In present work, optimization of engine performance and emission were performed for different butanol diesel blends (5–20%) for various engine operating parameter using Taguchi DoE with AHP Optimization Technique. Single cylinder VCR Engine (CI) was fueled with different blend of diesel and butanol and tested for various CR, FIP and FIT at different load conditions (Idle, 1/3, 2/3 and full load). First 3-D interaction plot is drawn to understand the effect of different engine parameter on butanol-diesel blend combustion at different load conditions for NOx and Smoke formation. It’s observed that result vary with changes in operating parameter with different load conditions. Hence to optimize the engine operating parameter setting for correct butanol blend for all load conditions, AHP optimization with Taguchi DoE is performed and it’s found that butanol blend of 15% with CR of 15, FIP of 260bar and FIT of 25°bTDC is optimum combination to get lowest emission with good engine performance. The use of 15% butanol is found most suitable as it gives favorable engine performance and low emission for all test load conditions.
{"title":"Optimization of Engine Performance and Emission for Various n-Butanol Blends at Different Operating Parameter Condition Using MADM Technique","authors":"A. Patil, A. D. Desai","doi":"10.1115/power2019-1824","DOIUrl":"https://doi.org/10.1115/power2019-1824","url":null,"abstract":"\u0000 In present work, optimization of engine performance and emission were performed for different butanol diesel blends (5–20%) for various engine operating parameter using Taguchi DoE with AHP Optimization Technique. Single cylinder VCR Engine (CI) was fueled with different blend of diesel and butanol and tested for various CR, FIP and FIT at different load conditions (Idle, 1/3, 2/3 and full load). First 3-D interaction plot is drawn to understand the effect of different engine parameter on butanol-diesel blend combustion at different load conditions for NOx and Smoke formation. It’s observed that result vary with changes in operating parameter with different load conditions. Hence to optimize the engine operating parameter setting for correct butanol blend for all load conditions, AHP optimization with Taguchi DoE is performed and it’s found that butanol blend of 15% with CR of 15, FIP of 260bar and FIT of 25°bTDC is optimum combination to get lowest emission with good engine performance. The use of 15% butanol is found most suitable as it gives favorable engine performance and low emission for all test load conditions.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133139048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Jiawei, Hu Di, Tao Yang, Gao Wei, Chunmei Li, Zhihui Huang
In order to explore the operation and maintenance characteristics of important auxiliary machines in large-scale power plant coal-fired boilers, a running state assessment model for auxiliary equipment is established. In this paper, taking the complex variability of the operating conditions of thermal power equipment into consider, auto encoder model combined with fuzzy synthetic is proposed. Based on the residual of the model results and the actual power plant operation data, combined with the fuzzy evaluation model to establish a state assessment model, and analyze the actual situation of the induced draft fan of the power plant, to make a real-time assessment of operation status. The evaluation results show the advantages of the state assessment strategy proposed in this paper, and it can reflect the deterioration of the induced draft fan status in time, providing guidance for the operation and maintenance of the equipment.
{"title":"Running State Assessment for Induced Draft Fans Using Auto Encoder Model Combined With Fuzzy Synthetic","authors":"Yang Jiawei, Hu Di, Tao Yang, Gao Wei, Chunmei Li, Zhihui Huang","doi":"10.1115/power2019-1875","DOIUrl":"https://doi.org/10.1115/power2019-1875","url":null,"abstract":"\u0000 In order to explore the operation and maintenance characteristics of important auxiliary machines in large-scale power plant coal-fired boilers, a running state assessment model for auxiliary equipment is established. In this paper, taking the complex variability of the operating conditions of thermal power equipment into consider, auto encoder model combined with fuzzy synthetic is proposed. Based on the residual of the model results and the actual power plant operation data, combined with the fuzzy evaluation model to establish a state assessment model, and analyze the actual situation of the induced draft fan of the power plant, to make a real-time assessment of operation status. The evaluation results show the advantages of the state assessment strategy proposed in this paper, and it can reflect the deterioration of the induced draft fan status in time, providing guidance for the operation and maintenance of the equipment.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"100 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116337124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Many hydrogen cooled generators operate with no hydrogen dryer. Plant personnel offer a variety of reasons: • The OEM didn’t supply a dryer to begin with. • Manual Reactivations are too labor intensive. • Don’t think their generator is wet. • Because they have a Gas Turbine (no steam), they don’t think there is anywhere for the hydrogen to pick up moisture. • Don’t think moisture matters. • Purity is good so everything must be fine. • They employ “Bleed and Feed” or “Scavenging” to deal with purity / moisture issues. Generator manufacturers recommend keeping the hydrogen dry. We had a theory that many generators were much wetter than was realized or recommended by the manufacturers. We took portable dewpoint analyzers to the plants to test the actual dewpoint of the hydrogen. This paper presents our results. Over 90% of the generators tested were found to have hydrogen dewpoints higher than the generator manufacturer’s recommendation.
{"title":"Gas Turbine and Combined Cycle Generator Dewpoints: Worse Than Expected","authors":"T. Warren, James Dustin Ketchem","doi":"10.1115/power2019-1967","DOIUrl":"https://doi.org/10.1115/power2019-1967","url":null,"abstract":"\u0000 Many hydrogen cooled generators operate with no hydrogen dryer.\u0000 Plant personnel offer a variety of reasons:\u0000 • The OEM didn’t supply a dryer to begin with.\u0000 • Manual Reactivations are too labor intensive.\u0000 • Don’t think their generator is wet.\u0000 • Because they have a Gas Turbine (no steam), they don’t think there is anywhere for the hydrogen to pick up moisture.\u0000 • Don’t think moisture matters.\u0000 • Purity is good so everything must be fine.\u0000 • They employ “Bleed and Feed” or “Scavenging” to deal with purity / moisture issues.\u0000 Generator manufacturers recommend keeping the hydrogen dry. We had a theory that many generators were much wetter than was realized or recommended by the manufacturers. We took portable dewpoint analyzers to the plants to test the actual dewpoint of the hydrogen.\u0000 This paper presents our results.\u0000 Over 90% of the generators tested were found to have hydrogen dewpoints higher than the generator manufacturer’s recommendation.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"331 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116233482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The integrated solar energy-driven chiller combined cycle system (SCCC) has a problem of low annual solar energy utilization. The solar thermal efficiency and power output of the traditional integrated solar combined cycle system (ISCC) are limited by the integrated solar mirror field area and Rankine cycle efficiency. This paper presents a new system, on the basis of the combined cycle system with the three pressure HRSG with reheat, the solar energy is integrated into the chiller for cooling the compressor inlet air of gas turbine and the heat recovery steam generator (HRSG) for increasing the power output simultaneously. The Aspen Plus, TRNSYS and EBSILON softwares are applied in this paper to build the models of the overall system. The solar thermal efficiency, annual solar power generation and annual solar thermal efficiency are used to evaluate the performances of the new system, the traditional ISCC system and SCCC system. During the summer solstice, the proportions of solar energy used in cooling and heating are set as 40% and 60% in new system, respectively. The research results show that the new system has a higher power output (406.37MW), thermal cycle efficiency (53.61%) and solar thermal efficiency (48.85%) compared with the traditional ISCC system (385.63MW, 51.67%, and 24.43%, respectively) at the design point. The new system can regulates the proportions of solar energy used in the chiller and HRSG based on the monthly meteorological data, in order to maximize the annual solar energy utilization and annual solar power generation. The new system’s annual solar energy utilization hours (2071h) and solar power generation (25.863GW·h) are far greater than those of SCCC system (1498h, 18.185GW·h, respectively). Therefore, the proposed new system with the simultaneous integrations of solar energy with both the chiller and HRSG not only greatly increases the utilization rate of solar energy, but also has the significant thermodynamic advantages.
{"title":"Study on a New Solar Thermal Energy Complementary Power Generation System Based on Gas-Steam Combined Cycle","authors":"Duan Liqiang, Lv Zhipeng, Wang Zhen","doi":"10.1115/power2019-1814","DOIUrl":"https://doi.org/10.1115/power2019-1814","url":null,"abstract":"\u0000 The integrated solar energy-driven chiller combined cycle system (SCCC) has a problem of low annual solar energy utilization. The solar thermal efficiency and power output of the traditional integrated solar combined cycle system (ISCC) are limited by the integrated solar mirror field area and Rankine cycle efficiency. This paper presents a new system, on the basis of the combined cycle system with the three pressure HRSG with reheat, the solar energy is integrated into the chiller for cooling the compressor inlet air of gas turbine and the heat recovery steam generator (HRSG) for increasing the power output simultaneously. The Aspen Plus, TRNSYS and EBSILON softwares are applied in this paper to build the models of the overall system. The solar thermal efficiency, annual solar power generation and annual solar thermal efficiency are used to evaluate the performances of the new system, the traditional ISCC system and SCCC system. During the summer solstice, the proportions of solar energy used in cooling and heating are set as 40% and 60% in new system, respectively. The research results show that the new system has a higher power output (406.37MW), thermal cycle efficiency (53.61%) and solar thermal efficiency (48.85%) compared with the traditional ISCC system (385.63MW, 51.67%, and 24.43%, respectively) at the design point. The new system can regulates the proportions of solar energy used in the chiller and HRSG based on the monthly meteorological data, in order to maximize the annual solar energy utilization and annual solar power generation. The new system’s annual solar energy utilization hours (2071h) and solar power generation (25.863GW·h) are far greater than those of SCCC system (1498h, 18.185GW·h, respectively). Therefore, the proposed new system with the simultaneous integrations of solar energy with both the chiller and HRSG not only greatly increases the utilization rate of solar energy, but also has the significant thermodynamic advantages.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"159 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122921037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nawshad Arslan Islam, M. Hossain, A. Choudhuri, P. Morton, R. Wicker
The article presents an exploration of design and prototyping of oxy-fuel injectors with integrated temperature sensing capabilities using powder bed fusion additive manufacturing (AM) technologies. A primary focus of this work was to develop powder removal techniques to completely remove sintered powders from internal cavities, which facilitated the implementation of complex injector geometries as well as sensor placements within the parts. It was found that submerging the part in liquid nitrogen, in combination with exposure to ultrasonic vibration, provided effective powder removal. Mechanical testing of fabricated components and test coupons showed no significant change in the mechanical strength of the part due to the addition of liquid nitrogen which creates a thermal shock. Metallography and powder characterization through the use of SEM and EDS showed no change in metallurgical properties of the parts due to the use of liquid nitrogen and ultrasonic energy. The injectors were then test fired in both atmospheric and high-pressure conditions at different firing inputs (55–275 kW).
{"title":"Additive Manufacturing and Hot Fire Testing of Complex Injectors With Integrated Temperature Sensors","authors":"Nawshad Arslan Islam, M. Hossain, A. Choudhuri, P. Morton, R. Wicker","doi":"10.1115/power2019-1938","DOIUrl":"https://doi.org/10.1115/power2019-1938","url":null,"abstract":"The article presents an exploration of design and prototyping of oxy-fuel injectors with integrated temperature sensing capabilities using powder bed fusion additive manufacturing (AM) technologies. A primary focus of this work was to develop powder removal techniques to completely remove sintered powders from internal cavities, which facilitated the implementation of complex injector geometries as well as sensor placements within the parts. It was found that submerging the part in liquid nitrogen, in combination with exposure to ultrasonic vibration, provided effective powder removal. Mechanical testing of fabricated components and test coupons showed no significant change in the mechanical strength of the part due to the addition of liquid nitrogen which creates a thermal shock. Metallography and powder characterization through the use of SEM and EDS showed no change in metallurgical properties of the parts due to the use of liquid nitrogen and ultrasonic energy. The injectors were then test fired in both atmospheric and high-pressure conditions at different firing inputs (55–275 kW).","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122713075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhu Wang, Ming Liu, Yongliang Zhao, D. Chong, Junjie Yan
The stability of the live and reheat steam temperatures is of great significance for the efficient, flexible and safe operation of coal-fired power plants. The double reheat boilers are large inertia, non-linearity and high coupling. Therefore, the temperature controls of live and reheat steams are very difficult during load cycling processes. The heat storage in the double reheat boiler changes during load cycling process, which will affect the performances of temperature control. In this study, dynamic simulation models of an ultra-supercritical double reheat tower boiler and its temperature control models are developed based on the GSE software. These models are validated. Then, changes of the boiler system heat storage during different load cycling processes are studied. Results reveal that the metal heat storage is more than working medium ones at steady state load. However, the changing quantities of working medium heat storage are more than the metal ones between different loads. During load cycling processes, the changing tendencies of reheat steam temperatures, the difference of heat storage between real-time and steady state values (DHSBRS) and the difference of coal feeding rate between real-time and steady values (DCBRS) are similar. The fluctuations of reheat steam temperatures have a delay compared with DHSBRS ones, and the fluctuations of DHSBRS fluctuation have a delay compared with DCBRS ones. The delay time increases with the load cycling rates. The results are aimed at providing some guidance for the control system design of the double-reheat boiler system and the safe and flexible operation of power plants.
{"title":"Study on Heat Storage Change Characteristics of a Double Reheat Boiler During Load Cycling Processes","authors":"Zhu Wang, Ming Liu, Yongliang Zhao, D. Chong, Junjie Yan","doi":"10.1115/power2019-1906","DOIUrl":"https://doi.org/10.1115/power2019-1906","url":null,"abstract":"\u0000 The stability of the live and reheat steam temperatures is of great significance for the efficient, flexible and safe operation of coal-fired power plants. The double reheat boilers are large inertia, non-linearity and high coupling. Therefore, the temperature controls of live and reheat steams are very difficult during load cycling processes. The heat storage in the double reheat boiler changes during load cycling process, which will affect the performances of temperature control. In this study, dynamic simulation models of an ultra-supercritical double reheat tower boiler and its temperature control models are developed based on the GSE software. These models are validated. Then, changes of the boiler system heat storage during different load cycling processes are studied. Results reveal that the metal heat storage is more than working medium ones at steady state load. However, the changing quantities of working medium heat storage are more than the metal ones between different loads. During load cycling processes, the changing tendencies of reheat steam temperatures, the difference of heat storage between real-time and steady state values (DHSBRS) and the difference of coal feeding rate between real-time and steady values (DCBRS) are similar. The fluctuations of reheat steam temperatures have a delay compared with DHSBRS ones, and the fluctuations of DHSBRS fluctuation have a delay compared with DCBRS ones. The delay time increases with the load cycling rates. The results are aimed at providing some guidance for the control system design of the double-reheat boiler system and the safe and flexible operation of power plants.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"170 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128371153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A transient gas-solid model based on CPFD Software’s Barracuda Virtual Reactor was developed for a feed system to a pilot-scale pressurized oxy-coal (POC) reactor. A simplified geometry with a vertical coal hopper feeding into a 0.635-cm diameter horizontal pipe was used to represent key elements of the feed system. Coal particles were transported with 20-atm CO2 gas. The feed system was required to maintain a steady flow of gas and solids at a coal flow rate of approximately 3.8 g/s and a CO2 to coal mass ratio in the range 1–2. Sensitivity of model results to mesh size and particle interaction sub-model settings was assessed. Two design concepts were evaluated. A gravity-fed concept was found to be infeasible due to inadequate coal flow rates even at very high CO2 to coal flow ratios. This was due to gravitational forces being insufficient to move the pressurized coal from the hopper into the CO2 stream at the desired rate. A fluidized bed concept was found to provide the desired coal flow rate and CO2 to coal flow ratio. CO2 injected at the hopper base first fluidized the vertical coal bed before transporting it through a horizontal exit pipe. A second CO2 inlet downstream of the hopper exit pipe was used to dilute the fluidized coal and increase pipe velocities to minimize coal drop out. The amount of coal transported from the hopper was dependent on the net CO2 hopper flow but independent of the CO2 dilution flow. This meant that the coal flow rate and CO2 to coal flow ratio could be controlled independently. Pipe exit coal flow rates were found to fluctuate at levels acceptable for steady burner operation.
{"title":"Modeling Pressurized Dense Phase Coal Fluidization and Transport","authors":"B. Adams, Taylor L. Schroedter","doi":"10.1115/power2019-1874","DOIUrl":"https://doi.org/10.1115/power2019-1874","url":null,"abstract":"\u0000 A transient gas-solid model based on CPFD Software’s Barracuda Virtual Reactor was developed for a feed system to a pilot-scale pressurized oxy-coal (POC) reactor. A simplified geometry with a vertical coal hopper feeding into a 0.635-cm diameter horizontal pipe was used to represent key elements of the feed system. Coal particles were transported with 20-atm CO2 gas. The feed system was required to maintain a steady flow of gas and solids at a coal flow rate of approximately 3.8 g/s and a CO2 to coal mass ratio in the range 1–2. Sensitivity of model results to mesh size and particle interaction sub-model settings was assessed.\u0000 Two design concepts were evaluated. A gravity-fed concept was found to be infeasible due to inadequate coal flow rates even at very high CO2 to coal flow ratios. This was due to gravitational forces being insufficient to move the pressurized coal from the hopper into the CO2 stream at the desired rate. A fluidized bed concept was found to provide the desired coal flow rate and CO2 to coal flow ratio. CO2 injected at the hopper base first fluidized the vertical coal bed before transporting it through a horizontal exit pipe. A second CO2 inlet downstream of the hopper exit pipe was used to dilute the fluidized coal and increase pipe velocities to minimize coal drop out. The amount of coal transported from the hopper was dependent on the net CO2 hopper flow but independent of the CO2 dilution flow. This meant that the coal flow rate and CO2 to coal flow ratio could be controlled independently. Pipe exit coal flow rates were found to fluctuate at levels acceptable for steady burner operation.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117131037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. G. Burra, Paramvir Singh, N. Déparrois, A. Gupta
Development of alternative carbonaceous sources for energy production is essential to alleviate the dependence on depleting fossil fuels which led to increasing atmospheric CO2 and thus global warming. While biomass utilization for energy and chemical production has been extensively studied in the literature, such studies on municipal solid wastes is difficult to interpret due to the heterogeneous nature of the waste. Understanding of the influence of individual components is necessary for comprehensive development of waste-to-energy pathway. One such waste that is complicated and has often been ignored in the literature is composite polymer absorbent material waste which can also be considered as a potential feedstock for thermochemical pathway of energy production. Composite polymer absorbent materials are ubiquitously used these days in the form of sanitary napkins, diapers, water blockers, fire blockers and surgical pads due to their high water-absorptive nature. Pyrolysis and CO2 gasification is ideal for such materials due to its versatile feedstock intake and uniform product output in the form of syngas with adjustable composition. CO2 gasification also provides the added benefit of CO2 utilization which provides carbon offset to this process. In the present study, a mixture of cellulose, absorbent material (sodium polyacrylate), polypropylene and polystyrene in a fixed proportion, to model approximate composition of a diaper, was examined for its pyrolysis and CO2 gasification capability for viable syngas production. The influence of individual components into the syngas yield from the composite waste gasification was also investigated. A fixed-bed, semi-batch reactor facility along with gas chromatography was employed to analyse the syngas yield and compositional evolution. Pyrolysis was done under nitrogen atmosphere and gasification was done under CO2 atmosphere. CO2 gasification provided net CO2 consumption which means a net reduction in carbon emissions per joule of energy produced. The sample was tested under four isothermal conditions of 973, 1073, and 1173 K to understand the impact of operational conditions on the syngas yield. Influence of individual component of the composite absorbent waste on the syngas yield and composition was also analyzed by comparing these syngas characteristics with that of the yield from gasification of its individual components separately at 1173 K. These investigations provided us with novel results on the behavior and capabilities of these composite polymer absorbent wastes and which opens up a new avenue towards efficient utilization of solid waste resources for sustainable energy production in the form of syngas which can also be used for various chemicals production such as methanol, gasoline and other petrochemical products.
{"title":"Pyrolysis and CO2 Gasification of Composite Polymer Absorbent Waste for Syngas Production","authors":"K. G. Burra, Paramvir Singh, N. Déparrois, A. Gupta","doi":"10.1115/power2019-1884","DOIUrl":"https://doi.org/10.1115/power2019-1884","url":null,"abstract":"\u0000 Development of alternative carbonaceous sources for energy production is essential to alleviate the dependence on depleting fossil fuels which led to increasing atmospheric CO2 and thus global warming. While biomass utilization for energy and chemical production has been extensively studied in the literature, such studies on municipal solid wastes is difficult to interpret due to the heterogeneous nature of the waste. Understanding of the influence of individual components is necessary for comprehensive development of waste-to-energy pathway. One such waste that is complicated and has often been ignored in the literature is composite polymer absorbent material waste which can also be considered as a potential feedstock for thermochemical pathway of energy production. Composite polymer absorbent materials are ubiquitously used these days in the form of sanitary napkins, diapers, water blockers, fire blockers and surgical pads due to their high water-absorptive nature. Pyrolysis and CO2 gasification is ideal for such materials due to its versatile feedstock intake and uniform product output in the form of syngas with adjustable composition. CO2 gasification also provides the added benefit of CO2 utilization which provides carbon offset to this process. In the present study, a mixture of cellulose, absorbent material (sodium polyacrylate), polypropylene and polystyrene in a fixed proportion, to model approximate composition of a diaper, was examined for its pyrolysis and CO2 gasification capability for viable syngas production. The influence of individual components into the syngas yield from the composite waste gasification was also investigated. A fixed-bed, semi-batch reactor facility along with gas chromatography was employed to analyse the syngas yield and compositional evolution. Pyrolysis was done under nitrogen atmosphere and gasification was done under CO2 atmosphere. CO2 gasification provided net CO2 consumption which means a net reduction in carbon emissions per joule of energy produced. The sample was tested under four isothermal conditions of 973, 1073, and 1173 K to understand the impact of operational conditions on the syngas yield. Influence of individual component of the composite absorbent waste on the syngas yield and composition was also analyzed by comparing these syngas characteristics with that of the yield from gasification of its individual components separately at 1173 K. These investigations provided us with novel results on the behavior and capabilities of these composite polymer absorbent wastes and which opens up a new avenue towards efficient utilization of solid waste resources for sustainable energy production in the form of syngas which can also be used for various chemicals production such as methanol, gasoline and other petrochemical products.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"118 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114905828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Olatunji, S. Akinlabi, N. Madushele, P. Adedeji, S. Fatoba
The complexity of real-world applications of biomass energy has increased substantially due to so many competing factors. There is an ongoing discussion on biomass as a renewable energy source and its cumulative impact on the environment vis-a-vis water competition, environmental pollution and so on. This discussion is coming at a time when evolutionary algorithms and its hybrid forms are gaining traction in several applications. In the last decade, evolution algorithms and its hybrid forms have evolved as a significant optimization and prediction technique due to its flexible characteristics and robust behaviour. It is very efficient means of solving complex global optimization problems. This article presents the state-of-the-art review of different types of evolutionary algorithms, which have been applied in the prediction of major properties of biomass such as elemental compositions and heating values. The governing principles, applications, merits, and challenges associated with this technique are elaborated. The future directions of the research on biomass properties prediction are discussed.
{"title":"Evolution Algorithms and Biomass Properties Prediction: A Review","authors":"O. Olatunji, S. Akinlabi, N. Madushele, P. Adedeji, S. Fatoba","doi":"10.1115/power2019-1826","DOIUrl":"https://doi.org/10.1115/power2019-1826","url":null,"abstract":"\u0000 The complexity of real-world applications of biomass energy has increased substantially due to so many competing factors. There is an ongoing discussion on biomass as a renewable energy source and its cumulative impact on the environment vis-a-vis water competition, environmental pollution and so on. This discussion is coming at a time when evolutionary algorithms and its hybrid forms are gaining traction in several applications. In the last decade, evolution algorithms and its hybrid forms have evolved as a significant optimization and prediction technique due to its flexible characteristics and robust behaviour. It is very efficient means of solving complex global optimization problems. This article presents the state-of-the-art review of different types of evolutionary algorithms, which have been applied in the prediction of major properties of biomass such as elemental compositions and heating values. The governing principles, applications, merits, and challenges associated with this technique are elaborated. The future directions of the research on biomass properties prediction are discussed.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133075599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The root cause of a series of similar failures in SA-213 T91 Superheater tubes of an Heat Recovery Steam Generator (HRSG) is investigated using a combination of engineering analysis and review of process data. The HRSG at the Combined Cycle Gas Turbine (CCGT) Power Plant power plant in question had suffered from frequent tube-to-header fatigue failures over the past 10 years. Metallurgical analyses had never identified any sign of creep damage in, or near, any of the failure locations. Recently, the Gas Turbine (GT) exhaust gas flow pattern upstream of the SH tubes changed slightly. Subsequently there were a large number of HPSH tube to header failures (> 10) on one side of the gas duct. Metallurgical analysis showed that the tube-to-header welds failed by creep-fatigue damage; analyses of tubes from the left-hand side of the boiler did not show any signs of similar damage being present. Further investigation confirmed that the root cause was identified as higher temperatures resulting from small changes in the GT outlet flow pattern.
{"title":"Failure Analysis of SA-213 T91 HRSG Superheater Tube Weld","authors":"P. Jackson, A. Fabricius, Alexandria Wholey","doi":"10.1115/power2019-1890","DOIUrl":"https://doi.org/10.1115/power2019-1890","url":null,"abstract":"\u0000 The root cause of a series of similar failures in SA-213 T91 Superheater tubes of an Heat Recovery Steam Generator (HRSG) is investigated using a combination of engineering analysis and review of process data. The HRSG at the Combined Cycle Gas Turbine (CCGT) Power Plant power plant in question had suffered from frequent tube-to-header fatigue failures over the past 10 years. Metallurgical analyses had never identified any sign of creep damage in, or near, any of the failure locations. Recently, the Gas Turbine (GT) exhaust gas flow pattern upstream of the SH tubes changed slightly. Subsequently there were a large number of HPSH tube to header failures (> 10) on one side of the gas duct. Metallurgical analysis showed that the tube-to-header welds failed by creep-fatigue damage; analyses of tubes from the left-hand side of the boiler did not show any signs of similar damage being present. Further investigation confirmed that the root cause was identified as higher temperatures resulting from small changes in the GT outlet flow pattern.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127810816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}