by human papillomavirus (HPV) infection has increased in recent years. More than half of all cervical cancer cases are due to HPV16 and HPV18 infection, so HPV16 and HPV18 testing is essential to prevent cervical cancer. HPV testing is mainly carried out in hospitals, but it is subject to time and specialized medical facilities. On the other hand, home self-testing using simple diagnostics would present an attractive alternative due to privacy and flexibility with regard to time and place, provided sufficient sensitivity and specificity can be achieved. In this work, a dual lateral flow assay based on RPA-CRISPR-Cas12a/13a (named RC-LFA) for HPV detection was described. Taking advantage of the cleavage specificity of Cas12a and Cas13a, a CRISPR-Cas12a/Cas13a system was designed to detect HPV16 and HPV18. The lateral flow strip with two test lines was designed to suit the CRISPR-Cas12a/Cas13 system. RC-LFA achieves rapid and simultaneous detection of HPV16 and HPV18 with high specificity and sensitivity (10 copies/μL) in about 40 min from the extraction of nucleic acid to an instrument-free readout. RC-LFA is user-friendly and instrument-free, making it a promising method for HPV self-tests at home.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":" ","pages":"1797-1804"},"PeriodicalIF":4.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20Epub Date: 2024-11-07DOI: 10.1021/acs.bioconjchem.4c00403
Aru Z Wang, Hendrik J Brink, Rianne G Bouma, Alsya J Affandi, Maarten K Nijen Twilhaar, Dijmphna A M Heijnen, Joelle van Elk, Janneke J Maaskant, Veronique A L Konijn, Joeke G C Stolwijk, Hakan Kalay, Katarina Olesek, Yvette van Kooyk, Johan M S van der Schoot, Arthur E H Bentlage, Ferenc A Scheeren, Martijn Verdoes, Gestur Vidarsson, Coenraad P Kuijl, Joke M M den Haan
Cancer vaccines are a promising strategy to increase tumor-specific immune responses in patients who do not adequately respond to checkpoint inhibitors. Cancer vaccines that contain patient-specific tumor antigens are most effective but also necessitate the production of patient-specific vaccines. This study aims to develop a versatile cancer vaccine format in which patient-specific tumor antigens can be site-specifically conjugated by a proximity-based Sortase A (SrtA)-mediated ligation (PBSL) approach to antibodies that specifically bind to antigen-presenting cells to stimulate immune responses. DEC205 and CD169 are both receptors expressed on antigen-presenting cells that can be targeted to deliver antigens and stimulate T-cell responses. We used the CRISPR/HDR platform to produce mouse heavy chain IgG2a antibodies with DEC205 or CD169 specificity containing an SrtA recognition motif followed by a SpyTag at the C-terminus. Using a recombinant protein of SrtA linked to SpyCatcher, we applied proximity-based SrtA-mediated ligation to ligate fluorescein isothiocyanate (FITC)-labeled or antigenic peptides to the antibodies. Ligated antibodies bound to DEC205-expressing dendritic cells or CD169-expressing macrophages both in vitro and in vivo. More importantly, immunization with DEC205- or CD169-specific Abs linked to T-cell epitopes efficiently stimulated T-cell responses in vivo. To conclude, we have developed a cancer vaccine format using PBSL that enables the rapid incorporation of tumor antigens and could potentially be implemented for the synthesis of personalized cancer vaccines.
{"title":"Development of a Versatile Cancer Vaccine Format Targeting Antigen-Presenting Cells Using Proximity-Based Sortase A-Mediated Ligation of T-Cell Epitopes.","authors":"Aru Z Wang, Hendrik J Brink, Rianne G Bouma, Alsya J Affandi, Maarten K Nijen Twilhaar, Dijmphna A M Heijnen, Joelle van Elk, Janneke J Maaskant, Veronique A L Konijn, Joeke G C Stolwijk, Hakan Kalay, Katarina Olesek, Yvette van Kooyk, Johan M S van der Schoot, Arthur E H Bentlage, Ferenc A Scheeren, Martijn Verdoes, Gestur Vidarsson, Coenraad P Kuijl, Joke M M den Haan","doi":"10.1021/acs.bioconjchem.4c00403","DOIUrl":"10.1021/acs.bioconjchem.4c00403","url":null,"abstract":"<p><p>Cancer vaccines are a promising strategy to increase tumor-specific immune responses in patients who do not adequately respond to checkpoint inhibitors. Cancer vaccines that contain patient-specific tumor antigens are most effective but also necessitate the production of patient-specific vaccines. This study aims to develop a versatile cancer vaccine format in which patient-specific tumor antigens can be site-specifically conjugated by a proximity-based Sortase A (SrtA)-mediated ligation (PBSL) approach to antibodies that specifically bind to antigen-presenting cells to stimulate immune responses. DEC205 and CD169 are both receptors expressed on antigen-presenting cells that can be targeted to deliver antigens and stimulate T-cell responses. We used the CRISPR/HDR platform to produce mouse heavy chain IgG2a antibodies with DEC205 or CD169 specificity containing an SrtA recognition motif followed by a SpyTag at the C-terminus. Using a recombinant protein of SrtA linked to SpyCatcher, we applied proximity-based SrtA-mediated ligation to ligate fluorescein isothiocyanate (FITC)-labeled or antigenic peptides to the antibodies. Ligated antibodies bound to DEC205-expressing dendritic cells or CD169-expressing macrophages both <i>in vitro</i> and <i>in vivo</i>. More importantly, immunization with DEC205- or CD169-specific Abs linked to T-cell epitopes efficiently stimulated T-cell responses <i>in vivo</i>. To conclude, we have developed a cancer vaccine format using PBSL that enables the rapid incorporation of tumor antigens and could potentially be implemented for the synthesis of personalized cancer vaccines.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":" ","pages":"1805-1814"},"PeriodicalIF":4.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583207/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20Epub Date: 2024-10-10DOI: 10.1021/acs.bioconjchem.4c00353
Frederik Peschke, Andrea Taladriz-Sender, Allan J B Watson, Glenn A Burley
The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is a key ligation tool used to prepare bioconjugates. Despite the widespread utility of CuAAC to produce discrete 1,4-triazole products, the requirement of a Cu catalyst can result in oxidative damage to these products. Ynamines are superior reactive groups in CuAAC reactions and require lower Cu loadings to produce 1,4-triazole products. This study discloses a strategy to identify optimal reaction conditions for the formation of oligodeoxyribonucleotide (ODN) bioconjugates. First, the surveying of reaction conditions identified that the ratio of Cu to the choice of reductant (i.e., either sodium ascorbate or glutathione) influences the reaction kinetics and the rate of degradation of bioconjugate products. Second, optimized conditions were used to prepare a variety of ODN-tagged products and ODN-protein conjugates and compared to conventional CuAAC and Cu-free azide-alkyne (3 + 2)cycloadditions (SPAAC), with ynamine-based examples being faster in all cases. The reaction optimization platform established in this study provides the basis for its wider utility to prepare CuAAC-based bioconjugates with lower Cu loadings while maintaining fast reaction kinetics.
{"title":"Reactivity Profiling for High-Yielding Ynamine-Tagged Oligonucleotide Click Chemistry Bioconjugations.","authors":"Frederik Peschke, Andrea Taladriz-Sender, Allan J B Watson, Glenn A Burley","doi":"10.1021/acs.bioconjchem.4c00353","DOIUrl":"10.1021/acs.bioconjchem.4c00353","url":null,"abstract":"<p><p>The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is a key ligation tool used to prepare bioconjugates. Despite the widespread utility of CuAAC to produce discrete 1,4-triazole products, the requirement of a Cu catalyst can result in oxidative damage to these products. Ynamines are superior reactive groups in CuAAC reactions and require lower Cu loadings to produce 1,4-triazole products. This study discloses a strategy to identify optimal reaction conditions for the formation of oligodeoxyribonucleotide (ODN) bioconjugates. First, the surveying of reaction conditions identified that the ratio of Cu to the choice of reductant (i.e., either sodium ascorbate or glutathione) influences the reaction kinetics and the rate of degradation of bioconjugate products. Second, optimized conditions were used to prepare a variety of ODN-tagged products and ODN-protein conjugates and compared to conventional CuAAC and Cu-free azide-alkyne (3 + 2)cycloadditions (SPAAC), with ynamine-based examples being faster in all cases. The reaction optimization platform established in this study provides the basis for its wider utility to prepare CuAAC-based bioconjugates with lower Cu loadings while maintaining fast reaction kinetics.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":" ","pages":"1788-1796"},"PeriodicalIF":4.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583209/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20Epub Date: 2024-10-29DOI: 10.1021/acs.bioconjchem.4c00423
Xiaotong Wang, Duanmin Hu, Perry G Wang, Shuang Yang
Immunocapture liquid chromatography-mass spectrometry (IC-LC-MS) bioanalysis has become an indispensable technique across various scientific disciplines, ranging from drug discovery to clinical diagnostics. While traditional immunocapture techniques have proven to be effective, they often encounter limitations in sensitivity, specificity, and compatibility with MS analysis. Chemoenzymatic immunocapture and protein capture (IPC) offers a promising solution, combining the high specificity of antibodies or proteins with the versatility of enzymatic and chemical modifications. This Review explores the foundational principles of chemoenzymatic IPC and examines various modification strategies including bioorthogonal click-chemistry, enzymatic-tagging, and HaloTag/CLIP-tag. Recent advancements in chemoenzymatic IPC techniques have significantly expanded their applicability to a diverse range of biomolecules including small molecules, peptides, RNAs, and proteins. This Review focuses on improvements in analytical performance achieved through these innovative approaches. Moreover, we discuss the broad applications of chemoenzymatic immunocapture in drug discovery, clinical diagnostics, and environmental analysis and explore its potential for future advancements in bioanalysis. We propose a novel solid-phase chemoenzymatic IPC assay (SCEIA) that effectively utilizes bioorthogonal click chemistry and chemoenzymatic approaches for efficient IPC and target analyte release. In summary, chemoenzymatic IPC represents a transformative paradigm shift in IC-LC-MS bioanalysis. By overcoming the limitations of traditional IPC techniques, this approach paves the way for more robust, sensitive, and versatile analytical workflows.
{"title":"Bioorthogonal Chemistry: Enzyme Immune and Protein Capture for Enhanced LC-MS Bioanalysis.","authors":"Xiaotong Wang, Duanmin Hu, Perry G Wang, Shuang Yang","doi":"10.1021/acs.bioconjchem.4c00423","DOIUrl":"10.1021/acs.bioconjchem.4c00423","url":null,"abstract":"<p><p>Immunocapture liquid chromatography-mass spectrometry (IC-LC-MS) bioanalysis has become an indispensable technique across various scientific disciplines, ranging from drug discovery to clinical diagnostics. While traditional immunocapture techniques have proven to be effective, they often encounter limitations in sensitivity, specificity, and compatibility with MS analysis. Chemoenzymatic immunocapture and protein capture (IPC) offers a promising solution, combining the high specificity of antibodies or proteins with the versatility of enzymatic and chemical modifications. This Review explores the foundational principles of chemoenzymatic IPC and examines various modification strategies including bioorthogonal click-chemistry, enzymatic-tagging, and HaloTag/CLIP-tag. Recent advancements in chemoenzymatic IPC techniques have significantly expanded their applicability to a diverse range of biomolecules including small molecules, peptides, RNAs, and proteins. This Review focuses on improvements in analytical performance achieved through these innovative approaches. Moreover, we discuss the broad applications of chemoenzymatic immunocapture in drug discovery, clinical diagnostics, and environmental analysis and explore its potential for future advancements in bioanalysis. We propose a novel solid-phase chemoenzymatic IPC assay (SCEIA) that effectively utilizes bioorthogonal click chemistry and chemoenzymatic approaches for efficient IPC and target analyte release. In summary, chemoenzymatic IPC represents a transformative paradigm shift in IC-LC-MS bioanalysis. By overcoming the limitations of traditional IPC techniques, this approach paves the way for more robust, sensitive, and versatile analytical workflows.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":" ","pages":"1699-1710"},"PeriodicalIF":4.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inflammation within the brain is a hallmark of a wide range of brain diseases. The complex role of inflammatory processes in these conditions suggests that neuroinflammation could be a valuable therapeutic target. While several promising anti-inflammatory agents have been identified, their clinical application in brain diseases is often hampered by the inability to cross the blood-brain barrier (BBB) and reach therapeutically effective concentrations at the pathological sites. This limitation highlights the urgent need for effective BBB-penetrating drug delivery systems designed to target brain inflammation. This review critically examines the recent advances over the past five years in drug delivery strategies aimed at mitigating brain inflammation in Alzheimer's disease and ischemic stroke─two of the leading causes of death and disability worldwide. Additionally, we address the key challenges in this field, offering insights into future directions for targeting neuroinflammation in the treatment of brain diseases.
{"title":"Drug Delivery Targeting Neuroinflammation to Treat Brain Diseases.","authors":"Juntao Wang, Ruiqin Jia, Wubo Wan, Haijun Han, Guoying Wang, Zhen Li, Jia Li","doi":"10.1021/acs.bioconjchem.4c00414","DOIUrl":"10.1021/acs.bioconjchem.4c00414","url":null,"abstract":"<p><p>Inflammation within the brain is a hallmark of a wide range of brain diseases. The complex role of inflammatory processes in these conditions suggests that neuroinflammation could be a valuable therapeutic target. While several promising anti-inflammatory agents have been identified, their clinical application in brain diseases is often hampered by the inability to cross the blood-brain barrier (BBB) and reach therapeutically effective concentrations at the pathological sites. This limitation highlights the urgent need for effective BBB-penetrating drug delivery systems designed to target brain inflammation. This review critically examines the recent advances over the past five years in drug delivery strategies aimed at mitigating brain inflammation in Alzheimer's disease and ischemic stroke─two of the leading causes of death and disability worldwide. Additionally, we address the key challenges in this field, offering insights into future directions for targeting neuroinflammation in the treatment of brain diseases.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":" ","pages":"1687-1698"},"PeriodicalIF":4.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20Epub Date: 2024-10-28DOI: 10.1021/acs.bioconjchem.4c00469
Maud D M E Linssen, Yu-Ting Lin, Sebastian A H van den Wildenberg, Marrit M E Tholen, Arthur M de Jong, Menno W J Prins
{"title":"Correction to \"Oriented Antibody Coupling to an Antifouling Polymer Using Glycan Remodeling for Biosensing by Particle Motion\".","authors":"Maud D M E Linssen, Yu-Ting Lin, Sebastian A H van den Wildenberg, Marrit M E Tholen, Arthur M de Jong, Menno W J Prins","doi":"10.1021/acs.bioconjchem.4c00469","DOIUrl":"10.1021/acs.bioconjchem.4c00469","url":null,"abstract":"","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":" ","pages":"1871"},"PeriodicalIF":4.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583197/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20Epub Date: 2024-10-10DOI: 10.1021/acs.bioconjchem.4c00321
Špela Janež, Samo Guzelj, Žiga Jakopin
There is a growing interest in developing novel immune potentiators capable of eliciting a cellular immune response. We tackle this challenge by harnessing the synergistic cross-activation between two innate immune receptors─the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and Toll-like receptor 7 (TLR7). Herein, we investigate the structure-activity relationship of a series of novel conjugated NOD2/TLR7 agonists incorporating a variety of flexible aliphatic, poly(ethylene glycol)-based and triazole-featuring linkers. Our findings reveal potent immune-enhancing properties of conjugates in human primary peripheral blood mononuclear cells, characterized by a Th1/Th17 polarized cytokine response. Importantly, we demonstrate that both the chemistry of the linker and the site of linkage affect the immune fingerprint and the kinetic solubility of these conjugated agonists. These results shed further light on the immunostimulatory potential of NOD2/TLR7 cross-activation and provide insights for designing innovative immune potentiators.
{"title":"Linker Chemistry and Connectivity Fine-Tune the Immune Response and Kinetic Solubility of Conjugated NOD2/TLR7 Agonists.","authors":"Špela Janež, Samo Guzelj, Žiga Jakopin","doi":"10.1021/acs.bioconjchem.4c00321","DOIUrl":"10.1021/acs.bioconjchem.4c00321","url":null,"abstract":"<p><p>There is a growing interest in developing novel immune potentiators capable of eliciting a cellular immune response. We tackle this challenge by harnessing the synergistic cross-activation between two innate immune receptors─the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and Toll-like receptor 7 (TLR7). Herein, we investigate the structure-activity relationship of a series of novel conjugated NOD2/TLR7 agonists incorporating a variety of flexible aliphatic, poly(ethylene glycol)-based and triazole-featuring linkers. Our findings reveal potent immune-enhancing properties of conjugates in human primary peripheral blood mononuclear cells, characterized by a Th1/Th17 polarized cytokine response. Importantly, we demonstrate that both the chemistry of the linker and the site of linkage affect the immune fingerprint and the kinetic solubility of these conjugated agonists. These results shed further light on the immunostimulatory potential of NOD2/TLR7 cross-activation and provide insights for designing innovative immune potentiators.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":" ","pages":"1723-1731"},"PeriodicalIF":4.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583123/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}