首页 > 最新文献

Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020最新文献

英文 中文
How "BERTology" Changed the State-of-the-Art also for Italian NLP “BERTology”如何改变了意大利NLP的技术水平
Pub Date : 1900-01-01 DOI: 10.4000/books.aaccademia.8920
F. Tamburini
The use of contextualised word embeddings allowed for a relevant performance increase for almost all Natural Language Processing (NLP) applications. Recently some new models especially developed for Italian became available to scholars. This work aims at evaluating the impact of these models in enhancing application performance for Italian establishing the new state-of-the-art for some fundamental NLP tasks.
上下文化词嵌入的使用使得几乎所有自然语言处理(NLP)应用程序的性能都有了相应的提高。最近,学者们可以使用一些专门为意大利语开发的新模型。这项工作旨在评估这些模型在提高应用性能方面的影响,为意大利建立一些基础NLP任务的新技术。
{"title":"How \"BERTology\" Changed the State-of-the-Art also for Italian NLP","authors":"F. Tamburini","doi":"10.4000/books.aaccademia.8920","DOIUrl":"https://doi.org/10.4000/books.aaccademia.8920","url":null,"abstract":"The use of contextualised word embeddings allowed for a relevant performance increase for almost all Natural Language Processing (NLP) applications. Recently some new models especially developed for Italian became available to scholars. This work aims at evaluating the impact of these models in enhancing application performance for Italian establishing the new state-of-the-art for some fundamental NLP tasks.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128966083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
MultiEmotions-It: a New Dataset for Opinion Polarity and Emotion Analysis for Italian multi - emotions - it:意大利语意见极性和情绪分析的新数据集
Pub Date : 1900-01-01 DOI: 10.4000/books.aaccademia.8910
R. Sprugnoli
English. This paper1 presents a new linguistic resource for Italian, called MultiEmotions-It, containing comments to music videos and advertisements posted on YouTube and Facebook. These comments are manually annotated according to four different dimensions: i.e., relatedness, opinion polarity, emotions and sarcasm. For the annotation of emotions we adopted the Plutchik’s model taking into account both basic and complex emotions, i.e. dyads.
英语。本文介绍了一种新的意大利语语言资源,称为MultiEmotions-It,它包含了对YouTube和Facebook上发布的音乐视频和广告的评论。这些评论是根据四个不同的维度进行手动注释的:即相关性、观点极性、情感和讽刺。对于情绪的注释,我们采用了Plutchik的模型,同时考虑了基本和复杂的情绪,即二元。
{"title":"MultiEmotions-It: a New Dataset for Opinion Polarity and Emotion Analysis for Italian","authors":"R. Sprugnoli","doi":"10.4000/books.aaccademia.8910","DOIUrl":"https://doi.org/10.4000/books.aaccademia.8910","url":null,"abstract":"English. This paper1 presents a new linguistic resource for Italian, called MultiEmotions-It, containing comments to music videos and advertisements posted on YouTube and Facebook. These comments are manually annotated according to four different dimensions: i.e., relatedness, opinion polarity, emotions and sarcasm. For the annotation of emotions we adopted the Plutchik’s model taking into account both basic and complex emotions, i.e. dyads.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122087617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Græcissare: Ancient Greek Loanwords in the LiLa Knowledge Base of Linguistic Resources for Latin 拉丁语语言资源LiLa知识库中的古希腊语外来词
Pub Date : 1900-01-01 DOI: 10.4000/books.aaccademia.8565
G. Franzini, Federica Zampedri, M. Passarotti, Francesco Mambrini, Giovanni Moretti
English. This paper describes the addition of an index of 1, 763 Ancient Greek loanwords to the collection of Latin lemmas of the LiLa: Linking Latin Knowledge Base of interoperable linguistic resources. This lexical resource increases LiLa’s lemma count and tunes its underlying data model to etymological borrowing.
英语。本文描述了在可互操作语言资源的LiLa:链接拉丁知识库的拉丁词集中增加1763个古希腊外来词索引。这个词汇资源增加了LiLa的引词数量,并将其底层数据模型调整为词源学借用。
{"title":"Græcissare: Ancient Greek Loanwords in the LiLa Knowledge Base of Linguistic Resources for Latin","authors":"G. Franzini, Federica Zampedri, M. Passarotti, Francesco Mambrini, Giovanni Moretti","doi":"10.4000/books.aaccademia.8565","DOIUrl":"https://doi.org/10.4000/books.aaccademia.8565","url":null,"abstract":"English. This paper describes the addition of an index of 1, 763 Ancient Greek loanwords to the collection of Latin lemmas of the LiLa: Linking Latin Knowledge Base of interoperable linguistic resources. This lexical resource increases LiLa’s lemma count and tunes its underlying data model to etymological borrowing.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132229940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A Deep Learning Model for the Analysis of Medical Reports in ICD-10 Clinical Coding Task ICD-10临床编码任务中医疗报告分析的深度学习模型
Pub Date : 1900-01-01 DOI: 10.4000/books.aaccademia.8834
Marco Polignano, Pierpaolo Basile, M. Degemmis, P. Lops, G. Semeraro
English. The practice of assigning a uniquely identifiable and easily traceable code to pathology from medical diagnoses is an added value to the current modality of archiving health data collected to build the clinical history of each of us. Unfortunately, the enormous amount of possible pathologies and medical conditions has led to the realization of extremely wide international codifications that are difficult to consult even for a human being. This difficulty makes the practice of annotation of diagnoses with ICD-10 codes very cumbersome and rarely performed. In order to support this operation, a classification model was proposed, able to analyze medical diagnoses written in natural language and automatically assign one or more international reference codes. The model has been evaluated on a dataset released in the Spanish language for the eHealth challenge (CodiEsp) of the international conference CLEF 2020, but it could be extended to any language with latin characters. We proposed a model based on a two-step classification process based on BERT and BiLSTM. Although still far from an accuracy sufficient to do without a licensed physician opinion, the results obtained show the feasibility of the task and are a starting point for future studies in this direction. Copyright c © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). Italian. La pratica di assegnare un codice univocamente identificabile e facilmente riconducibile ad una patologia a partire da diagnosi mediche e un valore aggiunto alla attuale modalità di archiviazione dei dati sanitari raccolti per costruire la storia clinica di ciascuno di noi. Purtroppo però, lenorme numero di possibili patologie e condizioni mediche ha portato alla realizzazione di codifiche internazionali estremamente ampie e di difficile consultazione anche per un essere umano. Tale difficolt rende la pratica di annotazione delle diagnosi con i codici ICD-10 molto complessa e raramente svolta. Col fine di supportare tale operazione si è proposto un modello di classificazione, in grado di analizzare le diagnosi mediche scritte in linguaggio naturale ed assegnarle automaticamente uno o più codici internazionali di riferimento. Il modello è stato valutato su un dataset rilasciato in lingua Spagnola per la challenge (CodiEsp) di eHealth della conferenza internazionale CLEF 2020 ma è di semplice estensione su qualsiasi lingua con caratteri latini. Abbiamo proposto un modello basato su due passi di classificazione e basati sullutilizzo di BERT e delle BiLSTM. I risultati ottenuti, seppur ancora lontani da una accuratezza sufficiente per far a meno di un parere di un medico esperto, mostrano la fattibilità del task e si pongono come punto di partenza per futuri studi in tale direzione.
英语。从医学诊断中为病理分配唯一可识别且易于追踪的代码的做法,是对目前收集健康数据以建立我们每个人的临床病史的模式的附加价值。不幸的是,大量可能的病理和医疗条件导致了极其广泛的国际法规的实现,即使是人类也很难查阅。这一困难使得用ICD-10编码注释诊断的实践非常繁琐,很少执行。为了支持这一操作,提出了一种分类模型,能够分析以自然语言编写的医学诊断并自动分配一个或多个国际参考代码。该模型已经在国际会议CLEF 2020的电子健康挑战(CodiEsp)以西班牙语发布的数据集上进行了评估,但它可以扩展到任何带有拉丁字符的语言。我们提出了一个基于BERT和BiLSTM的两步分类过程的模型。尽管在没有执业医师意见的情况下仍远未达到足够的准确性,但所获得的结果表明了该任务的可行性,并为该方向的未来研究奠定了基础。本文版权所有c©2020。在知识共享许可国际署名4.0 (CC BY 4.0)下允许使用。意大利人。临床诊断是指临床诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断、医学诊断等。Purtroppo però,对所有可能的病理学和医学条件进行了大量的研究,并对所有可能的国际治疗和治疗进行了严格的协商。诊断难度大,诊断难度大,诊断难度大,诊断难度大,诊断难度大,诊断难度大,诊断难度大。本文提出了一种基于模型的分类分析方法è,一种基于语言的自动分析方法,一种基于语言的自动分析方法più,一种基于语言的自动分析方法。我将建模è statto valuato su dataset rilasciato in lingua Spagnola per la challenge (codisep) . eHealth della conference of CLEF 2020 ma è . i semplice estensione su qualsiasi lingua con catteri latini。Abbiamo提出了一种基于分类方法的basato建模方法,即basato suliliilizzo方法。如果在未来的研究中,研究人员发现,在未来的研究中,研究人员发现,在未来的研究中,研究人员发现,在未来的研究中,研究人员发现,在未来的研究中,研究人员发现,在未来的研究中,研究人员发现,在未来的研究中,研究人员发现,在未来的研究中,研究人员发现,在未来的研究中,研究人员发现,在未来的研究中,研究人员发现,在未来的研究中,研究人员发现,在未来的研究中,研究人员发现,在未来的研究中,研究人员发现。
{"title":"A Deep Learning Model for the Analysis of Medical Reports in ICD-10 Clinical Coding Task","authors":"Marco Polignano, Pierpaolo Basile, M. Degemmis, P. Lops, G. Semeraro","doi":"10.4000/books.aaccademia.8834","DOIUrl":"https://doi.org/10.4000/books.aaccademia.8834","url":null,"abstract":"English. The practice of assigning a uniquely identifiable and easily traceable code to pathology from medical diagnoses is an added value to the current modality of archiving health data collected to build the clinical history of each of us. Unfortunately, the enormous amount of possible pathologies and medical conditions has led to the realization of extremely wide international codifications that are difficult to consult even for a human being. This difficulty makes the practice of annotation of diagnoses with ICD-10 codes very cumbersome and rarely performed. In order to support this operation, a classification model was proposed, able to analyze medical diagnoses written in natural language and automatically assign one or more international reference codes. The model has been evaluated on a dataset released in the Spanish language for the eHealth challenge (CodiEsp) of the international conference CLEF 2020, but it could be extended to any language with latin characters. We proposed a model based on a two-step classification process based on BERT and BiLSTM. Although still far from an accuracy sufficient to do without a licensed physician opinion, the results obtained show the feasibility of the task and are a starting point for future studies in this direction. Copyright c © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). Italian. La pratica di assegnare un codice univocamente identificabile e facilmente riconducibile ad una patologia a partire da diagnosi mediche e un valore aggiunto alla attuale modalità di archiviazione dei dati sanitari raccolti per costruire la storia clinica di ciascuno di noi. Purtroppo però, lenorme numero di possibili patologie e condizioni mediche ha portato alla realizzazione di codifiche internazionali estremamente ampie e di difficile consultazione anche per un essere umano. Tale difficolt rende la pratica di annotazione delle diagnosi con i codici ICD-10 molto complessa e raramente svolta. Col fine di supportare tale operazione si è proposto un modello di classificazione, in grado di analizzare le diagnosi mediche scritte in linguaggio naturale ed assegnarle automaticamente uno o più codici internazionali di riferimento. Il modello è stato valutato su un dataset rilasciato in lingua Spagnola per la challenge (CodiEsp) di eHealth della conferenza internazionale CLEF 2020 ma è di semplice estensione su qualsiasi lingua con caratteri latini. Abbiamo proposto un modello basato su due passi di classificazione e basati sullutilizzo di BERT e delle BiLSTM. I risultati ottenuti, seppur ancora lontani da una accuratezza sufficiente per far a meno di un parere di un medico esperto, mostrano la fattibilità del task e si pongono come punto di partenza per futuri studi in tale direzione.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126475177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Polarity Imbalance in Lexicon-based Sentiment Analysis 基于词典的情感分析中的极性不平衡
Pub Date : 1900-01-01 DOI: 10.4000/books.aaccademia.8964
Marco Vassallo, G. Gabrieli, Valerio Basile, C. Bosco
Polarity imbalance is an asymmetric situation that occurs while using parametric threshold values in lexicon-based Sentiment-Analysis (SA). The variation across the thresholds may have an opposite impact on the prediction of negative and positive polarity. We hypothesize that this may be due to asymmetries in the data or in the lexicon, or both. We carry out therefore experiments for evaluating the effect of lexicon and of the topics addressed in the data. Our experiments are based on a weighted version of the Italian linguistic resource MAL (Morphologicallyinflected Affective Lexicon) by using as weighting corpus TWITA, a large-scale corpus of messages from Twitter in Italian. The novel Weighted-MAL (W-MAL), presented for the first time int this paper, achieved better polarity classification results especially for negative tweets, along with alleviating the aforementioned polarity imbalance. Italiano. Lo sbilanciamento della polarità è una situazione di asimmetria che si viene a creare quando si impiegano valori soglia parametrici nella Sentiment Analysis (SA) basata su dizionario. La variazione dei valori soglia può avere un impatto opposto rispetto alla predizione di polarità negativa e positiva. Si ipotizza che questo effetto sia dovuto ad asimmetrie nei dati o nel dizionario, o in entrambi. Abbiamo condotto esperimenti per misurare l’effetto del lessico e degli argomenti trattati nel nostro dataset. I nostri esperimenti sono basati su una versione ponderata della risorsa per l’italiano MAL (Morphologically-inflected Affective Lexicon), usando come corpus per la ponderazione TWITA, un corpus di larga scala di messaggi da Twitter in italiano. La nuova risorsa Weighted-MAL (W-MAL), presentata per la prima volta in questo articolo, ottiene migliori risultati nella classificazione della polarità specialmente, per i messaggi negativi, oltre ad alleviare il problema sopracitato di sbilanciamento
极性不平衡是在基于词典的情感分析(SA)中使用参数阈值时发生的不对称情况。跨阈值的变化可能对负极性和正极性的预测产生相反的影响。我们假设这可能是由于数据或词汇的不对称,或两者兼而有之。因此,我们进行了实验来评估词汇和数据中所涉及的主题的效果。我们的实验基于意大利语语言资源MAL (morphologallyinflected Affective Lexicon)的加权版本,使用TWITA作为加权语料库,TWITA是一个来自意大利语Twitter的大规模消息语料库。本文首次提出了一种新颖的加权最小二代(Weighted-MAL, W-MAL)方法,该方法取得了更好的极性分类结果,特别是对负面推文,同时缓解了上述极性不平衡。意大利语。从数据分析的角度分析,从数据分析的角度分析,从数据分析的角度分析,从数据分析的角度分析,从数据分析的角度分析。La variazione dei valori soglia può平均不影响访问,所有的predizione dipolititonnegative和positive。这一问题的关键在于,如何有效地解决这些问题,以及如何有效地解决这些问题。Abbiamo对实验结果进行了分析,并对数据集的数据参数进行了分析。I nostri esperienti sono basati su one version ponderata della risorsa per l 'italiano MAL(形态变形情感词典),usando come corpus per la ponderazione TWITA, un corpus di larga scala di messaggi da Twitter in意大利语。新的研究结果加权- mal (W-MAL),提出了一种新的研究方法,即从一开始就研究问题,从一开始就研究问题,从一开始就研究问题,从一开始就研究问题,从一开始就研究问题
{"title":"Polarity Imbalance in Lexicon-based Sentiment Analysis","authors":"Marco Vassallo, G. Gabrieli, Valerio Basile, C. Bosco","doi":"10.4000/books.aaccademia.8964","DOIUrl":"https://doi.org/10.4000/books.aaccademia.8964","url":null,"abstract":"Polarity imbalance is an asymmetric situation that occurs while using parametric threshold values in lexicon-based Sentiment-Analysis (SA). The variation across the thresholds may have an opposite impact on the prediction of negative and positive polarity. We hypothesize that this may be due to asymmetries in the data or in the lexicon, or both. We carry out therefore experiments for evaluating the effect of lexicon and of the topics addressed in the data. Our experiments are based on a weighted version of the Italian linguistic resource MAL (Morphologicallyinflected Affective Lexicon) by using as weighting corpus TWITA, a large-scale corpus of messages from Twitter in Italian. The novel Weighted-MAL (W-MAL), presented for the first time int this paper, achieved better polarity classification results especially for negative tweets, along with alleviating the aforementioned polarity imbalance. Italiano. Lo sbilanciamento della polarità è una situazione di asimmetria che si viene a creare quando si impiegano valori soglia parametrici nella Sentiment Analysis (SA) basata su dizionario. La variazione dei valori soglia può avere un impatto opposto rispetto alla predizione di polarità negativa e positiva. Si ipotizza che questo effetto sia dovuto ad asimmetrie nei dati o nel dizionario, o in entrambi. Abbiamo condotto esperimenti per misurare l’effetto del lessico e degli argomenti trattati nel nostro dataset. I nostri esperimenti sono basati su una versione ponderata della risorsa per l’italiano MAL (Morphologically-inflected Affective Lexicon), usando come corpus per la ponderazione TWITA, un corpus di larga scala di messaggi da Twitter in italiano. La nuova risorsa Weighted-MAL (W-MAL), presentata per la prima volta in questo articolo, ottiene migliori risultati nella classificazione della polarità specialmente, per i messaggi negativi, oltre ad alleviare il problema sopracitato di sbilanciamento","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120972448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Tracing Metonymic Relations in T-PAS: An Annotation Exercise on a Corpus-based Resource for Italian T-PAS中转喻关系的追踪:基于语料库的意大利语资源标注练习
Pub Date : 1900-01-01 DOI: 10.4000/books.aaccademia.8870
Emma Romani, Elisabetta Jezek
In this paper we address the main issues and results of a research thesis (Romani, 2020) dedicated to the annotation of metonymies in T-PAS, a corpus-based digital repository of Italian verbal patterns (Ježek et al., 2014). The annotation was performed on the corpus instances of a selected list of 30 verbs and was aimed at both implementing the resource with metonymic patterns and identifying and creating a map of the metonymic relations that occur in the verbal patterns. The annotated corpus data (consisting of 1218 corpus instances), the patterns, and the relations can be useful for NLP tasks such as metonymy recognition.
在本文中,我们讨论了一篇研究论文(Romani, 2020)的主要问题和结果,该论文致力于T-PAS中转喻的注释,T-PAS是一个基于语料库的意大利语语言模式数字存储库(Ježek等人,2014)。注释是在选定的30个动词的语料库实例上执行的,目的是实现具有转喻模式的资源,并识别和创建在动词模式中出现的转喻关系的映射。注释的语料库数据(由1218个语料库实例组成)、模式和关系对于转喻识别等NLP任务非常有用。
{"title":"Tracing Metonymic Relations in T-PAS: An Annotation Exercise on a Corpus-based Resource for Italian","authors":"Emma Romani, Elisabetta Jezek","doi":"10.4000/books.aaccademia.8870","DOIUrl":"https://doi.org/10.4000/books.aaccademia.8870","url":null,"abstract":"In this paper we address the main issues and results of a research thesis (Romani, 2020) dedicated to the annotation of metonymies in T-PAS, a corpus-based digital repository of Italian verbal patterns (Ježek et al., 2014). The annotation was performed on the corpus instances of a selected list of 30 verbs and was aimed at both implementing the resource with metonymic patterns and identifying and creating a map of the metonymic relations that occur in the verbal patterns. The annotated corpus data (consisting of 1218 corpus instances), the patterns, and the relations can be useful for NLP tasks such as metonymy recognition.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115618589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating Proactivity in Task-Oriented Dialogues 任务导向对话中的主动性研究
Pub Date : 1900-01-01 DOI: 10.4000/books.aaccademia.8243
Vevake Balaraman, B. Magnini
Proactivity (i.e., the capacity to provide useful information even when not explicitly required) is a fundamental characteristic of human dialogues. Although current task-oriented dialogue systems are good at providing information explicitly requested by the user, they are poor in exhibiting proactivity, which is typical in humanhuman interactions. In this study, we investigate the presence of proactive behaviours in several available dialogue collections, both human-human and humanmachine and show how the data acquisition decision affects the proactive behaviour present in the dataset. We adopt a two-step approach to semi-automatically detect proactive situations in the datasets, where proactivity is not annotated, and show that the dialogues collected with approaches that provide more freedom to the agent/user, exhibit high proactivity.
主动(即即使在没有明确要求的情况下提供有用信息的能力)是人类对话的基本特征。虽然当前面向任务的对话系统在提供用户明确要求的信息方面表现良好,但在展示人类互动中典型的主动性方面表现较差。在本研究中,我们调查了几个可用的对话集合中主动行为的存在,包括人机和人机,并展示了数据采集决策如何影响数据集中存在的主动行为。我们采用两步方法半自动检测数据集中的主动情况,其中主动性未被注释,并表明使用为代理/用户提供更多自由的方法收集的对话显示出高主动性。
{"title":"Investigating Proactivity in Task-Oriented Dialogues","authors":"Vevake Balaraman, B. Magnini","doi":"10.4000/books.aaccademia.8243","DOIUrl":"https://doi.org/10.4000/books.aaccademia.8243","url":null,"abstract":"Proactivity (i.e., the capacity to provide useful information even when not explicitly required) is a fundamental characteristic of human dialogues. Although current task-oriented dialogue systems are good at providing information explicitly requested by the user, they are poor in exhibiting proactivity, which is typical in humanhuman interactions. In this study, we investigate the presence of proactive behaviours in several available dialogue collections, both human-human and humanmachine and show how the data acquisition decision affects the proactive behaviour present in the dataset. We adopt a two-step approach to semi-automatically detect proactive situations in the datasets, where proactivity is not annotated, and show that the dialogues collected with approaches that provide more freedom to the agent/user, exhibit high proactivity.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"225 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117119189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Dialog-based Help Desk through Automated Question Answering and Intent Detection 通过自动问答和意图检测的基于对话框的帮助台
Pub Date : 1900-01-01 DOI: 10.4000/books.aaccademia.8945
A. Uva, Pierluigi Roberti, Alessandro Moschitti
Modern personal assistants require to access unstructured information in order to successfully fulfill user requests. In this paper, we have studied the use of two machine learning components to design personal assistants: intent classification, to understand the user request, and answer sentence selection, to carry out question answering from unstructured text. The evaluation results derived on five different real-world datasets, associated with different companies, show high accuracy for both tasks. This suggests that modern QA and dialog technology is effective for real-world tasks. I moderni personal assistant richiedono di accedere ad informazioni non strutturate per soddisfare con successo le richieste degli utenti. In questo articolo, abbiamo studiato l’uso dell’ apprendimento automatico per progettare due componenti di un personal assistant: classificazione degli intenti, per comprendere la richiesta dell’utente, e la selezione della frase di risposta per rispondere alle domande con testo non strutturato. I risultati della valutazione derivati da cinque diversi datasets del mondo reale, associati a diverse società, mostrano un’elevata precisione per entrambi i modelli. Ciò suggerisce che la moderna tecnologia di question answering e dialogo è efficace per attività reali.
现代个人助理需要访问非结构化信息才能成功地满足用户的请求。在本文中,我们研究了使用两个机器学习组件来设计个人助理:意图分类,理解用户请求,以及回答句子选择,从非结构化文本中进行问题回答。评估结果来源于五个不同的真实世界数据集,这些数据集与不同的公司有关,对这两个任务都显示出很高的准确性。这表明现代QA和对话技术对于现实世界的任务是有效的。在现代个人助理中,富人和非结构化的信息服务成功地取代了富人和非结构化的人。就文章而言,abbiamo studioto ' uso dell '学徒to automatiatiper program .由于组件和个人助理:classificazione degli inti,由于综合和丰富的dell ' utente,由于选择和丰富的dell ' utente,由于结构化和非结构化的domain contesto。在不同的数据集和不同的社会背景下,每个模型的精度都是不同的。Ciò现代技术咨询和问答对话è效率/活动/现实。
{"title":"Dialog-based Help Desk through Automated Question Answering and Intent Detection","authors":"A. Uva, Pierluigi Roberti, Alessandro Moschitti","doi":"10.4000/books.aaccademia.8945","DOIUrl":"https://doi.org/10.4000/books.aaccademia.8945","url":null,"abstract":"Modern personal assistants require to access unstructured information in order to successfully fulfill user requests. In this paper, we have studied the use of two machine learning components to design personal assistants: intent classification, to understand the user request, and answer sentence selection, to carry out question answering from unstructured text. The evaluation results derived on five different real-world datasets, associated with different companies, show high accuracy for both tasks. This suggests that modern QA and dialog technology is effective for real-world tasks. I moderni personal assistant richiedono di accedere ad informazioni non strutturate per soddisfare con successo le richieste degli utenti. In questo articolo, abbiamo studiato l’uso dell’ apprendimento automatico per progettare due componenti di un personal assistant: classificazione degli intenti, per comprendere la richiesta dell’utente, e la selezione della frase di risposta per rispondere alle domande con testo non strutturato. I risultati della valutazione derivati da cinque diversi datasets del mondo reale, associati a diverse società, mostrano un’elevata precisione per entrambi i modelli. Ciò suggerisce che la moderna tecnologia di question answering e dialogo è efficace per attività reali.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"210 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115308075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-Language Transformer Adaptation for Frequently Asked Questions 常见问题的跨语言转换器改编
Pub Date : 1900-01-01 DOI: 10.4000/books.aaccademia.8463
Luca Di Liello, Daniele Bonadiman, Alessandro Moschitti, Cristina Giannone, A. Favalli, Raniero Romagnoli
Transfer learning has been proven to be effective, especially when data for the target domain/task is scarce. Sometimes data for a similar task is only available in another language because it may be very specific. In this paper, we explore the use of machine-translated data to transfer models on a related domain. Specifically, we transfer models from the question duplication task (QDT) to similar FAQ selection tasks. The source domain is the wellknown English Quora dataset, while the target domain is a collection of small Italian datasets for real case scenarios consisting of FAQ groups retrieved by pivoting on common answers. Our results show great improvements in the zero-shot learning setting and modest improvements using the standard transfer approach for direct in-domain adaptation 1.
迁移学习已被证明是有效的,特别是当目标领域/任务的数据稀缺时。有时,类似任务的数据只能以另一种语言提供,因为它可能非常具体。在本文中,我们探索了使用机器翻译数据来转移相关领域的模型。具体来说,我们将模型从问题复制任务(QDT)转移到类似的FAQ选择任务。源域是众所周知的英语Quora数据集,而目标域是一个小型意大利语数据集的集合,这些数据集是由常见答案组成的常见问题解答组组成的真实案例场景。我们的研究结果表明,在零射击学习设置中有很大的改进,而在直接域内自适应的标准迁移方法中有适度的改进。
{"title":"Cross-Language Transformer Adaptation for Frequently Asked Questions","authors":"Luca Di Liello, Daniele Bonadiman, Alessandro Moschitti, Cristina Giannone, A. Favalli, Raniero Romagnoli","doi":"10.4000/books.aaccademia.8463","DOIUrl":"https://doi.org/10.4000/books.aaccademia.8463","url":null,"abstract":"Transfer learning has been proven to be effective, especially when data for the target domain/task is scarce. Sometimes data for a similar task is only available in another language because it may be very specific. In this paper, we explore the use of machine-translated data to transfer models on a related domain. Specifically, we transfer models from the question duplication task (QDT) to similar FAQ selection tasks. The source domain is the wellknown English Quora dataset, while the target domain is a collection of small Italian datasets for real case scenarios consisting of FAQ groups retrieved by pivoting on common answers. Our results show great improvements in the zero-shot learning setting and modest improvements using the standard transfer approach for direct in-domain adaptation 1.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116024253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Italian Transformers Under the Linguistic Lens 语言学镜头下的意大利变形金刚
Pub Date : 1900-01-01 DOI: 10.4000/books.aaccademia.8745
Alessio Miaschi, Gabriele Sarti, D. Brunato, F. Dell’Orletta, Giulia Venturi
In this paper we present an in-depth investigation of the linguistic knowledge encoded by the transformer models currently available for the Italian language. In particular, we investigate whether and how using different architectures of probing models affects the performance of Italian transformers in encoding a wide spectrum of linguistic features. Moreover, we explore how this implicit knowledge varies according to different textual genres.
在本文中,我们提出了一个深入调查的语言知识编码的变压器模型目前可用于意大利语。特别是,我们研究了使用不同的探测模型架构是否以及如何影响意大利变压器在编码广泛的语言特征方面的性能。此外,我们探讨了这种隐性知识如何根据不同的文本体裁而变化。
{"title":"Italian Transformers Under the Linguistic Lens","authors":"Alessio Miaschi, Gabriele Sarti, D. Brunato, F. Dell’Orletta, Giulia Venturi","doi":"10.4000/books.aaccademia.8745","DOIUrl":"https://doi.org/10.4000/books.aaccademia.8745","url":null,"abstract":"In this paper we present an in-depth investigation of the linguistic knowledge encoded by the transformer models currently available for the Italian language. In particular, we investigate whether and how using different architectures of probing models affects the performance of Italian transformers in encoding a wide spectrum of linguistic features. Moreover, we explore how this implicit knowledge varies according to different textual genres.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128139027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
期刊
Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1