Pub Date : 2019-01-25DOI: 10.1093/acrefore/9780199389407.013.163
Colin Provost
Managing the risks of climate change partly involves setting and implementing regulatory standards that help to diminish the causes of climate change. This means setting regulatory standards that require businesses to emit fewer pollutants, most notably carbon dioxide. In large federalist systems like the United States and the European Union, this regulation is produced by a variety of institutional structures and policy instruments as well. In the United States, federal regulations often encompass stricter standards with less flexibility; these standards have direct impacts on the relevant regulated interests, but they also influence the content and structure of non-governmental regulations, such as those promulgated by NGOs or industry trade associations. This influential “shadow of hierarchy” can be witnessed in both the U.S. and E.U. However, at a more local level, businesses and governments do not solely operate within the confines of strict, hierarchical regulation. Both sets of organizations join together horizontally to form compacts and regulatory networks that are often characterized more by guidance, soft law and collaborative efforts. While such institutions can be a welcome and effective complement to stricter, hierarchical regulation, such networks require high levels of trust and goal congruence to overcome the potential collective action problems that are inherently possible in such networks. Finally, the conditions under which networks and hierarchies both develop to construct environmental regulatory policies will depend on the dynamics of the policy process as well. Under ordinary circumstances, diverging preferences and collective action problems may create the foundation for more incremental and weaker regulatory standards, whereas an environmental disaster might create a groundswell of support for strict, judicially binding legislation. In this way, policy processes affect the structure of hierarchies and networks and ultimately the shape of regulations designed to mitigate the effects of climate change.
{"title":"Multilevel Environmental Governance in the European Union and United States","authors":"Colin Provost","doi":"10.1093/acrefore/9780199389407.013.163","DOIUrl":"https://doi.org/10.1093/acrefore/9780199389407.013.163","url":null,"abstract":"Managing the risks of climate change partly involves setting and implementing regulatory standards that help to diminish the causes of climate change. This means setting regulatory standards that require businesses to emit fewer pollutants, most notably carbon dioxide. In large federalist systems like the United States and the European Union, this regulation is produced by a variety of institutional structures and policy instruments as well. In the United States, federal regulations often encompass stricter standards with less flexibility; these standards have direct impacts on the relevant regulated interests, but they also influence the content and structure of non-governmental regulations, such as those promulgated by NGOs or industry trade associations. This influential “shadow of hierarchy” can be witnessed in both the U.S. and E.U.\u0000 However, at a more local level, businesses and governments do not solely operate within the confines of strict, hierarchical regulation. Both sets of organizations join together horizontally to form compacts and regulatory networks that are often characterized more by guidance, soft law and collaborative efforts. While such institutions can be a welcome and effective complement to stricter, hierarchical regulation, such networks require high levels of trust and goal congruence to overcome the potential collective action problems that are inherently possible in such networks. Finally, the conditions under which networks and hierarchies both develop to construct environmental regulatory policies will depend on the dynamics of the policy process as well. Under ordinary circumstances, diverging preferences and collective action problems may create the foundation for more incremental and weaker regulatory standards, whereas an environmental disaster might create a groundswell of support for strict, judicially binding legislation. In this way, policy processes affect the structure of hierarchies and networks and ultimately the shape of regulations designed to mitigate the effects of climate change.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122577702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-25DOI: 10.1093/ACREFORE/9780199389407.013.233
K. Iuchi, Yasuhito Jibiki, R. Solidum, Ramon Santiago
Located in the Pacific Ring of Fire and the typhoon belt, the Philippines is one of the most hazard prone countries in the world. The country faces different types of natural hazards including geophysical disturbances such as earthquakes and volcanic eruptions, meteorological and hydrological events such as typhoons and floods, and slow-onset disasters such as droughts. Together with rapidly increasing population growth and urbanization, large-scale natural phenomena have resulted in unprecedented scales of devastation. In the early 21st century alone, the country experienced some of the most destructive and costliest disasters in its history including Typhoon Yolanda (2013), Typhoon Pablo (2012), and the Bohol Earthquake (2013). Recurrent natural disasters have prompted the Philippine government to develop disaster risk reduction and management (DRRM) strategies to better prepare, respond, and recover, as well as to be more resilient in the face of natural disasters. Since the early 1940s, the governing structure has undergone several revisions through legal and institutional arrangements. Historical natural disasters and seismic risks have affected and continue to threaten the National Capital Region (NCR) and the surrounding administrative areas; these were key factors in advancing DRRM laws and regulations, as well as in restructuring its governing bodies. The current DRRM structure was instituted under Republic Act no. 10121 (RA10121) in 2010 and was implemented to shift from responsive to proactive governance by better engaging local governments (LGUs), communities, and the private sector to reduce long-term disaster risk. This Republic Act established a national disaster risk reduction and management council (NDRRMC) to develop strategies that manage and reduce risk. Typhoon Yolanda in 2013 was the most significant test of this revised governance structure and related strategies. The typhoon revealed drawbacks of the current council-led governing structure to advancing resilience. Salient topics include how to respond better to disaster realities, how to efficiently coordinate among relevant agencies, and how to be more inclusive of relevant actors. Together with other issues, such as the way to co-exist with climate change efforts, a thorough examination of RA 10121 by the national government and advocates for DRRM is underway. Some of the most important discourse to date focuses on ways to institute a powerful governing body that enables more efficient DRRM with administrative and financial power. The hope is that by instituting a governing system that can thoroughly lead all phases of preparedness, mitigation, response, and recovery, the country can withstand future—and likely more frequent—mega-disasters.
{"title":"Natural Hazards Governance in the Philippines","authors":"K. Iuchi, Yasuhito Jibiki, R. Solidum, Ramon Santiago","doi":"10.1093/ACREFORE/9780199389407.013.233","DOIUrl":"https://doi.org/10.1093/ACREFORE/9780199389407.013.233","url":null,"abstract":"Located in the Pacific Ring of Fire and the typhoon belt, the Philippines is one of the most hazard prone countries in the world. The country faces different types of natural hazards including geophysical disturbances such as earthquakes and volcanic eruptions, meteorological and hydrological events such as typhoons and floods, and slow-onset disasters such as droughts. Together with rapidly increasing population growth and urbanization, large-scale natural phenomena have resulted in unprecedented scales of devastation. In the early 21st century alone, the country experienced some of the most destructive and costliest disasters in its history including Typhoon Yolanda (2013), Typhoon Pablo (2012), and the Bohol Earthquake (2013).\u0000 Recurrent natural disasters have prompted the Philippine government to develop disaster risk reduction and management (DRRM) strategies to better prepare, respond, and recover, as well as to be more resilient in the face of natural disasters. Since the early 1940s, the governing structure has undergone several revisions through legal and institutional arrangements. Historical natural disasters and seismic risks have affected and continue to threaten the National Capital Region (NCR) and the surrounding administrative areas; these were key factors in advancing DRRM laws and regulations, as well as in restructuring its governing bodies. The current DRRM structure was instituted under Republic Act no. 10121 (RA10121) in 2010 and was implemented to shift from responsive to proactive governance by better engaging local governments (LGUs), communities, and the private sector to reduce long-term disaster risk. This Republic Act established a national disaster risk reduction and management council (NDRRMC) to develop strategies that manage and reduce risk.\u0000 Typhoon Yolanda in 2013 was the most significant test of this revised governance structure and related strategies. The typhoon revealed drawbacks of the current council-led governing structure to advancing resilience. Salient topics include how to respond better to disaster realities, how to efficiently coordinate among relevant agencies, and how to be more inclusive of relevant actors. Together with other issues, such as the way to co-exist with climate change efforts, a thorough examination of RA 10121 by the national government and advocates for DRRM is underway. Some of the most important discourse to date focuses on ways to institute a powerful governing body that enables more efficient DRRM with administrative and financial power. The hope is that by instituting a governing system that can thoroughly lead all phases of preparedness, mitigation, response, and recovery, the country can withstand future—and likely more frequent—mega-disasters.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132287892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-25DOI: 10.1093/ACREFORE/9780199389407.013.312
K. Oven
Natural hazards in Nepal have traditionally been managed on an ad hoc basis as and when they occur, with individuals and communities largely responsible for their own risk management. More recently, however, there has been a shift from response to disaster preparedness and risk reduction, in line with the United Nations Hyogo Framework for Action and the more recent Sendai Framework for Disaster Risk Reduction (DRR). Like many developing countries, Nepal has received significant financial and technical support to implement DRR programs from the national to the community levels. While this has provided a much-needed incentive for action in this post-conflict, transitional state, it has also created a complex governance landscape involving a multitude of government and non-government stakeholders. Heavily influenced by the neoliberal development agenda, and in the absence of an up-to-date disaster management act, DRR programs focused largely on institution-building and technical interventions, for example, the establishment of disaster management committees, the retrofitting of schools and hospitals, and the development of flood early warning systems. Such interventions are highly technocratic and have been critiqued for failing to address the root causes of disasters, in particular, the systemic poverty, social inequality and marginalization that characterizes Nepal. Nepal is also undergoing a complex political transition, which has seen the ratification of a new constitution, federal restructuring, and local elections for the first time in 20 years, as well as the passing of the new Disaster Risk Reduction and Management Act 2017. There is much scope for optimism but successful risk reduction moving forward will require commitment and action at all levels of the governance hierarchy, and a wider commitment to address the social injustice that continues to prevail.
{"title":"Natural Hazards Governance in Nepal","authors":"K. Oven","doi":"10.1093/ACREFORE/9780199389407.013.312","DOIUrl":"https://doi.org/10.1093/ACREFORE/9780199389407.013.312","url":null,"abstract":"Natural hazards in Nepal have traditionally been managed on an ad hoc basis as and when they occur, with individuals and communities largely responsible for their own risk management. More recently, however, there has been a shift from response to disaster preparedness and risk reduction, in line with the United Nations Hyogo Framework for Action and the more recent Sendai Framework for Disaster Risk Reduction (DRR). Like many developing countries, Nepal has received significant financial and technical support to implement DRR programs from the national to the community levels. While this has provided a much-needed incentive for action in this post-conflict, transitional state, it has also created a complex governance landscape involving a multitude of government and non-government stakeholders. Heavily influenced by the neoliberal development agenda, and in the absence of an up-to-date disaster management act, DRR programs focused largely on institution-building and technical interventions, for example, the establishment of disaster management committees, the retrofitting of schools and hospitals, and the development of flood early warning systems. Such interventions are highly technocratic and have been critiqued for failing to address the root causes of disasters, in particular, the systemic poverty, social inequality and marginalization that characterizes Nepal. Nepal is also undergoing a complex political transition, which has seen the ratification of a new constitution, federal restructuring, and local elections for the first time in 20 years, as well as the passing of the new Disaster Risk Reduction and Management Act 2017. There is much scope for optimism but successful risk reduction moving forward will require commitment and action at all levels of the governance hierarchy, and a wider commitment to address the social injustice that continues to prevail.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125814762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-25DOI: 10.1093/ACREFORE/9780199389407.013.20
A. Elnashai, H. Mahmoud
With current rapid growth of cities and the move toward the development of both sustainable and resilient infrastructure systems, it is vital for the structural engineering community to continue to improve their knowledge in earthquake engineering to limit infrastructure damage and the associated social and economic impacts. Historically, the development of such knowledge has been accomplished through the deployment of analytical simulations and experimental testing. Experimental testing is considered the most accurate tool by which local behavior of components or global response of systems can be assessed, assuming the test setup is realistically configured and the experiment is effectively executed. However, issues of scale, equipment capacity, and availability of research funding continue to hinder full-scale testing of complete structures. On the other hand, analytical simulation software is limited to solving specific type of problems and in many cases fail to capture complex behaviors, failure modes, and collapse of structural systems. Hybrid simulation has emerged as a potentially accurate and efficient tool for the evaluation of the response of large and complex structures under earthquake loading. In hybrid (experiment-analysis) simulation, part of a structural system is experimentally represented while the rest of the structure is numerically modeled. Typically, the most critical component is physically represented. By combining a physical specimen and a numerical model, the system-level behavior can be better quantified than modeling the entire system purely analytically or testing only a component. This article discusses the use of hybrid simulation as an effective tool for the seismic evaluation of structures. First, a chronicled development of hybrid simulation is presented with an overview of some of the previously conducted studies. Second, an overview of a hybrid simulation environment is provided. Finally, a hybrid simulation application example on the response of steel frames with semi-rigid connections under earthquake excitations is presented. The simulations included a full-scale physical specimen for the experimental module of a connection, and a 2D finite element model for the analytical module. It is demonstrated that hybrid simulation is a powerful tool for advanced assessment when used with appropriate analytical and experimental realizations of the components and that semi-rigid frames are a viable option in earthquake engineering applications.
{"title":"Assessment of Earthquake Performance of Structures by Hybrid Simulation","authors":"A. Elnashai, H. Mahmoud","doi":"10.1093/ACREFORE/9780199389407.013.20","DOIUrl":"https://doi.org/10.1093/ACREFORE/9780199389407.013.20","url":null,"abstract":"With current rapid growth of cities and the move toward the development of both sustainable and resilient infrastructure systems, it is vital for the structural engineering community to continue to improve their knowledge in earthquake engineering to limit infrastructure damage and the associated social and economic impacts. Historically, the development of such knowledge has been accomplished through the deployment of analytical simulations and experimental testing. Experimental testing is considered the most accurate tool by which local behavior of components or global response of systems can be assessed, assuming the test setup is realistically configured and the experiment is effectively executed. However, issues of scale, equipment capacity, and availability of research funding continue to hinder full-scale testing of complete structures. On the other hand, analytical simulation software is limited to solving specific type of problems and in many cases fail to capture complex behaviors, failure modes, and collapse of structural systems. Hybrid simulation has emerged as a potentially accurate and efficient tool for the evaluation of the response of large and complex structures under earthquake loading. In hybrid (experiment-analysis) simulation, part of a structural system is experimentally represented while the rest of the structure is numerically modeled. Typically, the most critical component is physically represented. By combining a physical specimen and a numerical model, the system-level behavior can be better quantified than modeling the entire system purely analytically or testing only a component. This article discusses the use of hybrid simulation as an effective tool for the seismic evaluation of structures. First, a chronicled development of hybrid simulation is presented with an overview of some of the previously conducted studies. Second, an overview of a hybrid simulation environment is provided. Finally, a hybrid simulation application example on the response of steel frames with semi-rigid connections under earthquake excitations is presented. The simulations included a full-scale physical specimen for the experimental module of a connection, and a 2D finite element model for the analytical module. It is demonstrated that hybrid simulation is a powerful tool for advanced assessment when used with appropriate analytical and experimental realizations of the components and that semi-rigid frames are a viable option in earthquake engineering applications.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"44 7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127126969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-25DOI: 10.1093/ACREFORE/9780199389407.013.135
P. Roberts
Natural hazards have evolved from being the responsibility of subnational governments—if the government intervened all—to become a core function of national governments. The cost of disaster losses has increased over time in states with developed economies, even as fewer lives are lost. Increasing losses are caused by an increasing number of extreme weather events, which wreak havoc on urbanizing populations that build expensive structures in vulnerable locations. Hazards governance attempts to use political and organizational tools to mitigate or prevent damage and bounce back when disasters occur. In large and developed states, authority for hazards governance is fragmented across levels of government, as well as the private sector, which controls much of the infrastructure and property that is subject to losses. The political consequences of disaster losses are mixed and depend on contextual factors: sometimes politicians, government agencies, and nonprofit and voluntary organizations are blamed for failures on their watch, and sometimes they are rewarded for coming to the rescue. The study of disasters has become more interdisciplinary over time as scholars seek to integrate the study of natural hazards with socio-political systems. The future of hazards governance research lies in improving understanding of how to manage multiple, overlapping risks over a period of time beyond next election cycle, and across levels of government and the private sector.
{"title":"Natural Hazards Governance in Democratic States With Developed Economies","authors":"P. Roberts","doi":"10.1093/ACREFORE/9780199389407.013.135","DOIUrl":"https://doi.org/10.1093/ACREFORE/9780199389407.013.135","url":null,"abstract":"Natural hazards have evolved from being the responsibility of subnational governments—if the government intervened all—to become a core function of national governments. The cost of disaster losses has increased over time in states with developed economies, even as fewer lives are lost. Increasing losses are caused by an increasing number of extreme weather events, which wreak havoc on urbanizing populations that build expensive structures in vulnerable locations. Hazards governance attempts to use political and organizational tools to mitigate or prevent damage and bounce back when disasters occur. In large and developed states, authority for hazards governance is fragmented across levels of government, as well as the private sector, which controls much of the infrastructure and property that is subject to losses.\u0000 The political consequences of disaster losses are mixed and depend on contextual factors: sometimes politicians, government agencies, and nonprofit and voluntary organizations are blamed for failures on their watch, and sometimes they are rewarded for coming to the rescue. The study of disasters has become more interdisciplinary over time as scholars seek to integrate the study of natural hazards with socio-political systems. The future of hazards governance research lies in improving understanding of how to manage multiple, overlapping risks over a period of time beyond next election cycle, and across levels of government and the private sector.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127597017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-20DOI: 10.1093/ACREFORE/9780199389407.013.323
Olivier Rubin
Natural hazards have repercussions that reverberate to the political level. Their adverse socio-economic impacts could undermine political support from key fractions in society. Governments, aware of this, have incentives to ease the adverse social impacts of natural hazards. However, the channels of impact from natural hazards to voter and government behavior are complex, indirect, and nonlinear. More than their immediate impact, therefore, major natural hazards contain important symbolic and mythological power that can sway public opinion and influence disaster policies for years to come.
{"title":"Natural Hazards and Voting Behavior","authors":"Olivier Rubin","doi":"10.1093/ACREFORE/9780199389407.013.323","DOIUrl":"https://doi.org/10.1093/ACREFORE/9780199389407.013.323","url":null,"abstract":"Natural hazards have repercussions that reverberate to the political level. Their adverse socio-economic impacts could undermine political support from key fractions in society. Governments, aware of this, have incentives to ease the adverse social impacts of natural hazards. However, the channels of impact from natural hazards to voter and government behavior are complex, indirect, and nonlinear. More than their immediate impact, therefore, major natural hazards contain important symbolic and mythological power that can sway public opinion and influence disaster policies for years to come.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128841289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-20DOI: 10.1093/ACREFORE/9780199389407.013.315
E. Oughton
Space weather is a collective term for different solar or space phenomena that can detrimentally affect technology. However, current understanding of space weather hazards is still relatively embryonic in comparison to terrestrial natural hazards such as hurricanes, earthquakes, or tsunamis. Indeed, certain types of space weather such as large Coronal Mass Ejections (CMEs) are an archetypal example of a low-probability, high-severity hazard. Few major events, short time-series data, and the lack of consensus regarding the potential impacts on critical infrastructure have hampered the economic impact assessment of space weather. Yet, space weather has the potential to disrupt a wide range of Critical National Infrastructure (CNI) systems including electricity transmission, satellite communications and positioning, aviation, and rail transportation. In the early 21st century, there has been growing interest in these potential economic and societal impacts. Estimates range from millions of dollars of equipment damage from the Quebec 1989 event, to some analysts asserting that losses will be in the billions of dollars in the wider economy from potential future disaster scenarios. Hence, the origin and development of the socioeconomic evaluation of space weather is tracked, from 1989 to 2017, and future research directions for the field are articulated. Since 1989, many economic analyzes of space weather hazards have often completely overlooked the physical impacts on infrastructure assets and the topology of different infrastructure networks. Moreover, too many studies have relied on qualitative assumptions about the vulnerability of CNI. By modeling both the vulnerability of critical infrastructure and the socioeconomic impacts of failure, the total potential impacts of space weather can be estimated, providing vital information for decision makers in government and industry. Efforts on this subject have historically been relatively piecemeal, which has led to little exploration of model sensitivities, particularly in relation to different assumption sets about infrastructure failure and restoration. Improvements may be expedited in this research area by open-sourcing model code, increasing the existing level of data sharing, and improving multidisciplinary research collaborations between scientists, engineers, and economists.
{"title":"The Economic Impact of Critical National Infrastructure Failure Due to Space Weather","authors":"E. Oughton","doi":"10.1093/ACREFORE/9780199389407.013.315","DOIUrl":"https://doi.org/10.1093/ACREFORE/9780199389407.013.315","url":null,"abstract":"Space weather is a collective term for different solar or space phenomena that can detrimentally affect technology. However, current understanding of space weather hazards is still relatively embryonic in comparison to terrestrial natural hazards such as hurricanes, earthquakes, or tsunamis. Indeed, certain types of space weather such as large Coronal Mass Ejections (CMEs) are an archetypal example of a low-probability, high-severity hazard. Few major events, short time-series data, and the lack of consensus regarding the potential impacts on critical infrastructure have hampered the economic impact assessment of space weather. Yet, space weather has the potential to disrupt a wide range of Critical National Infrastructure (CNI) systems including electricity transmission, satellite communications and positioning, aviation, and rail transportation.\u0000 In the early 21st century, there has been growing interest in these potential economic and societal impacts. Estimates range from millions of dollars of equipment damage from the Quebec 1989 event, to some analysts asserting that losses will be in the billions of dollars in the wider economy from potential future disaster scenarios. Hence, the origin and development of the socioeconomic evaluation of space weather is tracked, from 1989 to 2017, and future research directions for the field are articulated. Since 1989, many economic analyzes of space weather hazards have often completely overlooked the physical impacts on infrastructure assets and the topology of different infrastructure networks. Moreover, too many studies have relied on qualitative assumptions about the vulnerability of CNI. By modeling both the vulnerability of critical infrastructure and the socioeconomic impacts of failure, the total potential impacts of space weather can be estimated, providing vital information for decision makers in government and industry.\u0000 Efforts on this subject have historically been relatively piecemeal, which has led to little exploration of model sensitivities, particularly in relation to different assumption sets about infrastructure failure and restoration. Improvements may be expedited in this research area by open-sourcing model code, increasing the existing level of data sharing, and improving multidisciplinary research collaborations between scientists, engineers, and economists.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129682538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-10-24DOI: 10.1093/ACREFORE/9780199389407.013.246
D. Niekerk, Gideon J. Wentink, L. Shoroma
Disaster and natural hazard governance has become a significant policy and legislative focus in South Africa since the early 1990s. Born out of necessity from a dysfunctional apartheid system, the new emphasis on disaster risk reduction in the democratic dispensation also ushered in a new era in the management of natural hazards and their associated risks and vulnerabilities. Widely cited as an international best practice in policy and law development, South Africa has led the way in natural hazard governance in sub-Sahara Africa as well as in much of the developing world. Various practices in natural hazard governance in South Africa are alluded to. Particular attention is given to the disaster risks of the country as well as to the various natural hazards that drive this risk profile. Statutory and legislative aspects are discussed through a multisectoral approach, and by citing a number of case studies, we show the application of natural hazard governance in South Africa. Certain remaining challenges are highlighted that are faced by the South Africa government such as a lack of political will at the local government level, deficits in risk governance, difficulties in resource allocation, a lack of intergovernmental relations, and a need for enhanced community participation, ownership, and decision making.
{"title":"Natural Hazards Governance in South Africa","authors":"D. Niekerk, Gideon J. Wentink, L. Shoroma","doi":"10.1093/ACREFORE/9780199389407.013.246","DOIUrl":"https://doi.org/10.1093/ACREFORE/9780199389407.013.246","url":null,"abstract":"Disaster and natural hazard governance has become a significant policy and legislative focus in South Africa since the early 1990s. Born out of necessity from a dysfunctional apartheid system, the new emphasis on disaster risk reduction in the democratic dispensation also ushered in a new era in the management of natural hazards and their associated risks and vulnerabilities. Widely cited as an international best practice in policy and law development, South Africa has led the way in natural hazard governance in sub-Sahara Africa as well as in much of the developing world. Various practices in natural hazard governance in South Africa are alluded to. Particular attention is given to the disaster risks of the country as well as to the various natural hazards that drive this risk profile. Statutory and legislative aspects are discussed through a multisectoral approach, and by citing a number of case studies, we show the application of natural hazard governance in South Africa. Certain remaining challenges are highlighted that are faced by the South Africa government such as a lack of political will at the local government level, deficits in risk governance, difficulties in resource allocation, a lack of intergovernmental relations, and a need for enhanced community participation, ownership, and decision making.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134538924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-26DOI: 10.1093/ACREFORE/9780199389407.013.322
M. Keiler, S. Fuchs
European mountain regions are diverse, from gently rolling hills to high mountain areas, and from low populated rural areas to urban regions or from communities dependent on agricultural productions to hubs of tourist industry. Communities in European mountain regions are threatened by different hazard types: for example floods, landslides, or glacial hazards, mostly in a multi-hazard environment. Due to climate change and socioeconomic developments they are challenged by emerging and spatially as well as temporally highly dynamic risks. Consequently, over decades societies in European mountain ranges developed different hazard and risk management strategies on a national to local level, which are presented below focusing on the European Alps. Until the late 19th century, the paradigm of hazard protection was related to engineering measures, mostly implemented in the catchments, and new authorities responsible for mitigation were founded. From the 19th century, more integrative strategies became prominent, becoming manifest in the 1960s with land-use management strategies targeted at a separation of hazardous areas and areas used for settlement and economic purpose. In research and in the application, the concept of hazard mitigation was step by step replaced by the concept of risk. The concept of risk includes three components (or drivers), apart from hazard analysis also the assessment and evaluation of exposure and vulnerability; thus, it addresses in the management of risk reduction all three components. These three drivers are all dynamic, while the concept of risk itself is thus far a static approach. The dynamic of risk drivers is a result of both climate change and socioeconomic change, leading through different combinations either to an increase or a decrease in risk. Consequently, natural hazard and risk management, defined since the 21st century using the complexity paradigm, should acknowledge such dynamics. Moreover, researchers from different disciplines as well as practitioners have to meet the challenges of sustainable development in the European mountains. Thus, they should consider the effects of dynamics in risk drivers (e.g., increasing exposure, increasing vulnerability, changes in magnitude, and frequency of hazard events), and possible effects on development areas. These challenges, furthermore, can be better met in the future by concepts of risk governance, including but not limited to improved land management strategies and adaptive risk management.
{"title":"Challenges for Natural Hazard and Risk Management in Mountain Regions of Europe","authors":"M. Keiler, S. Fuchs","doi":"10.1093/ACREFORE/9780199389407.013.322","DOIUrl":"https://doi.org/10.1093/ACREFORE/9780199389407.013.322","url":null,"abstract":"European mountain regions are diverse, from gently rolling hills to high mountain areas, and from low populated rural areas to urban regions or from communities dependent on agricultural productions to hubs of tourist industry. Communities in European mountain regions are threatened by different hazard types: for example floods, landslides, or glacial hazards, mostly in a multi-hazard environment. Due to climate change and socioeconomic developments they are challenged by emerging and spatially as well as temporally highly dynamic risks. Consequently, over decades societies in European mountain ranges developed different hazard and risk management strategies on a national to local level, which are presented below focusing on the European Alps.\u0000 Until the late 19th century, the paradigm of hazard protection was related to engineering measures, mostly implemented in the catchments, and new authorities responsible for mitigation were founded. From the 19th century, more integrative strategies became prominent, becoming manifest in the 1960s with land-use management strategies targeted at a separation of hazardous areas and areas used for settlement and economic purpose. In research and in the application, the concept of hazard mitigation was step by step replaced by the concept of risk. The concept of risk includes three components (or drivers), apart from hazard analysis also the assessment and evaluation of exposure and vulnerability; thus, it addresses in the management of risk reduction all three components. These three drivers are all dynamic, while the concept of risk itself is thus far a static approach. The dynamic of risk drivers is a result of both climate change and socioeconomic change, leading through different combinations either to an increase or a decrease in risk. Consequently, natural hazard and risk management, defined since the 21st century using the complexity paradigm, should acknowledge such dynamics. Moreover, researchers from different disciplines as well as practitioners have to meet the challenges of sustainable development in the European mountains. Thus, they should consider the effects of dynamics in risk drivers (e.g., increasing exposure, increasing vulnerability, changes in magnitude, and frequency of hazard events), and possible effects on development areas. These challenges, furthermore, can be better met in the future by concepts of risk governance, including but not limited to improved land management strategies and adaptive risk management.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121621346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-26DOI: 10.1093/ACREFORE/9780199389407.013.242
J. Lindsay
The responsibility for hazard governance in Canada is indirectly determined by the division of subjects in the Constitution Act of 1867. This is because emergency management is not a distinct constitutional subject, and therefore it is a matter of assessing which subjects are most related to the practices of emergency management. As a result of this uncertainty both the provincial and federal governments have emergency management legislation. The various provincial legislation and the federal Emergencies Act of 1988 are primarily focused on providing for the use of extraordinary powers as part of crisis response. The federal Emergency Management Act 2008 does take a more comprehensive approach that includes hazard mitigation, but its reach only extends to federal departments. The governance tools most applicable to hazard management, such as land-use planning and zoning, are normally found within the Provinces’ planning or municipal legislation. The planning legislation empowers local authorities to manage development and its interaction with the natural environment. However, these powers are seldom directed towards hazard mitigation. If there is a reference to natural hazards in the planning legislation it is usually to specific risks, such as flooding or slope failure, that are spatially bounded risks to development. This separation of hazard governance in the legislation is reflected in local government practices. In most provinces emergency managers are not required by their respective legislation to incorporate hazard mitigation into community emergency programs. The planning legislation, however, seldom extends the community planner’s mandate for mitigation beyond the concerns for safe building sites and the separation of incompatible land uses. The responsibility to prevent human development from interacting with the extremes of the natural environment, or more succinctly “hazard governance,” is not clearly assigned in Canada.
{"title":"Natural Hazards Governance in Canada","authors":"J. Lindsay","doi":"10.1093/ACREFORE/9780199389407.013.242","DOIUrl":"https://doi.org/10.1093/ACREFORE/9780199389407.013.242","url":null,"abstract":"The responsibility for hazard governance in Canada is indirectly determined by the division of subjects in the Constitution Act of 1867. This is because emergency management is not a distinct constitutional subject, and therefore it is a matter of assessing which subjects are most related to the practices of emergency management. As a result of this uncertainty both the provincial and federal governments have emergency management legislation. The various provincial legislation and the federal Emergencies Act of 1988 are primarily focused on providing for the use of extraordinary powers as part of crisis response. The federal Emergency Management Act 2008 does take a more comprehensive approach that includes hazard mitigation, but its reach only extends to federal departments.\u0000 The governance tools most applicable to hazard management, such as land-use planning and zoning, are normally found within the Provinces’ planning or municipal legislation. The planning legislation empowers local authorities to manage development and its interaction with the natural environment. However, these powers are seldom directed towards hazard mitigation. If there is a reference to natural hazards in the planning legislation it is usually to specific risks, such as flooding or slope failure, that are spatially bounded risks to development.\u0000 This separation of hazard governance in the legislation is reflected in local government practices. In most provinces emergency managers are not required by their respective legislation to incorporate hazard mitigation into community emergency programs. The planning legislation, however, seldom extends the community planner’s mandate for mitigation beyond the concerns for safe building sites and the separation of incompatible land uses. The responsibility to prevent human development from interacting with the extremes of the natural environment, or more succinctly “hazard governance,” is not clearly assigned in Canada.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122249092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}