Additive manufacturing enables the production of complex geometries extremely difficult to create with conventional subtractive methods. While good at producing complex parts, its limitations can be seen through its penetration into everyday manufacturing markets. Throughput limitations, poor surface roughness, limited material selection, and repeatability concerns hinder additive manufacturing from revolutionizing all but the low-volume, high-value markets. This work characterizes combining powder-binder jetting with traditional casting techniques to create large, complex metal parts. Specifically, we extend this technology to wind turbine generators and provide initial feasibility of producing complex direct-drive generator rotor and stator designs. In this process, thermal inkjet printer heads selectively deposit binder on hydroperm casting powder. This powder is selectively solidified and baked to remove moisture before being cast through traditional methods. This work identifies a scalable manufacturing process to print large-scale wind turbine direct drive generators. As direct-drive generators are substantially larger than their synchronous counterparts, a printing process must be able to be scaled for a 2–5 MW 2–6m machine. For this study, research on the powder, binder, and printing parameters is conducted and evaluated for scalability.
{"title":"Powder-Binder Jetting Large-Scale, Metal Direct-Drive Generators: Selecting the Powder, Binder, and Process Parameters","authors":"Austin C. Hayes, G. Whiting","doi":"10.1115/power2019-1853","DOIUrl":"https://doi.org/10.1115/power2019-1853","url":null,"abstract":"\u0000 Additive manufacturing enables the production of complex geometries extremely difficult to create with conventional subtractive methods. While good at producing complex parts, its limitations can be seen through its penetration into everyday manufacturing markets. Throughput limitations, poor surface roughness, limited material selection, and repeatability concerns hinder additive manufacturing from revolutionizing all but the low-volume, high-value markets. This work characterizes combining powder-binder jetting with traditional casting techniques to create large, complex metal parts. Specifically, we extend this technology to wind turbine generators and provide initial feasibility of producing complex direct-drive generator rotor and stator designs. In this process, thermal inkjet printer heads selectively deposit binder on hydroperm casting powder. This powder is selectively solidified and baked to remove moisture before being cast through traditional methods. This work identifies a scalable manufacturing process to print large-scale wind turbine direct drive generators. As direct-drive generators are substantially larger than their synchronous counterparts, a printing process must be able to be scaled for a 2–5 MW 2–6m machine. For this study, research on the powder, binder, and printing parameters is conducted and evaluated for scalability.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"106 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134234633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seyyed Pooya Hekmati Athar, Dorsa Ziaei, N. Goudarzi
Renewable Energy (RE)-based power production often comes with certain challenges in variability and uncertainty of generated electricity. One promising solution to tackle these challenges is developing a network of RE power plants with sites located far enough from each other that experience different weather patterns. Most of the site selection-related literature use Geographical Information Systems to determine the studied site RE suitability. This work converts the site selection into a numerical problem through a novel Networked Renewable Power Plant Site Selection model and solves it by employing optimization techniques. To enhance the accuracy of the results, it compares a set of criteria for individual and network of sites at different regions to determine the exact locations for RE plant developments. The Analytical Hierarchy Process is used for criteria weighing. The state-of-the-art meta-heuristic Bare Bones of Fireworks algorithm offer a simple, fast, yet accurate approach to solve the optimization. The proposed method is applied on North Carolina wind farms for both individual and a network of sites. The results identified the areas with the highest wind capacity potential for individual or a network of wind farms in North Carolina. The identified suitable areas were verified with Amazon Wind Farm US East.
{"title":"Artificial Intelligence for Optimal Sitting of Individual and Networks of Wind Farms","authors":"Seyyed Pooya Hekmati Athar, Dorsa Ziaei, N. Goudarzi","doi":"10.1115/power2019-1948","DOIUrl":"https://doi.org/10.1115/power2019-1948","url":null,"abstract":"\u0000 Renewable Energy (RE)-based power production often comes with certain challenges in variability and uncertainty of generated electricity. One promising solution to tackle these challenges is developing a network of RE power plants with sites located far enough from each other that experience different weather patterns. Most of the site selection-related literature use Geographical Information Systems to determine the studied site RE suitability. This work converts the site selection into a numerical problem through a novel Networked Renewable Power Plant Site Selection model and solves it by employing optimization techniques. To enhance the accuracy of the results, it compares a set of criteria for individual and network of sites at different regions to determine the exact locations for RE plant developments. The Analytical Hierarchy Process is used for criteria weighing. The state-of-the-art meta-heuristic Bare Bones of Fireworks algorithm offer a simple, fast, yet accurate approach to solve the optimization. The proposed method is applied on North Carolina wind farms for both individual and a network of sites. The results identified the areas with the highest wind capacity potential for individual or a network of wind farms in North Carolina. The identified suitable areas were verified with Amazon Wind Farm US East.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133463803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The intermittency of renewable energies continues to be a limitation for their more widespread application because their large-scale storage is not yet practical. Concentrating solar power (CSP) has the possibility of thermally storing this energy to be used in times of higher demand at a more feasible storage price. The number of concentrated solar energy related projects have grown rapidly in recent years due to the advances in the associated solar technology. Some of the remaining issues regarding the associated high investment costs can be solved by integrating the solar potential into fossil fuel generation plants. An integrated solar combined cycle system (ISCCS) tends to be less dependent to climatic conditions and needs less capital inversion than a CSP system, letting the plant be more reliable and more economically feasible. In this work thus, two technologies of solar concentration (i) parabolic trough cylinder (PTC) and (ii) solar tower (ST) are initially integrated into a three-pressure levels combined cycle power plant. The proposed models are then modeled, simulated and properly assessed. Design and off design point computations are carried out taking into account local environmental conditions such as ambient temperature and direct solar radiation (DNI). The 8760 hourly-basis simulations carried out allow comparing the thermal and economic performance of the different power plant configurations accounted for in this work. The results show that injecting energy into the cycle at high temperatures does not necessarily imply a high power plant performance. In the studied plant configurations, introducing the solar generated steam mass flow rate at the evaporator outlet is slightly more efficient than introducing it at cycle points where temperatures are higher. At design point conditions thus, the plant configuration where the referred steam mass flow rate is introduced at the evaporator outlet generates 0.42% more power than those in which the steam is injected at higher cycle temperatures. At off design point conditions this value is reduced to 0.37%. The results also show that the months with high DNI values and those with low mean ambient temperatures are not necessarily the months which lead to the highest power outputs. In fact a balance between these two parameters, DNI and ambient temperature, leads to an operating condition where the power output is the highest. All plant configurations analyzed here are economically feasible, even so PTC related technologies tend to be more economically feasible than ST ones due to their lower investment costs.
{"title":"Cylindrical Parabolic Trough Concentrator and Solar Tower Comparison in an Integrated Solar Combined Cycle Power Plant","authors":"H. Bravo, J. C. Ramos, Cesar Celis","doi":"10.1115/power2019-1964","DOIUrl":"https://doi.org/10.1115/power2019-1964","url":null,"abstract":"\u0000 The intermittency of renewable energies continues to be a limitation for their more widespread application because their large-scale storage is not yet practical. Concentrating solar power (CSP) has the possibility of thermally storing this energy to be used in times of higher demand at a more feasible storage price. The number of concentrated solar energy related projects have grown rapidly in recent years due to the advances in the associated solar technology. Some of the remaining issues regarding the associated high investment costs can be solved by integrating the solar potential into fossil fuel generation plants. An integrated solar combined cycle system (ISCCS) tends to be less dependent to climatic conditions and needs less capital inversion than a CSP system, letting the plant be more reliable and more economically feasible. In this work thus, two technologies of solar concentration (i) parabolic trough cylinder (PTC) and (ii) solar tower (ST) are initially integrated into a three-pressure levels combined cycle power plant. The proposed models are then modeled, simulated and properly assessed. Design and off design point computations are carried out taking into account local environmental conditions such as ambient temperature and direct solar radiation (DNI). The 8760 hourly-basis simulations carried out allow comparing the thermal and economic performance of the different power plant configurations accounted for in this work. The results show that injecting energy into the cycle at high temperatures does not necessarily imply a high power plant performance. In the studied plant configurations, introducing the solar generated steam mass flow rate at the evaporator outlet is slightly more efficient than introducing it at cycle points where temperatures are higher. At design point conditions thus, the plant configuration where the referred steam mass flow rate is introduced at the evaporator outlet generates 0.42% more power than those in which the steam is injected at higher cycle temperatures. At off design point conditions this value is reduced to 0.37%. The results also show that the months with high DNI values and those with low mean ambient temperatures are not necessarily the months which lead to the highest power outputs. In fact a balance between these two parameters, DNI and ambient temperature, leads to an operating condition where the power output is the highest. All plant configurations analyzed here are economically feasible, even so PTC related technologies tend to be more economically feasible than ST ones due to their lower investment costs.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130551220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wind power is known as an abundant source of energy that can be a promising alternative to conventional energy resources. Obtaining a competitive cost of energy for wind power harnessing technologies requires accurate resource assessment and design analyses. A robust, yet cost-effective wind turbine structure design reduces the chance of system failure in extreme events; it also reduces the operation and maintenance cost. This work obtains the required inputs for conducting fluid structure interaction (FSI) analyses of 3D Bergey Excel 10kW wind turbine installed in Jennette’s Pier in North Carolina. Six years (2013–2018) wind data (magnitude and direction) at the Jennette’s Pier are used to obtain the site wind characteristics. Some worthwhile data such as prevailing wind direction and wind speed, average air temperature, pressure and density are determined through this study. The flow field around the turbine blades is simulated to obtain the pressure distribution and aerodynamic coefficients using computational fluid dynamics (CFD) software, ANSYS Workbench. The results will be beneficiary to the researchers and engineers in evaluating the turbine performance in sites with wind characteristics similar to Jennette’s Pier. Moreover, the outputs of the work can be used for designing enhanced drivetrain components.
{"title":"Fluid Structure Interaction Analyses of Wind Turbines: The North Carolina Jennette’s Pier Turbines Case Study","authors":"N. Goudarzi, Mir Hamed Mohafez, W. Williams","doi":"10.1115/power2019-1949","DOIUrl":"https://doi.org/10.1115/power2019-1949","url":null,"abstract":"\u0000 Wind power is known as an abundant source of energy that can be a promising alternative to conventional energy resources. Obtaining a competitive cost of energy for wind power harnessing technologies requires accurate resource assessment and design analyses. A robust, yet cost-effective wind turbine structure design reduces the chance of system failure in extreme events; it also reduces the operation and maintenance cost. This work obtains the required inputs for conducting fluid structure interaction (FSI) analyses of 3D Bergey Excel 10kW wind turbine installed in Jennette’s Pier in North Carolina. Six years (2013–2018) wind data (magnitude and direction) at the Jennette’s Pier are used to obtain the site wind characteristics. Some worthwhile data such as prevailing wind direction and wind speed, average air temperature, pressure and density are determined through this study. The flow field around the turbine blades is simulated to obtain the pressure distribution and aerodynamic coefficients using computational fluid dynamics (CFD) software, ANSYS Workbench. The results will be beneficiary to the researchers and engineers in evaluating the turbine performance in sites with wind characteristics similar to Jennette’s Pier. Moreover, the outputs of the work can be used for designing enhanced drivetrain components.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125812418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monolithic fuel is a fuel form that is considered for the conversion of high performance research reactors. This plate-type fuel consists of a high density U-Mo fuel in monolithic form that is sandwiched between zirconium diffusion barriers, and encapsulated in an aluminum cladding. To date, large number of plates have been irradiated with satisfactory perforamce. The program is now moving into the qualification phase, a predecessor to the timely conversion of the target reactors. It must be shown that the fuel system meets the safety standards and performs well in reactor. The requirement to satisfactory irradiation performance under normal operating conditions is primarily demonstrated by a successful testing. Since each reactor employs distinct fuel plate geometries for various consideration with unique plate design features and attributes, a single “generic” plate geometry capturing all of the extremities is not achievable. Furthermore, testing all these geometric and irradiation parameters on a large size plate is not practical. Therefore, a smaller, “down-scaled” versions of fuel plates, are often employed for experimental purposes. This limitation consequently requires much more cautious performance evaluations, as thermal and mechanical response of a plate with certain geometry may not be representative for a plate with a different geometry. To investigate if plate size has any effects on irradiation performance, the plates with various geometric dimensions were parametrically evaluated. In particular, length and width of the plates were varied between the bounding values. Temperature, deformation, stress values were comparatively evaluated. The results have indicated that effects of geometric ratios and plate size variations in length and width directions are insignificant. However, wider plates could become more prone to a warping-type deformation, if there are nonlinearities.
{"title":"Size Effects on Thermo-Mechanical Performance of U-10Mo Monolithic Fuel Plates","authors":"H. Ozaltun, H. Roh, W. Mohamed","doi":"10.1115/power2019-1844","DOIUrl":"https://doi.org/10.1115/power2019-1844","url":null,"abstract":"\u0000 Monolithic fuel is a fuel form that is considered for the conversion of high performance research reactors. This plate-type fuel consists of a high density U-Mo fuel in monolithic form that is sandwiched between zirconium diffusion barriers, and encapsulated in an aluminum cladding. To date, large number of plates have been irradiated with satisfactory perforamce. The program is now moving into the qualification phase, a predecessor to the timely conversion of the target reactors. It must be shown that the fuel system meets the safety standards and performs well in reactor. The requirement to satisfactory irradiation performance under normal operating conditions is primarily demonstrated by a successful testing. Since each reactor employs distinct fuel plate geometries for various consideration with unique plate design features and attributes, a single “generic” plate geometry capturing all of the extremities is not achievable. Furthermore, testing all these geometric and irradiation parameters on a large size plate is not practical. Therefore, a smaller, “down-scaled” versions of fuel plates, are often employed for experimental purposes. This limitation consequently requires much more cautious performance evaluations, as thermal and mechanical response of a plate with certain geometry may not be representative for a plate with a different geometry. To investigate if plate size has any effects on irradiation performance, the plates with various geometric dimensions were parametrically evaluated. In particular, length and width of the plates were varied between the bounding values. Temperature, deformation, stress values were comparatively evaluated. The results have indicated that effects of geometric ratios and plate size variations in length and width directions are insignificant. However, wider plates could become more prone to a warping-type deformation, if there are nonlinearities.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125149376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Desalination is becoming a popular and necessary process for producing fresh water in deserts and areas across the word affected by drought. Small Modular Reactor (SMR) technology is attractive for this application because it cogenerates steam and electricity to run multiple desalination processes at once. Multi-Effect Distillation (MED) technology requires steam to evaporate fresh water, while Reverse Osmosis (RO) only requires electricity for desalination. While RO typically produces fresh water more efficiently than MED, condensate from the evaporators can be flashed and sent to an absorption chiller to produce chilled water for space cooling. This study uses a 6-effect backward feed evaporator model to analyze revenues and savings from total freshwater and chilled water produced and determine the steam pressure from the SMR and loading schedule to produce maximum revenue for the specified desalination facility. Three loading schedules were chosen for this study: base loading, day/night loading, and diurnal demand loading, and revenues were calculated by closely matching a demand of 50,000 people. Day/night loading resulted in significantly more revenue and chilled water production than the other two schedules. The coupling of RO and MED systems to a small modular reactor could result in increased revenue for a desalination plant while meeting the freshwater demands of a community.
{"title":"Revenue Maximization for a Groundwater Desalination Plant and Small Modular Reactor Coupling","authors":"Elizabeth K. Worsham, Alec Thomas, S. Terry","doi":"10.1115/power2019-1823","DOIUrl":"https://doi.org/10.1115/power2019-1823","url":null,"abstract":"\u0000 Desalination is becoming a popular and necessary process for producing fresh water in deserts and areas across the word affected by drought. Small Modular Reactor (SMR) technology is attractive for this application because it cogenerates steam and electricity to run multiple desalination processes at once. Multi-Effect Distillation (MED) technology requires steam to evaporate fresh water, while Reverse Osmosis (RO) only requires electricity for desalination. While RO typically produces fresh water more efficiently than MED, condensate from the evaporators can be flashed and sent to an absorption chiller to produce chilled water for space cooling. This study uses a 6-effect backward feed evaporator model to analyze revenues and savings from total freshwater and chilled water produced and determine the steam pressure from the SMR and loading schedule to produce maximum revenue for the specified desalination facility. Three loading schedules were chosen for this study: base loading, day/night loading, and diurnal demand loading, and revenues were calculated by closely matching a demand of 50,000 people. Day/night loading resulted in significantly more revenue and chilled water production than the other two schedules. The coupling of RO and MED systems to a small modular reactor could result in increased revenue for a desalination plant while meeting the freshwater demands of a community.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129943578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
From a thermodynamic viewpoint, it is almost possible to utilize all permanent gases as a working fluid for closed-cycle gas turbine energy conversion system. However, this possibility could be limited due to several criteria, some of which are dictated by both technological and economic requirements. This paper provides a risk assessment on possible uncertainties and operational challenges for selected working fluids such as helium, carbon-dioxide, nitrogen and air, which could impact on the closed-cycle gas turbine technology. The risk assessment presented in this paper is described in two parts which include; technological and financial risk. The technological risk gives an assessment on the effect of the selected working fluids on components material technology, turbine entry temperature, and fluid management system while the financial risk aspect gives an assessment in terms of system cost implications influenced by the working fluids and the impact of legislation on investment decision. The overarching discussions from this paper show that helium has an advantage of a possible compact design which could undoubtedly be important cost savings, however, due to government policies on its availability, the operational cost for using helium could make it a huge disadvantage compared with other working fluids discussed in this paper.
{"title":"Risk Assessment on Working Fluid Selection for Closed-Cycle Gas Turbine Systems","authors":"E. Osigwe, P. Pilidis, T. Nikolaidis, D. Igbong","doi":"10.1115/power2019-1861","DOIUrl":"https://doi.org/10.1115/power2019-1861","url":null,"abstract":"\u0000 From a thermodynamic viewpoint, it is almost possible to utilize all permanent gases as a working fluid for closed-cycle gas turbine energy conversion system. However, this possibility could be limited due to several criteria, some of which are dictated by both technological and economic requirements. This paper provides a risk assessment on possible uncertainties and operational challenges for selected working fluids such as helium, carbon-dioxide, nitrogen and air, which could impact on the closed-cycle gas turbine technology. The risk assessment presented in this paper is described in two parts which include; technological and financial risk. The technological risk gives an assessment on the effect of the selected working fluids on components material technology, turbine entry temperature, and fluid management system while the financial risk aspect gives an assessment in terms of system cost implications influenced by the working fluids and the impact of legislation on investment decision. The overarching discussions from this paper show that helium has an advantage of a possible compact design which could undoubtedly be important cost savings, however, due to government policies on its availability, the operational cost for using helium could make it a huge disadvantage compared with other working fluids discussed in this paper.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123438970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Across the world, many people, especially in rural communities, still lack access to secure, affordable electricity supplies. Many countries also lack or have under-developed indigenous fossil fuel resources, or rely on environmentally unfriendly fuels such as coal or Heavy Fuel Oil. Many under-developed regions though are blessed with considerable agricultural resources, and well-suited to Distributed Power Generation, where smaller decentralized power plants are located close to the actual energy consumers. Distributed Power eliminates the need for an electricity transmission grid, or reduces the investment costs necessary to strengthen the grid system, and helps ensure stable, secure electricity to support local economic growth. Agricultural wastes can be used as a locally available feedstock to produce the energy required to electrify regions and stimulate economic growth. This paper examines the benefits of applying Poly-generation — the production of multiple products at a single location — and examines a proposed bio-refinery scheme to produce ethanol from agricultural waste. The ethanol production process produces a waste biogas, which can then be used in a high efficiency Cogeneration (or Combined Heat and Power) plant as a fuel for gas turbines to generate electricity and steam (heat), not just for the bio-refinery but also local industry and businesses. By creating a high value product (ethanol) along with a free fuel, the bio-refinery acts as an anchor plant to provide reliable, affordable electricity to the local community. As well as providing economic benefits, such a concept has multiple environmental benefits as regions and nations try to combine growth in energy demand with reduction in global greenhouse gas emissions: agricultural residues that would otherwise have decayed emitting methane and CO2 into the atmosphere are used to create a high value product in ethanol, while using the biogas as a fuel displaces combustion of fossil fuels, reducing both combustion emissions and those associated with transportation of the fuel to the point of use.
{"title":"Poly-Generation Using Biogas From Agricultural Wastes","authors":"M. Welch","doi":"10.1115/power2019-1822","DOIUrl":"https://doi.org/10.1115/power2019-1822","url":null,"abstract":"\u0000 Across the world, many people, especially in rural communities, still lack access to secure, affordable electricity supplies. Many countries also lack or have under-developed indigenous fossil fuel resources, or rely on environmentally unfriendly fuels such as coal or Heavy Fuel Oil. Many under-developed regions though are blessed with considerable agricultural resources, and well-suited to Distributed Power Generation, where smaller decentralized power plants are located close to the actual energy consumers. Distributed Power eliminates the need for an electricity transmission grid, or reduces the investment costs necessary to strengthen the grid system, and helps ensure stable, secure electricity to support local economic growth. Agricultural wastes can be used as a locally available feedstock to produce the energy required to electrify regions and stimulate economic growth.\u0000 This paper examines the benefits of applying Poly-generation — the production of multiple products at a single location — and examines a proposed bio-refinery scheme to produce ethanol from agricultural waste. The ethanol production process produces a waste biogas, which can then be used in a high efficiency Cogeneration (or Combined Heat and Power) plant as a fuel for gas turbines to generate electricity and steam (heat), not just for the bio-refinery but also local industry and businesses. By creating a high value product (ethanol) along with a free fuel, the bio-refinery acts as an anchor plant to provide reliable, affordable electricity to the local community. As well as providing economic benefits, such a concept has multiple environmental benefits as regions and nations try to combine growth in energy demand with reduction in global greenhouse gas emissions: agricultural residues that would otherwise have decayed emitting methane and CO2 into the atmosphere are used to create a high value product in ethanol, while using the biogas as a fuel displaces combustion of fossil fuels, reducing both combustion emissions and those associated with transportation of the fuel to the point of use.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114890613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The most recent design of U-Mo monolithic fuel as adopted by the U.S. for the conversion of its High Performance Research Reactors (USHPRR) from high enrichment uranium (HEU) to low enrichment uranium fuel (LEU, < 20% U235) consists of a high density (LEU) U-10Mo fuel sandwiched between Zirconium (Zr) diffusion barriers and encapsulated in aluminum (AA6061) cladding. In this work, finite element analysis (FEA) was used to evaluate effect of Zr diffusion barrier properties on the thermal and mechanical performance of a U-10Mo monolithic fuel plate by considering possible variation in thermal and mechanical properties of the Zr diffusion barrier. Possible variation in thermo-mechanical properties of the Zr diffusion barrier were determined and a simulation matrix was designed accordingly. Analyses of simulation results included determination of global peak stresses in the fuel, Zr diffusion barrier, and cladding sections as well as the plate thickness profile at a transverse section toward the top side of the plate. Results showed that variation in yield stress, elastic modulus and thermal conductivity of the Zr diffusion barrier has negligible effect on the thermal and mechanical performance of the monolithic fuel plate. The effect of variation in these properties was found to be limited to the barrier section itself, which may be attributed to the relatively smaller thickness of that section compared to the fuel and cladding sections of the fuel plate.
{"title":"Effect of Zr Diffusion Barrier Properties on the Irradiation Performance of U-10Mo Monolithic Fuel Plate","authors":"W. Mohamed, H. Ozaltun, H. Roh","doi":"10.1115/power2019-1870","DOIUrl":"https://doi.org/10.1115/power2019-1870","url":null,"abstract":"\u0000 The most recent design of U-Mo monolithic fuel as adopted by the U.S. for the conversion of its High Performance Research Reactors (USHPRR) from high enrichment uranium (HEU) to low enrichment uranium fuel (LEU, < 20% U235) consists of a high density (LEU) U-10Mo fuel sandwiched between Zirconium (Zr) diffusion barriers and encapsulated in aluminum (AA6061) cladding. In this work, finite element analysis (FEA) was used to evaluate effect of Zr diffusion barrier properties on the thermal and mechanical performance of a U-10Mo monolithic fuel plate by considering possible variation in thermal and mechanical properties of the Zr diffusion barrier. Possible variation in thermo-mechanical properties of the Zr diffusion barrier were determined and a simulation matrix was designed accordingly. Analyses of simulation results included determination of global peak stresses in the fuel, Zr diffusion barrier, and cladding sections as well as the plate thickness profile at a transverse section toward the top side of the plate. Results showed that variation in yield stress, elastic modulus and thermal conductivity of the Zr diffusion barrier has negligible effect on the thermal and mechanical performance of the monolithic fuel plate. The effect of variation in these properties was found to be limited to the barrier section itself, which may be attributed to the relatively smaller thickness of that section compared to the fuel and cladding sections of the fuel plate.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124874197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shilin Song, D. Chong, Quanbin Zhao, Weixiong Chen, Junjie Yan
Steam jet condensation through sonic nozzle in quiescent subcooled water pool is important for the safety of nuclear reactor system. In this study, the dynamic process of stable condensation jet steam plume is obtained by numerical simulation method. The simulation results are in good agreement with the experimental results. The flow field results indicate that two typical fluctuation regimes exist in the dynamic process of steam plume. Simultaneous analysis of pressure and flow field indicates that two fluctuation regimes produce different pressure pulses. When the detachment phenomenon occurs during the fluctuation of the steam plume, a pressure pulse which value is clearly greater than 220 kPa is generated. When the plume sharply contracts without obvious detachment phenomenon during the fluctuation process, a pressure pulse which value is almost lower than 120 kPa is generated.
{"title":"Unsteady Simulation on Flow Characteristics of Steam Jet Condensed Into Subcooled Water","authors":"Shilin Song, D. Chong, Quanbin Zhao, Weixiong Chen, Junjie Yan","doi":"10.1115/power2019-1889","DOIUrl":"https://doi.org/10.1115/power2019-1889","url":null,"abstract":"\u0000 Steam jet condensation through sonic nozzle in quiescent subcooled water pool is important for the safety of nuclear reactor system. In this study, the dynamic process of stable condensation jet steam plume is obtained by numerical simulation method. The simulation results are in good agreement with the experimental results. The flow field results indicate that two typical fluctuation regimes exist in the dynamic process of steam plume. Simultaneous analysis of pressure and flow field indicates that two fluctuation regimes produce different pressure pulses. When the detachment phenomenon occurs during the fluctuation of the steam plume, a pressure pulse which value is clearly greater than 220 kPa is generated. When the plume sharply contracts without obvious detachment phenomenon during the fluctuation process, a pressure pulse which value is almost lower than 120 kPa is generated.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131673078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}