Pub Date : 2013-04-04DOI: 10.1109/GREENTECH.2013.49
P. Sotoodeh, R. Miller
The modular multilevel converter (MMC) is an attractive topology for HVDC/FACTS systems. In this paper a new single-phase MMC-based D-STATCOM inverter for grid connection is proposed. The proposed inverter is designed for grid-connected wind turbines in the small- to mid-sized (10kW-20kW) range using the most advanced multi-level inverter topology. The proposed MMC D-STATCOM inverter controls the DC link voltage as well as the active and reactive power transferred between the renewable energy source, specifically wind turbine, and the grid in order to regulate the power factor (PF) of the grid regardless of the input active power from wind turbine. The goal of this paper is to present a new inverter with D-STATCOM capability in a single unit without any additional cost. The 5-level D-STATCOM inverter is simulated and the results are presented to verify the operation of the proposed system. The simulation studies are carried out in the MATLAB/Simulink environment. To validate the simulation results, an experimental configuration of a 5-Level DSTATCOM inverter has been built and tested.
{"title":"A New Multi-level Inverter with FACTS Capabilities for Wind Applications","authors":"P. Sotoodeh, R. Miller","doi":"10.1109/GREENTECH.2013.49","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.49","url":null,"abstract":"The modular multilevel converter (MMC) is an attractive topology for HVDC/FACTS systems. In this paper a new single-phase MMC-based D-STATCOM inverter for grid connection is proposed. The proposed inverter is designed for grid-connected wind turbines in the small- to mid-sized (10kW-20kW) range using the most advanced multi-level inverter topology. The proposed MMC D-STATCOM inverter controls the DC link voltage as well as the active and reactive power transferred between the renewable energy source, specifically wind turbine, and the grid in order to regulate the power factor (PF) of the grid regardless of the input active power from wind turbine. The goal of this paper is to present a new inverter with D-STATCOM capability in a single unit without any additional cost. The 5-level D-STATCOM inverter is simulated and the results are presented to verify the operation of the proposed system. The simulation studies are carried out in the MATLAB/Simulink environment. To validate the simulation results, an experimental configuration of a 5-Level DSTATCOM inverter has been built and tested.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117038491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-04DOI: 10.1109/GREENTECH.2013.55
Amos Brocco
This paper presents the concept for an ad-hoc self-organized microgrid based on moveable and renewable energy sources and fully distributed coordination between intelligent power routing nodes. The primary goal of the proposed architecture is to build an adaptive, scalable, and reliable system to support energy provisioning with limited infrastructural planning. Our vision focuses on two use-case scenarios: promote electrification and energy sharing in isolated rural areas, and support emergency response crews in disaster relief situations. Both scenarios rely on the deployment of an autonomous microgrid based on movable generators and renewable sources which will dynamically reconfigure itself and adapt to changes with minimal user intervention.
{"title":"Ad-Hoc Self-Organized Microgrid for Rural Electrification and Post-disaster Response","authors":"Amos Brocco","doi":"10.1109/GREENTECH.2013.55","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.55","url":null,"abstract":"This paper presents the concept for an ad-hoc self-organized microgrid based on moveable and renewable energy sources and fully distributed coordination between intelligent power routing nodes. The primary goal of the proposed architecture is to build an adaptive, scalable, and reliable system to support energy provisioning with limited infrastructural planning. Our vision focuses on two use-case scenarios: promote electrification and energy sharing in isolated rural areas, and support emergency response crews in disaster relief situations. Both scenarios rely on the deployment of an autonomous microgrid based on movable generators and renewable sources which will dynamically reconfigure itself and adapt to changes with minimal user intervention.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115104947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-04DOI: 10.1109/GREENTECH.2013.26
A. Abdullah, A. Fekih
This paper presents the current status of wind energy technology and its developments. There are some challenges in the wind energy technology, once these challenges are overcome, wind energy can provide most of the electricity needs in the world. Wind is known globally as an environmentally friendly and cost effective solution to energy shortages. However, challenges remain in designing efficient and effective control systems that would maximize the output power of the turbines. This paper aims to provide a brief review of the current state of control technology for wind energy systems and also explores technical designs, challenges and areas of ongoing research.
{"title":"An Overview of the Current State of Wind Energy Technology Development in the US","authors":"A. Abdullah, A. Fekih","doi":"10.1109/GREENTECH.2013.26","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.26","url":null,"abstract":"This paper presents the current status of wind energy technology and its developments. There are some challenges in the wind energy technology, once these challenges are overcome, wind energy can provide most of the electricity needs in the world. Wind is known globally as an environmentally friendly and cost effective solution to energy shortages. However, challenges remain in designing efficient and effective control systems that would maximize the output power of the turbines. This paper aims to provide a brief review of the current state of control technology for wind energy systems and also explores technical designs, challenges and areas of ongoing research.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129360383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-04DOI: 10.1109/GREENTECH.2013.15
J. Weber, David Wenzhong-Gao, John Zhai
The concept of examining the feasibility of small-scale integrated hybrid renewable energy systems for mobile backup power generation has expanded greatly over the past decade. Increases in large scale power outages have become a common theme across America and other parts of the world as a result of natural disasters such as earthquakes, floods, hurricanes, and other extreme environmental conditions. These outages often disrupt commerce, business, and the quality of life for many of the consumers impacted including loss of life and significant cost to the tax payers in mitigating the effects of these disruptions. In addition, increasingly hostile social climates and threats of war have exposed the need for more reliable small scale backup power plants (both renewable and non-renewable) integrated to rapid recovery systems. As greater emphasis is placed on reducing the green house effect and the emissions of pollutants into the environment, major technological advancements in renewable energy is driving innovative approaches to improving Energy Returned On Energy Invested (EROEI), thus enabling a stronger business case for renewable over strictly non-renewable power generation systems, including mobile backup hybrid renewable power generation capabilities.
{"title":"Case Study: Small-Scale Hybrid Integrated Renewable Energy System (HI-RES): Emergency Mobile Backup Power Generation Station","authors":"J. Weber, David Wenzhong-Gao, John Zhai","doi":"10.1109/GREENTECH.2013.15","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.15","url":null,"abstract":"The concept of examining the feasibility of small-scale integrated hybrid renewable energy systems for mobile backup power generation has expanded greatly over the past decade. Increases in large scale power outages have become a common theme across America and other parts of the world as a result of natural disasters such as earthquakes, floods, hurricanes, and other extreme environmental conditions. These outages often disrupt commerce, business, and the quality of life for many of the consumers impacted including loss of life and significant cost to the tax payers in mitigating the effects of these disruptions. In addition, increasingly hostile social climates and threats of war have exposed the need for more reliable small scale backup power plants (both renewable and non-renewable) integrated to rapid recovery systems. As greater emphasis is placed on reducing the green house effect and the emissions of pollutants into the environment, major technological advancements in renewable energy is driving innovative approaches to improving Energy Returned On Energy Invested (EROEI), thus enabling a stronger business case for renewable over strictly non-renewable power generation systems, including mobile backup hybrid renewable power generation capabilities.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127197285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-04DOI: 10.1109/GREENTECH.2013.77
Ru Yang, N. Shue
This research is aimed to study the storage tank stratification design parameters effects on the efficiency of the large solar hot water system. Computer simulation with detailed CFD simulation for the storage tank, coupled with TRNSYS program simulation for the entire solar hot water system, is performed to study the system performance for various thermal-stratification-baffles design of the storage tank. The study is made for three representative cities of Taiwan by input their typical-meteorological-year (TMY) data. The results indicate the performance of a large solar hot water system can be significantly improved with proper designed thermal stratification baffles in the storage tank.
{"title":"Simulation Study for the Effect of the Storage Design on the Performance of a Large Solar Hot Water System","authors":"Ru Yang, N. Shue","doi":"10.1109/GREENTECH.2013.77","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.77","url":null,"abstract":"This research is aimed to study the storage tank stratification design parameters effects on the efficiency of the large solar hot water system. Computer simulation with detailed CFD simulation for the storage tank, coupled with TRNSYS program simulation for the entire solar hot water system, is performed to study the system performance for various thermal-stratification-baffles design of the storage tank. The study is made for three representative cities of Taiwan by input their typical-meteorological-year (TMY) data. The results indicate the performance of a large solar hot water system can be significantly improved with proper designed thermal stratification baffles in the storage tank.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132650377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-04DOI: 10.1109/GREENTECH.2013.30
A. Florita, B. Hodge, K. Orwig
Wind and solar power are playing an increasing role in the electrical grid, but their inherent power variability can augment uncertainties in the operation of power systems. One solution to help mitigate the impacts and provide more flexibility is enhanced wind and solar power forecasting; however, its relative utility is also uncertain. Within the variability of solar and wind power, repercussions from large ramping events are of primary concern. At the same time, there is no clear definition of what constitutes a ramping event, with various criteria used in different operational areas. Here, the swinging door algorithm, originally used for data compression in trend logging, is applied to identify variable generation ramping events from historic operational data. The identification of ramps in a simple and automated fashion is a critical task that feeds into a larger work of 1) defining novel metrics for wind and solar power forecasting that attempt to capture the true impact of forecast errors on system operations and economics, and 2) informing various power system models in a data-driven manner for superior exploratory simulation research. Both allow inference on sensitivities and meaningful correlations, as well as quantify the value of probabilistic approaches for future use in practice.
{"title":"Identifying Wind and Solar Ramping Events","authors":"A. Florita, B. Hodge, K. Orwig","doi":"10.1109/GREENTECH.2013.30","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.30","url":null,"abstract":"Wind and solar power are playing an increasing role in the electrical grid, but their inherent power variability can augment uncertainties in the operation of power systems. One solution to help mitigate the impacts and provide more flexibility is enhanced wind and solar power forecasting; however, its relative utility is also uncertain. Within the variability of solar and wind power, repercussions from large ramping events are of primary concern. At the same time, there is no clear definition of what constitutes a ramping event, with various criteria used in different operational areas. Here, the swinging door algorithm, originally used for data compression in trend logging, is applied to identify variable generation ramping events from historic operational data. The identification of ramps in a simple and automated fashion is a critical task that feeds into a larger work of 1) defining novel metrics for wind and solar power forecasting that attempt to capture the true impact of forecast errors on system operations and economics, and 2) informing various power system models in a data-driven manner for superior exploratory simulation research. Both allow inference on sensitivities and meaningful correlations, as well as quantify the value of probabilistic approaches for future use in practice.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122203350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-04DOI: 10.1109/GREENTECH.2013.18
M. Hammoudeh, F. Mancilla–David, Jeff D. Selman, P. Papantoni-Kazakos
A critical piece of the Smart Grid (SG) infrastructure is the supporting Communication Networks that facilitate data gathering, monitoring and control of the electric grid. Over the years, electric utilities built robust communication networks for their transmission and distribution systems, but stopped short of the “last mile” connections to the end user. A primary goal of the SG is to expand the communications network throughout and beyond the Distribution Network (DN); thus, enabling a holistic management and control of the electric grid from generation to consumption. For the realization of the Smart Grid goals, two-way communication capabilities must extend beyond the Distribution Network to the end user, allowing two-way data flow, e.g., real-time energy pricing as well as real-time demand data back to the utility operators. Selecting an appropriate communications architecture is the first and most important decision in designing a communications network since it will have lasting effects on the efficiency, reliability and cost of the network. This paper presents and evaluates various communication architectures for deployment of the SG within the DN and to the end users.
{"title":"Communication Architectures for Distribution Networks within the Smart Grid Initiative","authors":"M. Hammoudeh, F. Mancilla–David, Jeff D. Selman, P. Papantoni-Kazakos","doi":"10.1109/GREENTECH.2013.18","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.18","url":null,"abstract":"A critical piece of the Smart Grid (SG) infrastructure is the supporting Communication Networks that facilitate data gathering, monitoring and control of the electric grid. Over the years, electric utilities built robust communication networks for their transmission and distribution systems, but stopped short of the “last mile” connections to the end user. A primary goal of the SG is to expand the communications network throughout and beyond the Distribution Network (DN); thus, enabling a holistic management and control of the electric grid from generation to consumption. For the realization of the Smart Grid goals, two-way communication capabilities must extend beyond the Distribution Network to the end user, allowing two-way data flow, e.g., real-time energy pricing as well as real-time demand data back to the utility operators. Selecting an appropriate communications architecture is the first and most important decision in designing a communications network since it will have lasting effects on the efficiency, reliability and cost of the network. This paper presents and evaluates various communication architectures for deployment of the SG within the DN and to the end users.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127292549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-04DOI: 10.1109/GREENTECH.2013.69
Amamihe Onwuachumba, Yunhui Wu, M. Musavi
In this paper a new technique using artificial neural networks for power system state estimation is presented. This method does not require network observability analysis and uses fewer measurement variables than conventional techniques. This approach has been successfully implemented on 6-bus and 18-bus power systems and the results are provided.
{"title":"Reduced Model for Power System State Estimation Using Artificial Neural Networks","authors":"Amamihe Onwuachumba, Yunhui Wu, M. Musavi","doi":"10.1109/GREENTECH.2013.69","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.69","url":null,"abstract":"In this paper a new technique using artificial neural networks for power system state estimation is presented. This method does not require network observability analysis and uses fewer measurement variables than conventional techniques. This approach has been successfully implemented on 6-bus and 18-bus power systems and the results are provided.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123688920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-01DOI: 10.1109/GreenTech.2013.60
J. Hagar, L. Hagar
The concept of microgeneration [1] can be extended into homes which use a variety of techniques to generate energy using green concepts. This paper examines one such experimental house that uses active and passive systems to generate energy for the home while putting surpluses back onto the grid. This house is a proving ground of building and energy concepts with a goal of demonstrating feasibilities in multiple green technologies.
{"title":"An Examination of Multiple MicroGeneration Technologies Used within an Experimental Home: A Tire-bale Home Leverages Green Technologies for Energy Independence","authors":"J. Hagar, L. Hagar","doi":"10.1109/GreenTech.2013.60","DOIUrl":"https://doi.org/10.1109/GreenTech.2013.60","url":null,"abstract":"The concept of microgeneration [1] can be extended into homes which use a variety of techniques to generate energy using green concepts. This paper examines one such experimental house that uses active and passive systems to generate energy for the home while putting surpluses back onto the grid. This house is a proving ground of building and energy concepts with a goal of demonstrating feasibilities in multiple green technologies.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133488704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-03-01DOI: 10.1109/GREENTECH.2013.23
E. Muljadi, Mohit Singh, R. Bravo, V. Gevorgian
Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of PV deployment. Residential and commercial rooftop installations are connected to the distribution network; largescale installation PV power plants have benefited from tax incentives and the low cost of PV modules. As the penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. We developed a PV inverter dynamic model in PSCAD /EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations, symmetrical and unsymmetrical, were performed in the laboratory. We compared the simulation results with the bench test results.
{"title":"Dynamic Model Validation of PV Inverters under Short-Circuit Conditions","authors":"E. Muljadi, Mohit Singh, R. Bravo, V. Gevorgian","doi":"10.1109/GREENTECH.2013.23","DOIUrl":"https://doi.org/10.1109/GREENTECH.2013.23","url":null,"abstract":"Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of PV deployment. Residential and commercial rooftop installations are connected to the distribution network; largescale installation PV power plants have benefited from tax incentives and the low cost of PV modules. As the penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. We developed a PV inverter dynamic model in PSCAD /EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations, symmetrical and unsymmetrical, were performed in the laboratory. We compared the simulation results with the bench test results.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"161 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122768902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}