Pub Date : 2024-12-18Epub Date: 2024-12-03DOI: 10.1021/acs.bioconjchem.4c00467
Dajana Kolanovic, Rajeev Pasupuleti, Jakob Wallner, Georg Mlynek, Birgit Wiltschi
The analysis of protein-bound glycans has gained significant attention due to their pivotal roles in physiological and pathological processes like cell-cell recognition, immune response, and disease progression. Routine methods for glycan analysis are challenged by the very similar physicochemical properties of their carbohydrate components. As an alternative, lectins, which are proteins that specifically bind to glycans, have been integrated into biosensors for glycan detection. However, the effectiveness of protein-based biosensors depends heavily on the immobilization of proteins on the sensor surface. To enhance the sensitivity and/or selectivity of lectin biosensors, it is crucial to immobilize the lectin in an optimal orientation for ligand binding without compromising its function. Random immobilization methods often result in arbitrary orientation and reduced sensitivity. To address this, we explored a directed immobilization strategy relying on a reactive noncanonical amino acid (ncAA) and bioorthogonal chemistry. In this study, we site-specifically incorporated the reactive noncanonical lysine derivative, Nε-((2-azidoethoxy)carbonyl)-l-lysine, into a cysteine-less single-chain variant of human galectin-1 (scCSGal-1). The reactive bioorthogonal azide group allowed the directed immobilization of the lectin on a biosensor surface using strain-promoted azide-alkyne cycloaddition. Biolayer interferometry data demonstrated that the controlled, directed attachment of scCSGal-1 to the biosensor surface enhanced the binding sensitivity to glycosylated von Willebrand factor by about 12-fold compared to random immobilization. These findings emphasize the importance of controlled protein orientation in biosensor design. They also highlight the power of single site-specific genetic encoding of reactive ncAAs and bioorthogonal chemistry to improve the performance of lectin-based diagnostic tools.
{"title":"Site-Specific Immobilization Boosts the Performance of a Galectin-1 Biosensor.","authors":"Dajana Kolanovic, Rajeev Pasupuleti, Jakob Wallner, Georg Mlynek, Birgit Wiltschi","doi":"10.1021/acs.bioconjchem.4c00467","DOIUrl":"10.1021/acs.bioconjchem.4c00467","url":null,"abstract":"<p><p>The analysis of protein-bound glycans has gained significant attention due to their pivotal roles in physiological and pathological processes like cell-cell recognition, immune response, and disease progression. Routine methods for glycan analysis are challenged by the very similar physicochemical properties of their carbohydrate components. As an alternative, lectins, which are proteins that specifically bind to glycans, have been integrated into biosensors for glycan detection. However, the effectiveness of protein-based biosensors depends heavily on the immobilization of proteins on the sensor surface. To enhance the sensitivity and/or selectivity of lectin biosensors, it is crucial to immobilize the lectin in an optimal orientation for ligand binding without compromising its function. Random immobilization methods often result in arbitrary orientation and reduced sensitivity. To address this, we explored a directed immobilization strategy relying on a reactive noncanonical amino acid (ncAA) and bioorthogonal chemistry. In this study, we site-specifically incorporated the reactive noncanonical lysine derivative, N<sup>ε</sup>-((2-azidoethoxy)carbonyl)-l-lysine, into a cysteine-less single-chain variant of human galectin-1 (scCSGal-1). The reactive bioorthogonal azide group allowed the directed immobilization of the lectin on a biosensor surface using strain-promoted azide-alkyne cycloaddition. Biolayer interferometry data demonstrated that the controlled, directed attachment of scCSGal-1 to the biosensor surface enhanced the binding sensitivity to glycosylated von Willebrand factor by about 12-fold compared to random immobilization. These findings emphasize the importance of controlled protein orientation in biosensor design. They also highlight the power of single site-specific genetic encoding of reactive ncAAs and bioorthogonal chemistry to improve the performance of lectin-based diagnostic tools.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"1944-1958"},"PeriodicalIF":4.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18Epub Date: 2024-11-14DOI: 10.1021/acs.bioconjchem.4c00406
Thuanny Borba Rios, Samilla Beatriz Rezende, Mariana Rocha Maximiano, Marlon Henrique Cardoso, Martin Malmsten, Cesar de la Fuente-Nunez, Octávio Luiz Franco
Peptides constitute alternative molecules for the treatment of infections caused by bacteria, viruses, fungi, and protozoa. However, their therapeutic effectiveness is often limited by enzymatic degradation, chemical and physical instability, and toxicity toward healthy human cells. To improve their pharmacokinetic (PK) and pharmacodynamic (PD) profiles, novel routes of administration are being explored. Among these, nanoparticles have shown promise as potential carriers for peptides, although the design of delivery vehicles remains a slow and painstaking process, heavily reliant on trial and error. Recently, computational approaches have been introduced to accelerate the development of effective drug delivery systems for peptides. Here we present an overview of some of these computational strategies and discuss their potential to optimize drug development and delivery.
{"title":"Computational Approaches for Antimicrobial Peptide Delivery.","authors":"Thuanny Borba Rios, Samilla Beatriz Rezende, Mariana Rocha Maximiano, Marlon Henrique Cardoso, Martin Malmsten, Cesar de la Fuente-Nunez, Octávio Luiz Franco","doi":"10.1021/acs.bioconjchem.4c00406","DOIUrl":"10.1021/acs.bioconjchem.4c00406","url":null,"abstract":"<p><p>Peptides constitute alternative molecules for the treatment of infections caused by bacteria, viruses, fungi, and protozoa. However, their therapeutic effectiveness is often limited by enzymatic degradation, chemical and physical instability, and toxicity toward healthy human cells. To improve their pharmacokinetic (PK) and pharmacodynamic (PD) profiles, novel routes of administration are being explored. Among these, nanoparticles have shown promise as potential carriers for peptides, although the design of delivery vehicles remains a slow and painstaking process, heavily reliant on trial and error. Recently, computational approaches have been introduced to accelerate the development of effective drug delivery systems for peptides. Here we present an overview of some of these computational strategies and discuss their potential to optimize drug development and delivery.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"1873-1882"},"PeriodicalIF":4.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18Epub Date: 2024-11-28DOI: 10.1021/acs.bioconjchem.4c00481
Tim Rheinfrank, Viktor Lebruška, Stefan Stangl, Margareta Vojtíčková, Nghia Trong Nguyen, Lena Koller, Jakub Šimeček, Vojtěch Kubíček, Susanne Kossatz, Johannes Notni
The cellular adhesion receptor αvβ6-integrin is highly expressed in many cancers, e.g., pancreatic, lung, head-and-neck, cervical, bladder, and esophageal carcinoma. Multimerization of αvβ6-integrin-specific RGD peptides increases the target affinity and retention but affects biodistribution and pharmacokinetics. Amide formation of the terminal carboxylic acid moieties of the square-symmetrical bifunctional chelator DOTPI with 3-azidopropylamine yields derivatives with 4, 3, and 2 terminal azides and zero, 1, and 2 remaining carboxylic acids, respectively, whereby formation of the 2-cis-isomer is preferred according to NMR investigation of the Eu(III)-complexes. Cu(II)-catalyzed alkyne-azide cycloaddition (CuAAC) of the alkyne-functionalized αvβ6-integrin binding peptide cyclo[YRGDLAYp(NMe)K(pent-4-ynoic amide)] (Tyr2) yields the respective di-, tri-, and tetrameric conjugates for Lu-177-labeling. In mice bearing αvβ6-integrin-expressing xenografts of H2009 (human lung adenocarcinoma) cells, the Lu-177-labeled trimer's tumor-to-blood ratio of 112 exceeds that of the tetramer (10.4) and the dimer (54). Co-infusion of gelofusine (succinylated gelatin) reduces the renal uptake of the trimer by 89%, resulting in a 10-fold better tumor-to-kidney ratio, while no improvement of that ratio is observed with arginine/lysine, para-aminohippuric acid (PAH), and hydroxyethyl starch (HES) coinfusions. Since the Lu-177-labeled Tyr2-trimer outperforms the dimer and the tetramer, such trimers are considered the best lead structures for the ongoing development of αvβ6-integrin targeted anticancer theranostics.
{"title":"Three Is a Magic Number: Tailored Clickable Chelators Used to Determine Optimal RGD-Peptide Multiplicity in αvβ6-Integrin Targeted <sup>177</sup>Lu-Labeled Cancer Theranostics.","authors":"Tim Rheinfrank, Viktor Lebruška, Stefan Stangl, Margareta Vojtíčková, Nghia Trong Nguyen, Lena Koller, Jakub Šimeček, Vojtěch Kubíček, Susanne Kossatz, Johannes Notni","doi":"10.1021/acs.bioconjchem.4c00481","DOIUrl":"10.1021/acs.bioconjchem.4c00481","url":null,"abstract":"<p><p>The cellular adhesion receptor αvβ6-integrin is highly expressed in many cancers, e.g., pancreatic, lung, head-and-neck, cervical, bladder, and esophageal carcinoma. Multimerization of αvβ6-integrin-specific RGD peptides increases the target affinity and retention but affects biodistribution and pharmacokinetics. Amide formation of the terminal carboxylic acid moieties of the square-symmetrical bifunctional chelator DOTPI with 3-azidopropylamine yields derivatives with 4, 3, and 2 terminal azides and zero, 1, and 2 remaining carboxylic acids, respectively, whereby formation of the 2-cis-isomer is preferred according to NMR investigation of the Eu(III)-complexes. Cu(II)-catalyzed alkyne-azide cycloaddition (CuAAC) of the alkyne-functionalized αvβ6-integrin binding peptide cyclo[YRGDLAYp(<i>N</i>Me)K(pent-4-ynoic amide)] (Tyr2) yields the respective di-, tri-, and tetrameric conjugates for Lu-177-labeling. In mice bearing αvβ6-integrin-expressing xenografts of H2009 (human lung adenocarcinoma) cells, the Lu-177-labeled trimer's tumor-to-blood ratio of 112 exceeds that of the tetramer (10.4) and the dimer (54). Co-infusion of gelofusine (succinylated gelatin) reduces the renal uptake of the trimer by 89%, resulting in a 10-fold better tumor-to-kidney ratio, while no improvement of that ratio is observed with arginine/lysine, <i>para</i>-aminohippuric acid (PAH), and hydroxyethyl starch (HES) coinfusions. Since the Lu-177-labeled Tyr2-trimer outperforms the dimer and the tetramer, such trimers are considered the best lead structures for the ongoing development of αvβ6-integrin targeted anticancer theranostics.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"1970-1984"},"PeriodicalIF":4.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18Epub Date: 2024-11-15DOI: 10.1021/acs.bioconjchem.4c00453
Yangxue Liu, Ying Peng, Zhishuo Wang, Xiaoying Wei, Kun Yang
Histones react with various aldehyde-containing DNA modifications to form reversible but long-lived DNA-histone cross-links. The investigation of their biochemical effects and repair mechanisms has been impeded due to their reversibility and the lack of methods for synthesizing stable and structure-defined DNA-histone cross-links. Herein, we present a visible-light-driven strategy to install an aminooxyhomolysine on a histone at a defined position. Using this method, we synthesized a hydrolytically stable and site-specific 3'-DNA-histone cross-link derived from an abasic DNA lesion. Such an adduct can be efficiently repaired by proteolysis coupled with nuclease excision. This work provides a strategy that can be readily expanded to synthesize DNA-histone cross-links derived from other aldehyde-containing DNA modifications.
组蛋白与各种含醛 DNA 修饰发生反应,形成可逆但持久的 DNA 组蛋白交联。由于组蛋白的可逆性以及缺乏合成稳定和结构确定的 DNA 组蛋白交联的方法,对其生化效应和修复机制的研究一直受到阻碍。在这里,我们提出了一种可见光驱动的策略,在组蛋白的特定位置上安装一个氨基氧基组氨酸。利用这种方法,我们合成了一种水解稳定、位点特异的 3'-DNA 组蛋白交联,这种交联来源于消旋 DNA 病变。这种加合物可以通过蛋白水解和核酸酶切除有效修复。这项工作提供了一种策略,可以很容易地扩展到合成来自其他含醛 DNA 修饰的 DNA 组蛋白交联。
{"title":"Light-Driven Installation of Aminooxyhomolysine on Histones and Its Application for Synthesizing Stable and Site-Specific 3'-DNA-Histone Cross-Links.","authors":"Yangxue Liu, Ying Peng, Zhishuo Wang, Xiaoying Wei, Kun Yang","doi":"10.1021/acs.bioconjchem.4c00453","DOIUrl":"10.1021/acs.bioconjchem.4c00453","url":null,"abstract":"<p><p>Histones react with various aldehyde-containing DNA modifications to form reversible but long-lived DNA-histone cross-links. The investigation of their biochemical effects and repair mechanisms has been impeded due to their reversibility and the lack of methods for synthesizing stable and structure-defined DNA-histone cross-links. Herein, we present a visible-light-driven strategy to install an aminooxyhomolysine on a histone at a defined position. Using this method, we synthesized a hydrolytically stable and site-specific 3'-DNA-histone cross-link derived from an abasic DNA lesion. Such an adduct can be efficiently repaired by proteolysis coupled with nuclease excision. This work provides a strategy that can be readily expanded to synthesize DNA-histone cross-links derived from other aldehyde-containing DNA modifications.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"1883-1887"},"PeriodicalIF":4.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18Epub Date: 2024-12-06DOI: 10.1021/acs.bioconjchem.4c00475
Aorada Sripunya, Chuda Chittasupho, Supachoke Mangmool, Alexander Angerhofer, Witcha Imaram
Poly(amidoamine) (PAMAM) dendrimers have gained significant attention in various research fields, particularly in medicinal compound delivery. Their versatility lies in their ability to conjugate with functional molecules on their surfaces and encapsulate small molecules, making them suitable for diverse applications. Gallic acid is a potent antioxidant compound that has garnered considerable interest in recent years. Our research aims to investigate if the gallic acid-encapsulated PAMAM dendrimer generations 4 (G4(OH)-Ga) and 5 (G5(OH)-Ga) could enhance radical scavenging, which could potentially slow down the progression of age-related macular degeneration (AMD). Encapsulation of gallic acid in PAMAM dendrimers is a feasible alternative to prevent its degradation and toxicity. In vitro investigation of antioxidant activity was carried out using the DPPH and ABTS radical scavenging assays, as well as the FRAP assay. The IC50 values for DPPH and ABTS assays were determined through nonlinear dose-response curves, correlating the inhibition percentage with the concentration (μg/mL) of the sample and the concentration (μM) of gallic acid within each sample. G4(OH)-Ga and G5(OH)-Ga possess significant antioxidant activities as determined by the DPPH, ABTS, and FRAP assays. Moreover, gallic acid-encapsulated PAMAM dendrimers inhibit H2O2-induced reactive oxygen species (ROS) production in the human retinal pigment epithelium ARPE-19 cells, thereby improving antioxidant characteristics and potentially retarding AMD progression caused by ROS. In an evaluation of cell viability of ARPE-19 cells using the MTT assay, G4(OH)-Ga was found to reduce cytotoxic effects on ARPE-19 cells.
{"title":"Gallic Acid-Encapsulated PAMAM Dendrimers as an Antioxidant Delivery System for Controlled Release and Reduced Cytotoxicity against ARPE-19 Cells.","authors":"Aorada Sripunya, Chuda Chittasupho, Supachoke Mangmool, Alexander Angerhofer, Witcha Imaram","doi":"10.1021/acs.bioconjchem.4c00475","DOIUrl":"10.1021/acs.bioconjchem.4c00475","url":null,"abstract":"<p><p>Poly(amidoamine) (PAMAM) dendrimers have gained significant attention in various research fields, particularly in medicinal compound delivery. Their versatility lies in their ability to conjugate with functional molecules on their surfaces and encapsulate small molecules, making them suitable for diverse applications. Gallic acid is a potent antioxidant compound that has garnered considerable interest in recent years. Our research aims to investigate if the gallic acid-encapsulated PAMAM dendrimer generations 4 (G4(OH)-Ga) and 5 (G5(OH)-Ga) could enhance radical scavenging, which could potentially slow down the progression of age-related macular degeneration (AMD). Encapsulation of gallic acid in PAMAM dendrimers is a feasible alternative to prevent its degradation and toxicity. <i>In vitro</i> investigation of antioxidant activity was carried out using the DPPH and ABTS radical scavenging assays, as well as the FRAP assay. The IC<sub>50</sub> values for DPPH and ABTS assays were determined through nonlinear dose-response curves, correlating the inhibition percentage with the concentration (μg/mL) of the sample and the concentration (μM) of gallic acid within each sample. G4(OH)-Ga and G5(OH)-Ga possess significant antioxidant activities as determined by the DPPH, ABTS, and FRAP assays. Moreover, gallic acid-encapsulated PAMAM dendrimers inhibit H<sub>2</sub>O<sub>2</sub>-induced reactive oxygen species (ROS) production in the human retinal pigment epithelium ARPE-19 cells, thereby improving antioxidant characteristics and potentially retarding AMD progression caused by ROS. In an evaluation of cell viability of ARPE-19 cells using the MTT assay, G4(OH)-Ga was found to reduce cytotoxic effects on ARPE-19 cells.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"1959-1969"},"PeriodicalIF":4.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18Epub Date: 2024-11-12DOI: 10.1021/acs.bioconjchem.4c00412
Laurianne Simon, Dongxu Zhou, Anita Coeurvolan, Vincent Lapinte, Sébastien Lecommandoux, Elisabeth Garanger, Sylvie Bégu
To achieve the desired therapeutic response, drug delivery systems must ensure the controlled release of the loaded content at the targeted site. One possible strategy relies on the improvement of conventional drug delivery systems. To do so, smart polymers, able to change their behavior upon chemical, physical, or biological stimuli, can be used. In this context, this study aims to evaluate the potential of natural amphiphilic smart elastin-like polypeptides grafted with alkyl chains (ELP-g-Bu) to stabilize conventional oil-in-water emulsions and trigger the release of loaded molecules upon dual stimuli. With butyl pendant chains and methionine residues, the macromolecular surfactant ELP-g-Bu demonstrated a modification of physicochemical properties, looking at critical aggregation concentration, upon both temperature and oxidation stimuli. The macromolecular surfactant was then able to stabilize a paraffin-oil-in-water emulsion. The ELP-g-Bu emulsion presented a droplet size of 9 ± 1 μm and stability for at least a month at 4 and 25 °C. After successful loading of a fluorescent lipophilic molecule used as a drug model, a complete destabilization of the ELP-g-Bu emulsion and burst release of the content was achieved with thermal triggering at 42 °C. In oxidative conditions, a partial release was measured, which can be improved by increasing the number of oxidable thioether groups. Overall, these dually responsive amphiphilic ELP-g-Bu demonstrated their potential for smart-polymer-based drug delivery systems that can be promising for inflammatory disease treatment as increased temperature and radical oxygen species are present in such cases.
{"title":"Dual Responsive Emulsions Based on Amphiphilic Elastin-like Polypeptide Bioconjugates.","authors":"Laurianne Simon, Dongxu Zhou, Anita Coeurvolan, Vincent Lapinte, Sébastien Lecommandoux, Elisabeth Garanger, Sylvie Bégu","doi":"10.1021/acs.bioconjchem.4c00412","DOIUrl":"10.1021/acs.bioconjchem.4c00412","url":null,"abstract":"<p><p>To achieve the desired therapeutic response, drug delivery systems must ensure the controlled release of the loaded content at the targeted site. One possible strategy relies on the improvement of conventional drug delivery systems. To do so, smart polymers, able to change their behavior upon chemical, physical, or biological stimuli, can be used. In this context, this study aims to evaluate the potential of natural amphiphilic smart elastin-like polypeptides grafted with alkyl chains (ELP-<i>g</i>-Bu) to stabilize conventional oil-in-water emulsions and trigger the release of loaded molecules upon dual stimuli. With butyl pendant chains and methionine residues, the macromolecular surfactant ELP-<i>g</i>-Bu demonstrated a modification of physicochemical properties, looking at critical aggregation concentration, upon both temperature and oxidation stimuli. The macromolecular surfactant was then able to stabilize a paraffin-oil-in-water emulsion. The ELP-<i>g</i>-Bu emulsion presented a droplet size of 9 ± 1 μm and stability for at least a month at 4 and 25 °C. After successful loading of a fluorescent lipophilic molecule used as a drug model, a complete destabilization of the ELP-<i>g</i>-Bu emulsion and burst release of the content was achieved with thermal triggering at 42 °C. In oxidative conditions, a partial release was measured, which can be improved by increasing the number of oxidable thioether groups. Overall, these dually responsive amphiphilic ELP-<i>g</i>-Bu demonstrated their potential for smart-polymer-based drug delivery systems that can be promising for inflammatory disease treatment as increased temperature and radical oxygen species are present in such cases.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"1923-1932"},"PeriodicalIF":4.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18Epub Date: 2024-11-14DOI: 10.1021/acs.bioconjchem.4c00497
Qi Yang, Lele Song, Zhao Chen, Yongkang Qiu, Tianyao Wang, Xinyao Sun, Wenpeng Huang, Cuicui Li, Zihua Wang, Lei Kang
Multiple myeloma (MM) is an incurable disease characterized by its clinical and prognostic heterogeneity. Despite conventional chemotherapy and autologous hematopoietic stem cell transplantation, the management of relapsed and refractory MM disease poses significant challenges, both medically and socioeconomically. CD38, highly expressed on the surface of MM cells, serves as a distinct tumor biological target in MM. Peptides offer advantages over antibodies, enabling precise tumor imaging and facilitating early tumor diagnosis and dynamic immunotherapy monitoring. In this study, we developed PF381, a CD38-targeted peptide, and investigated its role in diagnosis, biodistribution, and dosimetry through 68Ga-labeling for preclinical evaluation in tumor-bearing models. We screened a microchip-based combinatorial chemistry peptide library to obtain the amino acid sequence of PF381. Affinity for human CD38 was evaluated by SPRi. PF381 was conjugated with DOTA for radiolabeling with 68Ga, and the complex was characterized by HPLC. PET imaging was performed in murine tumor models after the administration of [68Ga]Ga-DOTA-PF381. Biodistribution analysis compared CD38-positive H929 and CD38-negative U266 tumors, and human radiation dosimetry was estimated. Tumor sections were stained for CD38 expression. SPRi showed that PF381 had a high affinity for CD38 with a KD of 2.49 × 10-8 M. HPLC measured a radiolabeling efficiency of 78.45 ± 7.91% for [68Ga]Ga-DOTA-PF381, with >98% radiochemical purity. PET imaging revealed rapid and persistent accumulation of radioactivity in CD38-positive H929 tumors, contrasting with negligible uptake in CD38-negative U266 tumors. Biodistribution confirmed higher uptake in H929 tumors (0.75 ± 0.03%ID/g) vs U266 (0.26 ± 0.08%ID/g, P < 0.001). The kidney received the highest radiation dose (3.57 × 10-02 mSv/MBq), with an effective dose of 1.41 × 10-02 mSv/MBq. Immunofluorescence imaging supported PET and biodistribution findings. We developed a novel peptide targeting CD38 and proved that 68Ga-labeled PF381 had rapid targeting and good tumor penetration capabilities. Therefore, 68Ga-labeled PF381 could achieve high sensitivity in vivo imaging for CD38-positive hematological malignancies.
{"title":"Pharmacokinetic Positron Emission Tomography Imaging of an Optimized CD38-Targeted <sup>68</sup>Ga-Labeled Peptide in Multiple Myeloma: A Pilot Study.","authors":"Qi Yang, Lele Song, Zhao Chen, Yongkang Qiu, Tianyao Wang, Xinyao Sun, Wenpeng Huang, Cuicui Li, Zihua Wang, Lei Kang","doi":"10.1021/acs.bioconjchem.4c00497","DOIUrl":"10.1021/acs.bioconjchem.4c00497","url":null,"abstract":"<p><p>Multiple myeloma (MM) is an incurable disease characterized by its clinical and prognostic heterogeneity. Despite conventional chemotherapy and autologous hematopoietic stem cell transplantation, the management of relapsed and refractory MM disease poses significant challenges, both medically and socioeconomically. CD38, highly expressed on the surface of MM cells, serves as a distinct tumor biological target in MM. Peptides offer advantages over antibodies, enabling precise tumor imaging and facilitating early tumor diagnosis and dynamic immunotherapy monitoring. In this study, we developed PF381, a CD38-targeted peptide, and investigated its role in diagnosis, biodistribution, and dosimetry through <sup>68</sup>Ga-labeling for preclinical evaluation in tumor-bearing models. We screened a microchip-based combinatorial chemistry peptide library to obtain the amino acid sequence of PF381. Affinity for human CD38 was evaluated by SPRi. PF381 was conjugated with DOTA for radiolabeling with <sup>68</sup>Ga, and the complex was characterized by HPLC. PET imaging was performed in murine tumor models after the administration of [<sup>68</sup>Ga]Ga-DOTA-PF381. Biodistribution analysis compared CD38-positive H929 and CD38-negative U266 tumors, and human radiation dosimetry was estimated. Tumor sections were stained for CD38 expression. SPRi showed that PF381 had a high affinity for CD38 with a KD of 2.49 × 10<sup>-8</sup> M. HPLC measured a radiolabeling efficiency of 78.45 ± 7.91% for [<sup>68</sup>Ga]Ga-DOTA-PF381, with >98% radiochemical purity. PET imaging revealed rapid and persistent accumulation of radioactivity in CD38-positive H929 tumors, contrasting with negligible uptake in CD38-negative U266 tumors. Biodistribution confirmed higher uptake in H929 tumors (0.75 ± 0.03%ID/g) vs U266 (0.26 ± 0.08%ID/g, <i>P</i> < 0.001). The kidney received the highest radiation dose (3.57 × 10<sup>-02</sup> mSv/MBq), with an effective dose of 1.41 × 10<sup>-02</sup> mSv/MBq. Immunofluorescence imaging supported PET and biodistribution findings. We developed a novel peptide targeting CD38 and proved that <sup>68</sup>Ga-labeled PF381 had rapid targeting and good tumor penetration capabilities. Therefore, <sup>68</sup>Ga-labeled PF381 could achieve high sensitivity in vivo imaging for CD38-positive hematological malignancies.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"1985-1996"},"PeriodicalIF":4.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plectin, a scaffolding protein overexpressed in tumor cells, plays a significant role in hepatocellular carcinoma (HCC) proliferation, invasion, and migration. However, the use of L-type peptides for targeting plectin is hindered by their limited stability and retention. We designed a D-type plectin-targeting peptide (DPTP) and developed a novel single-photon emission computed tomography (SPECT) probe for HCC imaging. The DPTP targeting ability was evaluated in vitro using flow cytometry and ex vivo fluorescence imaging. 99mTc radiolabeling was performed using tricine and ethylenediamine-N,N'-diacetic acid (EDDA) as coligands after modification with 6-hydrazino nicotinamide (HYNIC) at the N termini of DPTP. The radiochemical purity (RCP), in vitro stability, and binding affinity of the prepared 99mTc-HYNIC-DPTP were analyzed. Tumor uptake, metabolic stability, biodistribution, and pharmacokinetics of 99mTc-HYNIC-DPTP were investigated and compared with those of 99mTc-labeled L-type PTP (99mTc-HYNIC-PTP) in HCC tumor-bearing mice. DPTP could be efficiently radiolabeled with 99mTc using the HYNIC/tricine/EDDA system with a high RCP and good in vitro stability. Compared with the L-type PTP, DPTP exhibited improved targeting ability, and 99mTc-HYNIC-DPTP displayed higher tumor uptake, better metabolic stability, longer blood circulation time, and lower kidney retention, resulting in superior imaging performance and biodistribution in vivo. 99mTc-HYNIC-DPTP has great potential as a novel SPECT probe for diagnosing HCC.
Plectin是一种在肿瘤细胞中过度表达的支架蛋白,在肝细胞癌(HCC)的增殖、侵袭和迁移中发挥着重要作用。然而,由于 L 型肽的稳定性和保留性有限,因此阻碍了它们用于靶向 plectin。我们设计了一种 D 型 plectin 靶向肽(DPTP),并开发了一种用于 HCC 成像的新型单光子发射计算机断层扫描(SPECT)探针。利用流式细胞仪和体内外荧光成像技术在体外评估了 DPTP 的靶向能力。以三尖杉碱和乙二胺-N,N'-二乙酸(EDDA)为副配体,在 DPTP 的 N 端用 6-肼基烟酰胺(HYNIC)修饰后,进行了 99mTc 放射性标记。分析了制备的 99mTc-HYNIC-DPTP 的放射化学纯度(RCP)、体外稳定性和结合亲和力。研究了 99mTc-HYNIC-DPTP 与 99mTc 标记的 L 型 PTP(99mTc-HYNIC-PTP)在 HCC 肿瘤小鼠体内的肿瘤摄取、代谢稳定性、生物分布和药代动力学。使用HYNIC/tricine/EDDA体系,DPTP能有效地用99m锝进行放射性标记,具有较高的RCP和良好的体外稳定性。与 L 型 PTP 相比,DPTP 的靶向能力更强,99m锝-HYNIC-DPTP 的肿瘤摄取率更高、代谢稳定性更好、血液循环时间更长、肾脏滞留率更低,因此在体内具有更优越的成像性能和生物分布。99mTc-HYNIC-DPTP 作为诊断 HCC 的新型 SPECT 探针具有巨大潜力。
{"title":"<sup>99m</sup>Tc-Labeled D-Type PTP as a Plectin-Targeting Single-Photon Emission Computed Tomography Probe for Hepatocellular Carcinoma Imaging.","authors":"JiaLi Gong, Meilin Zhu, Lingzhou Zhao, Taisong Wang, Wenli Qiao, Qingqing Huang, Yan Xing, Jinhua Zhao","doi":"10.1021/acs.bioconjchem.4c00492","DOIUrl":"10.1021/acs.bioconjchem.4c00492","url":null,"abstract":"<p><p>Plectin, a scaffolding protein overexpressed in tumor cells, plays a significant role in hepatocellular carcinoma (HCC) proliferation, invasion, and migration. However, the use of L-type peptides for targeting plectin is hindered by their limited stability and retention. We designed a D-type plectin-targeting peptide (<sup>D</sup>PTP) and developed a novel single-photon emission computed tomography (SPECT) probe for HCC imaging. The <sup>D</sup>PTP targeting ability was evaluated <i>in vitro</i> using flow cytometry and <i>ex vivo</i> fluorescence imaging. <sup>99m</sup>Tc radiolabeling was performed using tricine and ethylenediamine-<i>N</i>,<i>N</i>'-diacetic acid (EDDA) as coligands after modification with 6-hydrazino nicotinamide (HYNIC) at the N termini of <sup>D</sup>PTP. The radiochemical purity (RCP), <i>in vitro</i> stability, and binding affinity of the prepared <sup>99m</sup>Tc-HYNIC-<sup>D</sup>PTP were analyzed. Tumor uptake, metabolic stability, biodistribution, and pharmacokinetics of <sup>99m</sup>Tc-HYNIC-<sup>D</sup>PTP were investigated and compared with those of <sup>99m</sup>Tc-labeled L-type PTP (<sup>99m</sup>Tc-HYNIC-PTP) in HCC tumor-bearing mice. <sup>D</sup>PTP could be efficiently radiolabeled with <sup>99m</sup>Tc using the HYNIC/tricine/EDDA system with a high RCP and good <i>in vitro</i> stability. Compared with the L-type PTP, <sup>D</sup>PTP exhibited improved targeting ability, and <sup>99m</sup>Tc-HYNIC-<sup>D</sup>PTP displayed higher tumor uptake, better metabolic stability, longer blood circulation time, and lower kidney retention, resulting in superior imaging performance and biodistribution <i>in vivo</i>. <sup>99m</sup>Tc-HYNIC-<sup>D</sup>PTP has great potential as a novel SPECT probe for diagnosing HCC.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"1997-2005"},"PeriodicalIF":4.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ATP (adenosine triphosphate) and HMGB1 (high mobility group box 1 protein) are key players in treatments that induce immunogenic cell death (ICD). However, conventional therapies, including radiotherapy, are often insufficient to induce ICD. In this study, we explore a strategy using nanoparticle-loaded macrophages as a source of ATP and HMGB1 to complement radiation-induced intrinsic and adaptive immune responses. To this end, we tested three inorganic particles, namely, iron oxide nanoparticles (ION), aluminum oxide nanoparticles (AON), and zinc oxide nanoparticles (ZON), in vitro with bone marrow-derived dendritic cells (BMDCs) and then in vivo in syngeneic tumor models. Our results showed that ION was the most effective of the three nanoparticles in promoting the secretion of ATP and HMGB1 from macrophages without negatively affecting macrophage survival. Secretions from ION-loaded macrophages can activate BMDCs. Intratumoral injection of ION-loaded macrophages significantly enhanced tumor infiltration and activation of dendritic cells and cytotoxic T cells. Moreover, exogenous ION macrophages can enhance the efficacy of radiotherapy. In addition, direct injection of ION can also enhance the efficacy of radiotherapy, which is attributed to ION uptake by and stimulation of endogenous macrophages. Instead of directly targeting cancer cells, our strategy targets macrophages and uses them as a secretory source of ATP and HMGB1 to enhance radiation-induced ICD. Our research introduces a new nanoparticle-based immunomodulatory approach that may have applications in radiotherapy and beyond.
ATP(三磷酸腺苷)和HMGB1(高迁移率基团框1蛋白)是诱导免疫性细胞死亡(ICD)治疗的关键因素。然而,包括放疗在内的传统疗法往往不足以诱导免疫细胞死亡。在本研究中,我们探索了一种利用纳米颗粒负载的巨噬细胞作为 ATP 和 HMGB1 的来源来补充辐射诱导的内在和适应性免疫反应的策略。为此,我们用骨髓树突状细胞(BMDCs)在体外测试了三种无机颗粒,即氧化铁纳米颗粒(ION)、氧化铝纳米颗粒(AON)和氧化锌纳米颗粒(ZON),然后在体内的合成肿瘤模型中进行了测试。我们的研究结果表明,ION是三种纳米粒子中促进巨噬细胞分泌ATP和HMGB1最有效的一种,而不会对巨噬细胞的存活产生负面影响。ION负载的巨噬细胞分泌物可激活BMDCs。瘤内注射 ION 载体巨噬细胞可显著增强肿瘤浸润以及树突状细胞和细胞毒性 T 细胞的活化。此外,外源性 ION 巨噬细胞还能提高放疗的疗效。此外,直接注射 ION 也能提高放疗的疗效,这是因为 ION 被内源性巨噬细胞吸收并刺激了它们。我们的策略不是直接靶向癌细胞,而是靶向巨噬细胞,利用它们作为 ATP 和 HMGB1 的分泌源,增强放射诱导的 ICD。我们的研究引入了一种新的基于纳米粒子的免疫调节方法,这种方法可能会应用于放疗及其他领域。
{"title":"Iron Oxide Nanoparticles Induce Macrophage Secretion of ATP and HMGB1 to Enhance Irradiation-Led Immunogenic Cell Death.","authors":"Shuyue Zhan, Zhengwei Cao, Jianwen Li, Fanghui Chen, Xinning Lai, Wei Yang, Yong Teng, Zibo Li, Weizhong Zhang, Jin Xie","doi":"10.1021/acs.bioconjchem.4c00488","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00488","url":null,"abstract":"<p><p>ATP (adenosine triphosphate) and HMGB1 (high mobility group box 1 protein) are key players in treatments that induce immunogenic cell death (ICD). However, conventional therapies, including radiotherapy, are often insufficient to induce ICD. In this study, we explore a strategy using nanoparticle-loaded macrophages as a source of ATP and HMGB1 to complement radiation-induced intrinsic and adaptive immune responses. To this end, we tested three inorganic particles, namely, iron oxide nanoparticles (ION), aluminum oxide nanoparticles (AON), and zinc oxide nanoparticles (ZON), <i>in vitro</i> with bone marrow-derived dendritic cells (BMDCs) and then <i>in vivo</i> in syngeneic tumor models. Our results showed that ION was the most effective of the three nanoparticles in promoting the secretion of ATP and HMGB1 from macrophages without negatively affecting macrophage survival. Secretions from ION-loaded macrophages can activate BMDCs. Intratumoral injection of ION-loaded macrophages significantly enhanced tumor infiltration and activation of dendritic cells and cytotoxic T cells. Moreover, exogenous ION macrophages can enhance the efficacy of radiotherapy. In addition, direct injection of ION can also enhance the efficacy of radiotherapy, which is attributed to ION uptake by and stimulation of endogenous macrophages. Instead of directly targeting cancer cells, our strategy targets macrophages and uses them as a secretory source of ATP and HMGB1 to enhance radiation-induced ICD. Our research introduces a new nanoparticle-based immunomodulatory approach that may have applications in radiotherapy and beyond.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1021/acs.bioconjchem.4c00501
Charles Wynter, Arutselvan Natarajan, Clyde John, Kaahini Jain, Ramasamy Paulmurugan
<p><p>The interaction between cancer cells and immune cells in the tumor microenvironment (TME) plays a crucial role in determining tumor growth, metastasis, and response to treatment. Tumor-infiltrating lymphocytes (TILs) in TME could be a predictive marker for treatment response in various therapeutic interventions, including chemotherapy and immunotherapy. Thus, imaging the tumor immune microenvironment is important for selecting the optimal treatment strategies in cancer therapy. The CD3 protein represents a promising target for diagnostic imaging of TILs <i>in vivo</i> to assess the immune state of the TME. Although many anti-CD3 antibodies have been explored for this application, the nonspecific immune activation by these antibodies limits their applications. To overcome this issue, we engineered a novel fibronectin III domain (FN3) protein binder (mCD3-FN3;11.8 kDa) against mouse CD3 antigen protein using a yeast display library to image TILs homing <i>in vivo</i> into the TME. We performed <i>in vitro</i> and <i>in vivo</i> assays to test the mCD3-FN3 binder purity as well as <i>in vivo</i> targetability in mouse models of syngeneic tumors. We used near-infrared 800 dye conjugated with mCD3-FN3 (IR800-mCD3-FN3) for <i>in vivo</i> tracking of TILs <i>via</i> optical imaging. We used three different syngeneic tumors in mice (mCD3<sup>+</sup> EL4 tumor in C57BL/6 mice, mCD3<sup>-</sup> CT26 colon tumor, and mCD3<sup>-</sup> 4T1 breast tumor in BALB/c mice) for imaging TILs <i>in vivo</i>. C57BL/6 mice bearing EL4 tumors were separated into two groups (blocking [Blk] and nonblocking [Nblk]; <i>n</i> = 3 per group) and used for <i>in vivo</i> imaging. Blocking groups received 200 μg of unlabeled mCD3-FN3 2 h prior to the administration of IR800-mCD3-FN3 binder. Each mouse was administered with 25 μg of the IR800-mCD3-FN3 binder and tracked using an IVIS optical imaging system over time. C57BL/6/EL4 mice were imaged at 4 and 24 h post injection of the IR800-mCD3-FN3 binder, and mouse organs were collected at 24 h after final imaging and used for <i>ex vivo</i> histological imaging. In CT26 and 4T1 tumor models, TILs in TME were imaged 4, 24, and 48 h after binder injection. The NIR imaging of EL4 tumors showed that IR800-mCD3-FN3 can detect both TILs within the tumor and the tumor cells with a high signal-to-background ratio 24 h after initial binder injection with a total radiant efficiency (mean TRE ± SD) of 6.5 × 10<sup>10</sup> ± 1.5 × 10<sup>10</sup> [photons/s]/[μW/cm<sup>2</sup>]. The animals received preinjection of unlabeled mCD3-FN3(Blk) prior to IR800-mCD3-FN3 binder administration and showed a significant level of fluorescence signal reduction (mean TRE ± SD: 1.6 × 10<sup>10</sup> ± 4.1 × 10<sup>9</sup>) in the tumor when compared to the EL4-Nblk tumors (<i>p</i> = 0.006). The mouse group with CT26 and 4T1 tumors where the probe can only bind to TILs within the tumor showed a specific imaging signal (mean TRE ± SD) of 1.1 × 10<sup>1
{"title":"Molecular Imaging of Tumor-Infiltrating Lymphocytes in Living Animals Using a Novel mCD3 Fibronectin Scaffold.","authors":"Charles Wynter, Arutselvan Natarajan, Clyde John, Kaahini Jain, Ramasamy Paulmurugan","doi":"10.1021/acs.bioconjchem.4c00501","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00501","url":null,"abstract":"<p><p>The interaction between cancer cells and immune cells in the tumor microenvironment (TME) plays a crucial role in determining tumor growth, metastasis, and response to treatment. Tumor-infiltrating lymphocytes (TILs) in TME could be a predictive marker for treatment response in various therapeutic interventions, including chemotherapy and immunotherapy. Thus, imaging the tumor immune microenvironment is important for selecting the optimal treatment strategies in cancer therapy. The CD3 protein represents a promising target for diagnostic imaging of TILs <i>in vivo</i> to assess the immune state of the TME. Although many anti-CD3 antibodies have been explored for this application, the nonspecific immune activation by these antibodies limits their applications. To overcome this issue, we engineered a novel fibronectin III domain (FN3) protein binder (mCD3-FN3;11.8 kDa) against mouse CD3 antigen protein using a yeast display library to image TILs homing <i>in vivo</i> into the TME. We performed <i>in vitro</i> and <i>in vivo</i> assays to test the mCD3-FN3 binder purity as well as <i>in vivo</i> targetability in mouse models of syngeneic tumors. We used near-infrared 800 dye conjugated with mCD3-FN3 (IR800-mCD3-FN3) for <i>in vivo</i> tracking of TILs <i>via</i> optical imaging. We used three different syngeneic tumors in mice (mCD3<sup>+</sup> EL4 tumor in C57BL/6 mice, mCD3<sup>-</sup> CT26 colon tumor, and mCD3<sup>-</sup> 4T1 breast tumor in BALB/c mice) for imaging TILs <i>in vivo</i>. C57BL/6 mice bearing EL4 tumors were separated into two groups (blocking [Blk] and nonblocking [Nblk]; <i>n</i> = 3 per group) and used for <i>in vivo</i> imaging. Blocking groups received 200 μg of unlabeled mCD3-FN3 2 h prior to the administration of IR800-mCD3-FN3 binder. Each mouse was administered with 25 μg of the IR800-mCD3-FN3 binder and tracked using an IVIS optical imaging system over time. C57BL/6/EL4 mice were imaged at 4 and 24 h post injection of the IR800-mCD3-FN3 binder, and mouse organs were collected at 24 h after final imaging and used for <i>ex vivo</i> histological imaging. In CT26 and 4T1 tumor models, TILs in TME were imaged 4, 24, and 48 h after binder injection. The NIR imaging of EL4 tumors showed that IR800-mCD3-FN3 can detect both TILs within the tumor and the tumor cells with a high signal-to-background ratio 24 h after initial binder injection with a total radiant efficiency (mean TRE ± SD) of 6.5 × 10<sup>10</sup> ± 1.5 × 10<sup>10</sup> [photons/s]/[μW/cm<sup>2</sup>]. The animals received preinjection of unlabeled mCD3-FN3(Blk) prior to IR800-mCD3-FN3 binder administration and showed a significant level of fluorescence signal reduction (mean TRE ± SD: 1.6 × 10<sup>10</sup> ± 4.1 × 10<sup>9</sup>) in the tumor when compared to the EL4-Nblk tumors (<i>p</i> = 0.006). The mouse group with CT26 and 4T1 tumors where the probe can only bind to TILs within the tumor showed a specific imaging signal (mean TRE ± SD) of 1.1 × 10<sup>1","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}