Pub Date : 2019-03-26DOI: 10.1093/ACREFORE/9780199389407.013.316
A. Rahman, Shakeel Mahmood, Mohammad H. Dawood, G. Rahman, Fang Chen
This chapter analyzes the impacts of climate change on flood factors and extent of associated damages in the Hindu Kush (HK) region. HK mountains system is located in the west of the Himalayas and Karakorum. It is the greatest watershed of the River Kabul, River Chitral, River Panjkora, and River Swat in the eastern Hindu Kush and River Amu in western Hindu Kush. The Hindu Kush system hosts numerous glaciers, snow-clad mountains, and fertile river valleys; it also supports large populations and provides year-round water to recharge streams and rivers. The study region is vulnerable to a wide range of hazards including floods, earthquakes, landslides, desertification, and drought. Flash floods and riverine floods are the deadliest extreme hydro-meteorological events. The upper reaches experience characteristics of flash flooding, whereas the lower reach is where river floods occur. Flash floods are more destructive and sudden. Almost every year in summer, monsoonal rainfall and high temperature join hands with heavy melting of glaciers and snow accelerating discharge in the river system. In the face of climate change, a significant correlation between rainfall patterns, trends in temperature, and resultant peaks in river discharge have been recorded. A rising trend was found in temperature, which leads to early and rapid melting of glaciers and snow in the headwater region. The analysis reveals that during the past three decades, radical changes in the behavior of numerous valley glaciers have been noted. In addition, the spatial and temporal scales of violent weather events have been growing, since the 1980s. Such changes in water regimes including the frequent but substantial increase in heavy precipitation events and rapid melting of snow in the headwater region, siltation in active channels, excessive deforestation, and human encroachments onto the active flood channel have further escalated the flooding events. The HK region is beyond the reach of existing weather RADAR network, and hence forecasting and early warning is ineffective. Here, almost every year, the floods cause damages to infrastructure, scarce farmland, and sources of livelihood.
{"title":"Impact of Climate Change on Flood Factors and Extent of Damages in the Hindu Kush Region","authors":"A. Rahman, Shakeel Mahmood, Mohammad H. Dawood, G. Rahman, Fang Chen","doi":"10.1093/ACREFORE/9780199389407.013.316","DOIUrl":"https://doi.org/10.1093/ACREFORE/9780199389407.013.316","url":null,"abstract":"This chapter analyzes the impacts of climate change on flood factors and extent of associated damages in the Hindu Kush (HK) region. HK mountains system is located in the west of the Himalayas and Karakorum. It is the greatest watershed of the River Kabul, River Chitral, River Panjkora, and River Swat in the eastern Hindu Kush and River Amu in western Hindu Kush. The Hindu Kush system hosts numerous glaciers, snow-clad mountains, and fertile river valleys; it also supports large populations and provides year-round water to recharge streams and rivers. The study region is vulnerable to a wide range of hazards including floods, earthquakes, landslides, desertification, and drought. Flash floods and riverine floods are the deadliest extreme hydro-meteorological events. The upper reaches experience characteristics of flash flooding, whereas the lower reach is where river floods occur. Flash floods are more destructive and sudden. Almost every year in summer, monsoonal rainfall and high temperature join hands with heavy melting of glaciers and snow accelerating discharge in the river system. In the face of climate change, a significant correlation between rainfall patterns, trends in temperature, and resultant peaks in river discharge have been recorded. A rising trend was found in temperature, which leads to early and rapid melting of glaciers and snow in the headwater region. The analysis reveals that during the past three decades, radical changes in the behavior of numerous valley glaciers have been noted. In addition, the spatial and temporal scales of violent weather events have been growing, since the 1980s. Such changes in water regimes including the frequent but substantial increase in heavy precipitation events and rapid melting of snow in the headwater region, siltation in active channels, excessive deforestation, and human encroachments onto the active flood channel have further escalated the flooding events. The HK region is beyond the reach of existing weather RADAR network, and hence forecasting and early warning is ineffective. Here, almost every year, the floods cause damages to infrastructure, scarce farmland, and sources of livelihood.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128768466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-26DOI: 10.1093/ACREFORE/9780199389407.013.310
S. Ali, A. Khan, Hamna Shakeel
Climate change is one of the greatest threats to the security of water, food, and energy in Pakistan. Pakistan has seen increased visibility of direct and indirect impacts of climate change since the early 1990s. Pakistan’s government achieved a milestone in 2012 when the first National Climate Change Policy (NCCP) was proposed. In response to dynamic climate trends, it provided a broad set of adaptation measures for vulnerable sectors such as power, food, water, and health. In 2014, a more precise follow-up framework was developed which proposed strategies to achieve the objectives of the NCCP. The government is also cooperating with national and international organizations and societies to make vulnerable sectors and local communities resilient against water shortages, flash floods, cyclones, and temperature extremes. Analysis of the existing state of adaptation actions and systems exposes several deficiencies. There is a huge knowledge gap between researchers and policymakers which needs to be bridged. Stakeholders, local communities, and experts from relevant fields need to be involved in the process of policy making for the development of a comprehensive adaptation plan. Educational and research institutes in Pakistan are deficient in expertise and modern tools and technologies for predicting future climatic trends and the risks they pose to various sectors of the country. Lack of awareness in the general public, related to climate change and associated risks, is also an obstacle in developing climate-resilient communities. The government of Pakistan is giving due importance to the development of policies and capacity building of relevant implementing departments and research institutes. However, there is still a need for a strong enforcement body at the national, provincial, and municipal levels to successfully implement government strategies.
{"title":"Climate Adaptation Governance in Pakistan","authors":"S. Ali, A. Khan, Hamna Shakeel","doi":"10.1093/ACREFORE/9780199389407.013.310","DOIUrl":"https://doi.org/10.1093/ACREFORE/9780199389407.013.310","url":null,"abstract":"Climate change is one of the greatest threats to the security of water, food, and energy in Pakistan. Pakistan has seen increased visibility of direct and indirect impacts of climate change since the early 1990s. Pakistan’s government achieved a milestone in 2012 when the first National Climate Change Policy (NCCP) was proposed. In response to dynamic climate trends, it provided a broad set of adaptation measures for vulnerable sectors such as power, food, water, and health. In 2014, a more precise follow-up framework was developed which proposed strategies to achieve the objectives of the NCCP. The government is also cooperating with national and international organizations and societies to make vulnerable sectors and local communities resilient against water shortages, flash floods, cyclones, and temperature extremes. Analysis of the existing state of adaptation actions and systems exposes several deficiencies. There is a huge knowledge gap between researchers and policymakers which needs to be bridged. Stakeholders, local communities, and experts from relevant fields need to be involved in the process of policy making for the development of a comprehensive adaptation plan. Educational and research institutes in Pakistan are deficient in expertise and modern tools and technologies for predicting future climatic trends and the risks they pose to various sectors of the country. Lack of awareness in the general public, related to climate change and associated risks, is also an obstacle in developing climate-resilient communities. The government of Pakistan is giving due importance to the development of policies and capacity building of relevant implementing departments and research institutes. However, there is still a need for a strong enforcement body at the national, provincial, and municipal levels to successfully implement government strategies.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134355943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-25DOI: 10.1093/acrefore/9780199389407.013.231
M. Bhatt, Kelsey M Gleason, R. Patel
South Asia is faced with a range of natural hazards, including floods, droughts, cyclones, earthquakes, landslides, and tsunamis. Rapid and unplanned urbanization, environmental degradation, climate change, and socioeconomic conditions are increasing citizens’ exposure to and risk from natural hazards and resulting in more frequent, intense, and costly disasters. Although governments and the international community are investing in disaster risk reduction, natural hazard governance in South Asian countries remain weak and often warrants a review when a major natural disaster strikes. Natural hazards governance is an emerging concept, and many countries in South Asia have a challenging hazard governance context.
{"title":"Natural Hazards Governance in South Asia","authors":"M. Bhatt, Kelsey M Gleason, R. Patel","doi":"10.1093/acrefore/9780199389407.013.231","DOIUrl":"https://doi.org/10.1093/acrefore/9780199389407.013.231","url":null,"abstract":"South Asia is faced with a range of natural hazards, including floods, droughts, cyclones, earthquakes, landslides, and tsunamis. Rapid and unplanned urbanization, environmental degradation, climate change, and socioeconomic conditions are increasing citizens’ exposure to and risk from natural hazards and resulting in more frequent, intense, and costly disasters. Although governments and the international community are investing in disaster risk reduction, natural hazard governance in South Asian countries remain weak and often warrants a review when a major natural disaster strikes. Natural hazards governance is an emerging concept, and many countries in South Asia have a challenging hazard governance context.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"115 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122560728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-25DOI: 10.1093/ACREFORE/9780199389407.013.236
S. Onu
Nigeria, like many other countries in sub–Saharan Africa, is exposed to natural hazards and disaster events, the most prominent being soil and coastal erosion, flooding, desertification, drought, air pollution as a result of gas flaring, heat waves, deforestation, and soil degradation due to oil spillage. These events have caused serious disasters across the country. In the southeast region, flooding and gully erosion have led to the displacement of communities. In the Niger Delta region, oil exploration has destroyed the mangrove forests as well as the natural habitat for fishes and other aquatic species and flora. In northern Nigeria, desert encroachment, deforestation, and drought have adversely affected agricultural production, thereby threatening national food security. The federal government, through its agencies, has produced and adopted policies and enacted laws and regulations geared toward containing the disastrous effects of natural hazards on the environment. The federal government collaborates with international organizations, such as the World Bank, International Atomic Energy Agency (IAEA), International Fund for Agricultural Development (IFAD), Center for Infectious Disease Research (CIDR), United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP), United Nations High Commission for Refugees UNHCR, and non-governmental organizations (NGOs), to address disaster-related problems induced by natural hazards. However, government efforts have not yielded the desired results due to interagency conflicts, corruption, low political will, and lack of manpower capacity for disaster management. There is a need for a good governance system for natural hazards prevention and reduction in the country. This will require inter-agency synergy, increased funding of agencies, capacity building, and public awareness/participation.
{"title":"Natural Hazards Governance in Nigeria","authors":"S. Onu","doi":"10.1093/ACREFORE/9780199389407.013.236","DOIUrl":"https://doi.org/10.1093/ACREFORE/9780199389407.013.236","url":null,"abstract":"Nigeria, like many other countries in sub–Saharan Africa, is exposed to natural hazards and disaster events, the most prominent being soil and coastal erosion, flooding, desertification, drought, air pollution as a result of gas flaring, heat waves, deforestation, and soil degradation due to oil spillage. These events have caused serious disasters across the country. In the southeast region, flooding and gully erosion have led to the displacement of communities. In the Niger Delta region, oil exploration has destroyed the mangrove forests as well as the natural habitat for fishes and other aquatic species and flora. In northern Nigeria, desert encroachment, deforestation, and drought have adversely affected agricultural production, thereby threatening national food security.\u0000 The federal government, through its agencies, has produced and adopted policies and enacted laws and regulations geared toward containing the disastrous effects of natural hazards on the environment. The federal government collaborates with international organizations, such as the World Bank, International Atomic Energy Agency (IAEA), International Fund for Agricultural Development (IFAD), Center for Infectious Disease Research (CIDR), United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP), United Nations High Commission for Refugees UNHCR, and non-governmental organizations (NGOs), to address disaster-related problems induced by natural hazards.\u0000 However, government efforts have not yielded the desired results due to interagency conflicts, corruption, low political will, and lack of manpower capacity for disaster management.\u0000 There is a need for a good governance system for natural hazards prevention and reduction in the country. This will require inter-agency synergy, increased funding of agencies, capacity building, and public awareness/participation.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127463501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-25DOI: 10.1093/acrefore/9780199389407.013.320
A. Murgatroyd, S. Dadson
Flooding is a natural hazard with the potential to cause damage at the local, national, and global scale. Flooding is a natural product of heavy precipitation and increased runoff. It may also arise from elevated groundwater tables, coastal inundation, or failed drainage systems. Flooded areas can be identified as land beyond the channel network covered by water. Although flooding can cause significant damage to urban developments and infrastructure, it may be beneficial to the natural environment. Preemptive actions may be taken to protect communities at risk of inundation that are not able to relocate to an area not at risk of flooding. Adaptation measures include flood defenses, river channel modification, relocation, and active warning systems. Natural flood management (NFM) interventions are designed to restore, emulate, or enhance catchment processes. Such interventions are common in upper reaches of the river and in areas previously transformed by agriculture and urban development. Natural techniques can be categorized into three groups: water retention through management of infiltration and overland flow, managing channel connectivity and conveyance, and floodplain conveyance and storage. NFM may alter land use, improve land management, repair river channel morphology, enhance the riparian habitat, enrich floodplain vegetation, or alter land drainage. The range of natural flood management options allows a diverse range of flood hazards to be considered. As a consequence, there is an abundance of NFM case studies from contrasting environments around the globe, each addressing a particular set of flood risks. Much of the research supporting the use of NFM highlights both the benefits and costs of working with natural processes to reduce flood hazards in the landscape. However, there is a lack of quantitative evidence of the effectiveness of measures, both individually and in combination, especially at the largest scales and for extreme floods. Most evidence is based on modeling studies and observations often relate to a specific set of upstream measures that are challenging to apply elsewhere.
{"title":"Natural Flood Risk Management","authors":"A. Murgatroyd, S. Dadson","doi":"10.1093/acrefore/9780199389407.013.320","DOIUrl":"https://doi.org/10.1093/acrefore/9780199389407.013.320","url":null,"abstract":"Flooding is a natural hazard with the potential to cause damage at the local, national, and global scale. Flooding is a natural product of heavy precipitation and increased runoff. It may also arise from elevated groundwater tables, coastal inundation, or failed drainage systems. Flooded areas can be identified as land beyond the channel network covered by water. Although flooding can cause significant damage to urban developments and infrastructure, it may be beneficial to the natural environment. Preemptive actions may be taken to protect communities at risk of inundation that are not able to relocate to an area not at risk of flooding. Adaptation measures include flood defenses, river channel modification, relocation, and active warning systems. Natural flood management (NFM) interventions are designed to restore, emulate, or enhance catchment processes. Such interventions are common in upper reaches of the river and in areas previously transformed by agriculture and urban development. Natural techniques can be categorized into three groups: water retention through management of infiltration and overland flow, managing channel connectivity and conveyance, and floodplain conveyance and storage. NFM may alter land use, improve land management, repair river channel morphology, enhance the riparian habitat, enrich floodplain vegetation, or alter land drainage. The range of natural flood management options allows a diverse range of flood hazards to be considered. As a consequence, there is an abundance of NFM case studies from contrasting environments around the globe, each addressing a particular set of flood risks. Much of the research supporting the use of NFM highlights both the benefits and costs of working with natural processes to reduce flood hazards in the landscape. However, there is a lack of quantitative evidence of the effectiveness of measures, both individually and in combination, especially at the largest scales and for extreme floods. Most evidence is based on modeling studies and observations often relate to a specific set of upstream measures that are challenging to apply elsewhere.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124050850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-25DOI: 10.1093/ACREFORE/9780199389407.013.286
Alka Sapat
In an increasingly interconnected world, the impacts of disasters and subsequent disaster relief and response operations are often no longer confined to directly affected communities, regions, or countries. Traditional geographical, sectoral, and policy-related boundaries are progressively becoming more blurred, and increasingly, there are more transboundary disasters—disasters that cross geographical, political, and functional boundaries and that affect multiple policy domains. Examples of transboundary disasters include the 2004 and 2011 tsunamis, the Fukushima nuclear disaster, the 2010 Haiti earthquake, and the Ebola outbreak. Responses to transboundary disasters typically require the concerted efforts of various governments, intergovernmental organizations, private entities, and nongovernmental organizations (NGOs) working together. Although NGOs have been key responders, not enough attention has been paid to their role amid the constellation of various actors responding to transboundary disasters. There are many different types of NGOs, including those that have been less visible, such as diaspora NGOs, that aid in transboundary disasters. NGO assistance in transboundary disasters assumes various forms, ranging from disaster relief in the form of medical assistance, food, water, and supplies to aid affected populations for rebuilding and reconstruction in disaster-affected areas. NGOs also play a critical role in responding to transboundary disasters by aiding displaced populations in host communities and providing an array of services—from helping find accommodations and schools to providing social support and case management services. While NGOs can be effective and trustworthy transnational players in transboundary disasters, effectively bringing in resources, their participation also has its challenges and limitations. To counter these challenges, transboundary management coordination needs to be increased, along with building capacities of transnational and local civil society organizations. The power of diaspora NGOs can also be harnessed more effectively in disaster response and recovery.
{"title":"Transboundary Disasters and Non-Governmental Organizations","authors":"Alka Sapat","doi":"10.1093/ACREFORE/9780199389407.013.286","DOIUrl":"https://doi.org/10.1093/ACREFORE/9780199389407.013.286","url":null,"abstract":"In an increasingly interconnected world, the impacts of disasters and subsequent disaster relief and response operations are often no longer confined to directly affected communities, regions, or countries. Traditional geographical, sectoral, and policy-related boundaries are progressively becoming more blurred, and increasingly, there are more transboundary disasters—disasters that cross geographical, political, and functional boundaries and that affect multiple policy domains. Examples of transboundary disasters include the 2004 and 2011 tsunamis, the Fukushima nuclear disaster, the 2010 Haiti earthquake, and the Ebola outbreak. Responses to transboundary disasters typically require the concerted efforts of various governments, intergovernmental organizations, private entities, and nongovernmental organizations (NGOs) working together. Although NGOs have been key responders, not enough attention has been paid to their role amid the constellation of various actors responding to transboundary disasters. There are many different types of NGOs, including those that have been less visible, such as diaspora NGOs, that aid in transboundary disasters. NGO assistance in transboundary disasters assumes various forms, ranging from disaster relief in the form of medical assistance, food, water, and supplies to aid affected populations for rebuilding and reconstruction in disaster-affected areas. NGOs also play a critical role in responding to transboundary disasters by aiding displaced populations in host communities and providing an array of services—from helping find accommodations and schools to providing social support and case management services. While NGOs can be effective and trustworthy transnational players in transboundary disasters, effectively bringing in resources, their participation also has its challenges and limitations. To counter these challenges, transboundary management coordination needs to be increased, along with building capacities of transnational and local civil society organizations. The power of diaspora NGOs can also be harnessed more effectively in disaster response and recovery.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129367712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-25DOI: 10.1093/acrefore/9780199389407.013.283
Diana Mitsova
On a global scale, natural disasters continue to inflict a heavy toll on communities and to pose challenges that either persist or amplify in complexity and scale. There is a need for flexible and adaptive solutions that can bridge collaborative efforts among public agencies, private and nonprofit organizations, and communities. The ability to explore and analyze spatial data, solve problems, visualize, and communicate outcomes to support the collaborative efforts and decision-making processes of a broad range of stakeholders is critical in natural hazards and disaster management. The adoption of geospatial technologies has long been at the core of natural hazards risk assessment, linking existing technologies in GIS (geographic information system) with spatial analytical techniques and modeling. Practice and research have shown that though risk-reduction strategies and the mobilization of disaster-response resources depend on integrating governance into the process of building disaster resilience, the implementation of such strategies is best informed by accurate spatial data acquisition, fast processing, analysis, and integration with other informational resources. In recent years, new and accessible sources and types of data have greatly enhanced the ability of practitioners and researchers to develop approaches that support rapid and efficient disaster response, including forecasting, early warning systems, and damage assessments. Innovations in geospatial technologies, including remote sensing, real-time Web applications, and distributed Web-based GIS services, feature platforms for systematizing and sharing data, maps, applications, and analytics. Distributed GIS offers enormous opportunities to strengthen collaboration and improve communication and efficiency by enabling agencies and end users to connect and interact with remotely located information products, apps, and services. Newer developments in geospatial technologies include real-time data management and unmanned aircraft systems (UAS), which help organizations make rapid assessments and facilitate the decision-making process in disasters.
{"title":"Supporting Natural Hazards Management With Geospatial Technologies","authors":"Diana Mitsova","doi":"10.1093/acrefore/9780199389407.013.283","DOIUrl":"https://doi.org/10.1093/acrefore/9780199389407.013.283","url":null,"abstract":"On a global scale, natural disasters continue to inflict a heavy toll on communities and to pose challenges that either persist or amplify in complexity and scale. There is a need for flexible and adaptive solutions that can bridge collaborative efforts among public agencies, private and nonprofit organizations, and communities. The ability to explore and analyze spatial data, solve problems, visualize, and communicate outcomes to support the collaborative efforts and decision-making processes of a broad range of stakeholders is critical in natural hazards and disaster management. The adoption of geospatial technologies has long been at the core of natural hazards risk assessment, linking existing technologies in GIS (geographic information system) with spatial analytical techniques and modeling. Practice and research have shown that though risk-reduction strategies and the mobilization of disaster-response resources depend on integrating governance into the process of building disaster resilience, the implementation of such strategies is best informed by accurate spatial data acquisition, fast processing, analysis, and integration with other informational resources. In recent years, new and accessible sources and types of data have greatly enhanced the ability of practitioners and researchers to develop approaches that support rapid and efficient disaster response, including forecasting, early warning systems, and damage assessments. Innovations in geospatial technologies, including remote sensing, real-time Web applications, and distributed Web-based GIS services, feature platforms for systematizing and sharing data, maps, applications, and analytics. Distributed GIS offers enormous opportunities to strengthen collaboration and improve communication and efficiency by enabling agencies and end users to connect and interact with remotely located information products, apps, and services. Newer developments in geospatial technologies include real-time data management and unmanned aircraft systems (UAS), which help organizations make rapid assessments and facilitate the decision-making process in disasters.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129068853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-25DOI: 10.1093/ACREFORE/9780199389407.013.299
C. Kuhlicke
The management of natural hazards is undergoing considerable transformation, including the establishment of risk-based management approaches, the encouragement to govern natural hazards more inclusively, and the rising relevance of the concept of resilience. The benefits of this transformation are usually framed like this: Risk-based approaches are regarded as a rational way of balancing the costs associated with mitigating the consequences of hazards and the anticipated benefits; inclusive modes of governing risks help to increase the acceptance and quality of management processes as well as their outcomes; and the concept of resilience is connoted positively since it demands a greater openness to uncertainties and aims at increasing the capacities of various actors to cope with radical surprises. However, the increasing consideration of both concepts in policy and decision-making processes is associated with a changing demarcation between public and private responsibilities and with an altering relationship between organizations involved in the management process and the wider public. To understand some of these dynamics, this contribution undertakes a change of perspective throughout its development: Instead of asking how the concepts of risk or resilience might be useful to improve the management and governance of natural hazards, one must understand how societies, particularly with regard to their handling of risks and hazards, are governed through the concepts of risk and resilience. Following this perspective, risk-based management approaches have a defensive function in deflecting blame and rationalizing policy choices ex-ante by enabling managing organizations to more clearly define which risks they are responsible for (i.e., non-acceptable risks) and which are beyond their responsibility (i.e., acceptable risks). This demarcation also has profound distributional effects as acceptable risks usually need to be mitigated individually, raising the question of how to ensure the just sharing of the differently distributed benefits and burdens of risk-based approaches. The concept of resilience in this context plays a paradoxical yet complementary role: In its more operational interpretation (e.g., adaptive management), resilience-based management approaches can be in conflict with risk-based approaches as they require those responsible for managing risks to follow antagonistic goals. While the idea of resilience puts an emphasis on openness and flexibility, risk-based approaches try to ensure proportionality by transforming uncertainties into calculable risks. At the same time, resilience-based governance approaches, with their emphasis on self-organization and learning, complement risk-based approaches in the sense that actors or communities that are exposed to “acceptable risks” are implicitly or explicitly made responsible for maintaining their own resilience, whereas the role of public authorities is usually restricted to an enabling o
{"title":"Risk and Resilience in the Management and Governance of Natural Hazards","authors":"C. Kuhlicke","doi":"10.1093/ACREFORE/9780199389407.013.299","DOIUrl":"https://doi.org/10.1093/ACREFORE/9780199389407.013.299","url":null,"abstract":"The management of natural hazards is undergoing considerable transformation, including the establishment of risk-based management approaches, the encouragement to govern natural hazards more inclusively, and the rising relevance of the concept of resilience. The benefits of this transformation are usually framed like this: Risk-based approaches are regarded as a rational way of balancing the costs associated with mitigating the consequences of hazards and the anticipated benefits; inclusive modes of governing risks help to increase the acceptance and quality of management processes as well as their outcomes; and the concept of resilience is connoted positively since it demands a greater openness to uncertainties and aims at increasing the capacities of various actors to cope with radical surprises.\u0000 However, the increasing consideration of both concepts in policy and decision-making processes is associated with a changing demarcation between public and private responsibilities and with an altering relationship between organizations involved in the management process and the wider public. To understand some of these dynamics, this contribution undertakes a change of perspective throughout its development: Instead of asking how the concepts of risk or resilience might be useful to improve the management and governance of natural hazards, one must understand how societies, particularly with regard to their handling of risks and hazards, are governed through the concepts of risk and resilience.\u0000 Following this perspective, risk-based management approaches have a defensive function in deflecting blame and rationalizing policy choices ex-ante by enabling managing organizations to more clearly define which risks they are responsible for (i.e., non-acceptable risks) and which are beyond their responsibility (i.e., acceptable risks). This demarcation also has profound distributional effects as acceptable risks usually need to be mitigated individually, raising the question of how to ensure the just sharing of the differently distributed benefits and burdens of risk-based approaches.\u0000 The concept of resilience in this context plays a paradoxical yet complementary role: In its more operational interpretation (e.g., adaptive management), resilience-based management approaches can be in conflict with risk-based approaches as they require those responsible for managing risks to follow antagonistic goals. While the idea of resilience puts an emphasis on openness and flexibility, risk-based approaches try to ensure proportionality by transforming uncertainties into calculable risks. At the same time, resilience-based governance approaches, with their emphasis on self-organization and learning, complement risk-based approaches in the sense that actors or communities that are exposed to “acceptable risks” are implicitly or explicitly made responsible for maintaining their own resilience, whereas the role of public authorities is usually restricted to an enabling o","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130641593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-25DOI: 10.1093/ACREFORE/9780199389407.013.238
E. Abella, B. Wisner
Natural hazard governance in Cuba elicits widely differing commentaries. While some experts praise it as an extension of state commitment to social welfare, others debate the ethics, necessity, and utility of forced evacuation. However, many disaster experts are unaware of the long-term development of disaster reduction in the country—how Cuban risk governance has evolved in a unique geopolitical and social environment. Mass mobilization to prepare for military invasion and prior response to hurricane disaster provided the foundation for Cuba’s contemporary focus on disaster risk reduction. A pragmatic analysis of the development of natural hazard governance in Cuba and its components reveals key factors for its success in protecting lives. Deployment of local risk management centers, nationwide multi-hazard risk assessment, and early warning systems are recognized as important factors for the effectiveness of disaster reduction in the country. The number of scientific organizations collecting data and carrying out research is also a factor in the reduction of disaster impact and increases the level of resiliency. Over time, an increasing number of organizations and population groups have become involved in risk governance. Risk communication is used as a tool for keeping popular risk perception at an effective level, and for encouraging effective self-protection during hazard events. The continuous development and improvement of a multilateral framework for natural hazards governance is also among the important components of disaster risk reduction in Cuba. However, the economic crisis that followed the collapse of the Soviet Union and the long-lasting U.S. government blockade have been constraints on economic development and disaster risk reduction. These geopolitical and macroeconomic realities must be recognized as the main causes of the large economic losses and slow recovery after a natural hazard impact. Nevertheless, disaster recovery is carried out at the highest level of management with the goal of reducing vulnerability as much as possible to avoid future losses. Despite economic losses due to natural disasters, Cuban governance of natural hazards is evaluated as a success by most organizations and experts worldwide.
{"title":"Natural Hazards Governance in Cuba","authors":"E. Abella, B. Wisner","doi":"10.1093/ACREFORE/9780199389407.013.238","DOIUrl":"https://doi.org/10.1093/ACREFORE/9780199389407.013.238","url":null,"abstract":"Natural hazard governance in Cuba elicits widely differing commentaries. While some experts praise it as an extension of state commitment to social welfare, others debate the ethics, necessity, and utility of forced evacuation. However, many disaster experts are unaware of the long-term development of disaster reduction in the country—how Cuban risk governance has evolved in a unique geopolitical and social environment. Mass mobilization to prepare for military invasion and prior response to hurricane disaster provided the foundation for Cuba’s contemporary focus on disaster risk reduction. A pragmatic analysis of the development of natural hazard governance in Cuba and its components reveals key factors for its success in protecting lives. Deployment of local risk management centers, nationwide multi-hazard risk assessment, and early warning systems are recognized as important factors for the effectiveness of disaster reduction in the country. The number of scientific organizations collecting data and carrying out research is also a factor in the reduction of disaster impact and increases the level of resiliency. Over time, an increasing number of organizations and population groups have become involved in risk governance. Risk communication is used as a tool for keeping popular risk perception at an effective level, and for encouraging effective self-protection during hazard events. The continuous development and improvement of a multilateral framework for natural hazards governance is also among the important components of disaster risk reduction in Cuba.\u0000 However, the economic crisis that followed the collapse of the Soviet Union and the long-lasting U.S. government blockade have been constraints on economic development and disaster risk reduction. These geopolitical and macroeconomic realities must be recognized as the main causes of the large economic losses and slow recovery after a natural hazard impact. Nevertheless, disaster recovery is carried out at the highest level of management with the goal of reducing vulnerability as much as possible to avoid future losses. Despite economic losses due to natural disasters, Cuban governance of natural hazards is evaluated as a success by most organizations and experts worldwide.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"103 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132408853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-25DOI: 10.1093/acrefore/9780199389407.013.168
J. Schwab
Planning systems are essentially a layer of guidance or legal requirements that sit atop plans of any type at any governmental level at or below the source of that guidance. In the case of natural hazard risk reduction, they involve rules or laws dealing with plans to reduce loss of life or property from such events. In much of the world, this is either unexplored territory or the frontier of public planning; very little of what exists in this realm predates the 1980s, although one can find earlier roots of the public discussion behind such systems. That said, the evolution of such systems in 21st century has been fairly rapid, at least in those nations with the resources and technical capacity to pursue the subject. Driven largely by substantial increases in disaster losses and growing concern about worldwide impacts of climate change, research, technology, and lessons from practice have grown apace. However, that progress has been uneven and subject to inequities in resources and governmental capacity.
{"title":"Planning Systems for Natural Hazard Risk Reduction","authors":"J. Schwab","doi":"10.1093/acrefore/9780199389407.013.168","DOIUrl":"https://doi.org/10.1093/acrefore/9780199389407.013.168","url":null,"abstract":"Planning systems are essentially a layer of guidance or legal requirements that sit atop plans of any type at any governmental level at or below the source of that guidance. In the case of natural hazard risk reduction, they involve rules or laws dealing with plans to reduce loss of life or property from such events. In much of the world, this is either unexplored territory or the frontier of public planning; very little of what exists in this realm predates the 1980s, although one can find earlier roots of the public discussion behind such systems.\u0000 That said, the evolution of such systems in 21st century has been fairly rapid, at least in those nations with the resources and technical capacity to pursue the subject. Driven largely by substantial increases in disaster losses and growing concern about worldwide impacts of climate change, research, technology, and lessons from practice have grown apace. However, that progress has been uneven and subject to inequities in resources and governmental capacity.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"2209 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130156517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}