首页 > 最新文献

AVEC '14最新文献

英文 中文
Automatic Assessment of Depression from Speech and Behavioural Signals 基于言语和行为信号的抑郁自动评估
Pub Date : 2014-11-07 DOI: 10.1145/2661806.2661820
J. Epps
Research into automatic recognition and prediction of depression from behavioural signals like speech and facial video represents an exciting mix of opportunity and challenge. The opportunity comes from the huge prevalence of depression worldwide and the fact that clinicians already explicitly or implicitly account for observable behaviour in their assessments. The challenge comes from the multi-factorial nature of depression, and the complexity of behavioural signals, which convey several other important types of information as well as depression. Investigations in our group to date have revealed some interesting perspectives on how to deal with confounding effects (e.g. due to speaker identity) and the role of depression-related signal variability. This presentation will focus on how depression is manifested in the speech signal, how to model depression in speech, methods for mitigating unwanted variability in speech, how depression assessment is different from more mainstream affective computing, what is needed from depression databases, and different possible system designs and applications. A range of fertile areas for future research will be suggested.
从语音和面部视频等行为信号中自动识别和预测抑郁症的研究是一个令人兴奋的机遇和挑战的混合体。机会来自于抑郁症在世界范围内的广泛流行,以及临床医生已经在他们的评估中明确或隐含地考虑到可观察到的行为。挑战来自于抑郁症的多因素性质,以及行为信号的复杂性,这些信号除了抑郁症外还传达了其他几种重要的信息。到目前为止,我们小组的调查揭示了一些有趣的观点,关于如何处理混淆效应(例如,由于说话者身份)和抑郁相关信号变异性的作用。本次演讲将集中讨论抑郁症如何在语音信号中表现出来,如何在语音中建立抑郁症模型,减轻语音中不必要的可变性的方法,抑郁症评估与更主流的情感计算有何不同,抑郁症数据库需要什么,以及不同可能的系统设计和应用。将提出一系列可供今后研究的肥沃地区。
{"title":"Automatic Assessment of Depression from Speech and Behavioural Signals","authors":"J. Epps","doi":"10.1145/2661806.2661820","DOIUrl":"https://doi.org/10.1145/2661806.2661820","url":null,"abstract":"Research into automatic recognition and prediction of depression from behavioural signals like speech and facial video represents an exciting mix of opportunity and challenge. The opportunity comes from the huge prevalence of depression worldwide and the fact that clinicians already explicitly or implicitly account for observable behaviour in their assessments. The challenge comes from the multi-factorial nature of depression, and the complexity of behavioural signals, which convey several other important types of information as well as depression. Investigations in our group to date have revealed some interesting perspectives on how to deal with confounding effects (e.g. due to speaker identity) and the role of depression-related signal variability. This presentation will focus on how depression is manifested in the speech signal, how to model depression in speech, methods for mitigating unwanted variability in speech, how depression assessment is different from more mainstream affective computing, what is needed from depression databases, and different possible system designs and applications. A range of fertile areas for future research will be suggested.","PeriodicalId":318508,"journal":{"name":"AVEC '14","volume":"127 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126701934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emotion Recognition and Depression Diagnosis by Acoustic and Visual Features: A Multimodal Approach 情绪识别和抑郁症诊断的声学和视觉特征:一个多模态方法
Pub Date : 2014-11-07 DOI: 10.1145/2661806.2661816
M. Sidorov, W. Minker
There is an enormous number of potential applications of the system which is capable to recognize human emotions. Such opportunity can be useful in various applications, e.g., improvement of Spoken Dialogue Systems (SDSs) or monitoring agents in call-centers. Depression is another aspect of human beings which is closely related to emotions. The system, that can automatically diagnose patient's depression can be helpful to physicians in order to support their decisions and avoid critical mistakes. Therefore, the Affect and Depression Recognition Sub-Challenges (ASC and DSC correspondingly) of the second combined open Audio/Visual Emotion and Depression recognition Challenge (AVEC 2014) is focused on estimating emotions and depression. This study presents the results of multimodal affect and depression recognition based on four different segmentation methods, using support vector regression. Furthermore, a speaker identification procedure has been introduced in order to build the speaker-specific emotion/depression recognition systems.
这个能够识别人类情感的系统有很多潜在的应用。这种机会在各种应用中都是有用的,例如,改进口语对话系统(SDSs)或监测呼叫中心的座席。抑郁是人类与情绪密切相关的另一个方面。该系统可以自动诊断患者的抑郁症,可以帮助医生支持他们的决定,避免严重的错误。因此,第二次开放式视听情感与抑郁识别挑战(AVEC 2014)的情感与抑郁识别子挑战(ASC和DSC)侧重于对情绪和抑郁的估计。本文研究了基于四种不同分割方法的多模态情感和抑郁识别结果,并利用支持向量回归进行了分析。此外,本文还介绍了一个说话人识别程序,以建立说话人特定的情绪/抑郁识别系统。
{"title":"Emotion Recognition and Depression Diagnosis by Acoustic and Visual Features: A Multimodal Approach","authors":"M. Sidorov, W. Minker","doi":"10.1145/2661806.2661816","DOIUrl":"https://doi.org/10.1145/2661806.2661816","url":null,"abstract":"There is an enormous number of potential applications of the system which is capable to recognize human emotions. Such opportunity can be useful in various applications, e.g., improvement of Spoken Dialogue Systems (SDSs) or monitoring agents in call-centers. Depression is another aspect of human beings which is closely related to emotions. The system, that can automatically diagnose patient's depression can be helpful to physicians in order to support their decisions and avoid critical mistakes. Therefore, the Affect and Depression Recognition Sub-Challenges (ASC and DSC correspondingly) of the second combined open Audio/Visual Emotion and Depression recognition Challenge (AVEC 2014) is focused on estimating emotions and depression. This study presents the results of multimodal affect and depression recognition based on four different segmentation methods, using support vector regression. Furthermore, a speaker identification procedure has been introduced in order to build the speaker-specific emotion/depression recognition systems.","PeriodicalId":318508,"journal":{"name":"AVEC '14","volume":"87 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122532738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 44
Ensemble CCA for Continuous Emotion Prediction 持续情绪预测的集成CCA
Pub Date : 2014-11-07 DOI: 10.1145/2661806.2661814
Heysem Kaya, Fazilet Çilli, A. A. Salah
This paper presents our work on ACM MM Audio Visual Emotion Corpus 2014 (AVEC 2014) using the baseline features in accordance with the challenge protocol. For prediction, we use Canonical Correlation Analysis (CCA) in affect sub-challenge (ASC) and Moore-Penrose generalized inverse (MPGI) in depression sub-challenge (DSC). The video baseline provides histograms of Local Gabor Binary Patterns from Three Orthogonal Planes (LGBP-TOP) features. Based on our preliminary experiments on AVEC 2013 challenge data, we focus on the inner facial regions that correspond to eyes and mouth area. We obtain an ensemble of regional linear regressors via CCA and MPGI. We also enrich the 2014 baseline set with Local Phase Quantization (LPQ) features extracted using Intraface toolkit detected/tracked faces. Combining both representations in a CCA ensemble approach, on the challenge test set we reach an average Pearson's Correlation Coefficient (PCC) of 0.3932, outperforming the ASC test set baseline PCC of 0.1966. On the DSC, combining modality specific MPGI based ensemble systems, we reach 9.61 Root Mean Square Error (RMSE).
本文介绍了我们根据挑战协议使用基线特征在ACM MM视听情感语料库2014 (AVEC 2014)上的工作。为了进行预测,我们在情感子挑战(ASC)中使用典型相关分析(CCA),在抑郁子挑战(DSC)中使用Moore-Penrose广义逆(MPGI)。视频基线提供了三个正交平面(LGBP-TOP)特征的局部Gabor二值模式直方图。基于AVEC 2013挑战数据的初步实验,我们重点研究了与眼睛和嘴巴对应的面部内部区域。我们通过CCA和MPGI得到了一个区域线性回归量的集合。我们还利用Intraface工具包检测/跟踪的人脸提取的局部相位量化(LPQ)特征来丰富2014年的基线集。在CCA集成方法中结合两种表示,在挑战测试集上,我们获得了0.3932的平均Pearson相关系数(PCC),优于ASC测试集的基线PCC(0.1966)。在DSC上,结合基于模态的MPGI集成系统,我们得到了9.61的均方根误差(RMSE)。
{"title":"Ensemble CCA for Continuous Emotion Prediction","authors":"Heysem Kaya, Fazilet Çilli, A. A. Salah","doi":"10.1145/2661806.2661814","DOIUrl":"https://doi.org/10.1145/2661806.2661814","url":null,"abstract":"This paper presents our work on ACM MM Audio Visual Emotion Corpus 2014 (AVEC 2014) using the baseline features in accordance with the challenge protocol. For prediction, we use Canonical Correlation Analysis (CCA) in affect sub-challenge (ASC) and Moore-Penrose generalized inverse (MPGI) in depression sub-challenge (DSC). The video baseline provides histograms of Local Gabor Binary Patterns from Three Orthogonal Planes (LGBP-TOP) features. Based on our preliminary experiments on AVEC 2013 challenge data, we focus on the inner facial regions that correspond to eyes and mouth area. We obtain an ensemble of regional linear regressors via CCA and MPGI. We also enrich the 2014 baseline set with Local Phase Quantization (LPQ) features extracted using Intraface toolkit detected/tracked faces. Combining both representations in a CCA ensemble approach, on the challenge test set we reach an average Pearson's Correlation Coefficient (PCC) of 0.3932, outperforming the ASC test set baseline PCC of 0.1966. On the DSC, combining modality specific MPGI based ensemble systems, we reach 9.61 Root Mean Square Error (RMSE).","PeriodicalId":318508,"journal":{"name":"AVEC '14","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126501045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 66
Depression Estimation Using Audiovisual Features and Fisher Vector Encoding 基于视听特征和Fisher矢量编码的降噪估计
Pub Date : 2014-11-07 DOI: 10.1145/2661806.2661817
V. Jain, J. Crowley, A. Dey, A. Lux
We investigate the use of two visual descriptors: Local Binary Patterns-Three Orthogonal Planes(LBP-TOP) and Dense Trajectories for depression assessment on the AVEC 2014 challenge dataset. We encode the visual information generated by the two descriptors using Fisher Vector encoding which has been shown to be one of the best performing methods to encode visual data for image classification. We also incorporate audio features in the final system to introduce multiple input modalities. The results produced using Linear Support Vector regression outperform the baseline method.
我们研究了在AVEC 2014挑战数据集上使用两种视觉描述符:局部二元模式-三个正交平面(LBP-TOP)和密集轨迹来评估抑郁。我们使用Fisher向量编码对两个描述符生成的视觉信息进行编码,Fisher向量编码已被证明是编码图像分类视觉数据的最佳方法之一。我们还在最终系统中加入了音频功能,以引入多种输入模式。使用线性支持向量回归产生的结果优于基线方法。
{"title":"Depression Estimation Using Audiovisual Features and Fisher Vector Encoding","authors":"V. Jain, J. Crowley, A. Dey, A. Lux","doi":"10.1145/2661806.2661817","DOIUrl":"https://doi.org/10.1145/2661806.2661817","url":null,"abstract":"We investigate the use of two visual descriptors: Local Binary Patterns-Three Orthogonal Planes(LBP-TOP) and Dense Trajectories for depression assessment on the AVEC 2014 challenge dataset. We encode the visual information generated by the two descriptors using Fisher Vector encoding which has been shown to be one of the best performing methods to encode visual data for image classification. We also incorporate audio features in the final system to introduce multiple input modalities. The results produced using Linear Support Vector regression outperform the baseline method.","PeriodicalId":318508,"journal":{"name":"AVEC '14","volume":"111 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121583559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 63
期刊
AVEC '14
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1