Pub Date : 2020-04-01DOI: 10.22044/JADM.2019.8430.1980
L. Tafreshi, F. Soltanzadeh
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performance in Conditional Random Field-based Persian Named Entity Recognition, a several syntactic features based on dependency grammar along with some morphological and language-independent features have been designed in order to extract suitable features for the learning phase. In this implementation, designed features have been applied to Conditional Random Field to build our model. To evaluate our system, the Persian syntactic dependency Treebank with about 30,000 sentences, prepared in NOOR Islamic science computer research center, has been implemented. This Treebank has Named-Entity tags, such as Person, Organization and location. The result of this study showed that our approach achieved 86.86% precision, 80.29% recall and 83.44% F-measure which are relatively higher than those values reported for other Persian NER methods.
{"title":"A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features","authors":"L. Tafreshi, F. Soltanzadeh","doi":"10.22044/JADM.2019.8430.1980","DOIUrl":"https://doi.org/10.22044/JADM.2019.8430.1980","url":null,"abstract":"Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performance in Conditional Random Field-based Persian Named Entity Recognition, a several syntactic features based on dependency grammar along with some morphological and language-independent features have been designed in order to extract suitable features for the learning phase. In this implementation, designed features have been applied to Conditional Random Field to build our model. To evaluate our system, the Persian syntactic dependency Treebank with about 30,000 sentences, prepared in NOOR Islamic science computer research center, has been implemented. This Treebank has Named-Entity tags, such as Person, Organization and location. The result of this study showed that our approach achieved 86.86% precision, 80.29% recall and 83.44% F-measure which are relatively higher than those values reported for other Persian NER methods.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43280074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-01DOI: 10.22044/JADM.2019.6319.1745
Ahmad Jalili, Manijeh Keshtgari
Software-Defined Network (SDNs) is a decoupled architecture that enables administrators to build a customizable and manageable network. Although the decoupled control plane provides flexible management and facilitates the task of operating the network, it is the vulnerable point of failure in SDN. To achieve a reliable control plane, multiple controller are often needed so that each switch must be assigned to more than one controller. In this paper, a Reliable Controller Placement Problem Model (RCPPM) is proposed to solve such a problem, so as to maximize the reliability of software defined networks. Unlike previous works that only consider latencies parameters, the new model takes into account the load of control traffic and reliability metrics as well. Furthermore, a near-optimal algorithm is proposed to solve the NP-hard RCPPM in a heuristic manner. Finally, through extensive simulation, a comprehensive analysis of the RCPPM is presented for various topologies extracted from Internet Topology Zoo. Our performance evaluations show the efficiency of the proposed framework.
{"title":"A New Reliable Controller Placement Model for Software-Defined WANs","authors":"Ahmad Jalili, Manijeh Keshtgari","doi":"10.22044/JADM.2019.6319.1745","DOIUrl":"https://doi.org/10.22044/JADM.2019.6319.1745","url":null,"abstract":"Software-Defined Network (SDNs) is a decoupled architecture that enables administrators to build a customizable and manageable network. Although the decoupled control plane provides flexible management and facilitates the task of operating the network, it is the vulnerable point of failure in SDN. To achieve a reliable control plane, multiple controller are often needed so that each switch must be assigned to more than one controller. In this paper, a Reliable Controller Placement Problem Model (RCPPM) is proposed to solve such a problem, so as to maximize the reliability of software defined networks. Unlike previous works that only consider latencies parameters, the new model takes into account the load of control traffic and reliability metrics as well. Furthermore, a near-optimal algorithm is proposed to solve the NP-hard RCPPM in a heuristic manner. Finally, through extensive simulation, a comprehensive analysis of the RCPPM is presented for various topologies extracted from Internet Topology Zoo. Our performance evaluations show the efficiency of the proposed framework.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48157824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-01DOI: 10.22044/JADM.2020.8248.1963
S. Sadatrasoul, O. Ebadati, R. Saedi
The purpose of this study is to reduce the uncertainty of early stage startups success prediction and filling the gap of previous studies in the field, by identifying and evaluating the success variables and developing a novel business success failure (S/F) data mining classification prediction model for Iranian start-ups. For this purpose, the paper is seeking to extend Bill Gross and Robert Lussier S/F prediction model variables and algorithms in a new context of Iranian start-ups which starts from accelerators in order to build a new S/F prediction model. A sample of 161 Iranian start-ups which are based in accelerators from 2013 to 2018 is applied and 39 variables are extracted from the literature and organized in five groups. Then the sample is fed into six well-known classification algorithms. Two staged stacking as a classification model is the best performer among all other six classification based S/F prediction models and it can predict binary dependent variable of success or failure with accuracy of 89% on average. Also finding shows that “starting from Accelerators”, “creativity and problem solving ability of founders”, “fist mover advantage” and “amount of seed investment” are the four most important variables which affects the start-ups success and the other 15 variables are less important.
{"title":"A Hybrid Business Success Versus Failure Classification Prediction Model: A Case of Iranian Accelerated Start-ups","authors":"S. Sadatrasoul, O. Ebadati, R. Saedi","doi":"10.22044/JADM.2020.8248.1963","DOIUrl":"https://doi.org/10.22044/JADM.2020.8248.1963","url":null,"abstract":"The purpose of this study is to reduce the uncertainty of early stage startups success prediction and filling the gap of previous studies in the field, by identifying and evaluating the success variables and developing a novel business success failure (S/F) data mining classification prediction model for Iranian start-ups. For this purpose, the paper is seeking to extend Bill Gross and Robert Lussier S/F prediction model variables and algorithms in a new context of Iranian start-ups which starts from accelerators in order to build a new S/F prediction model. A sample of 161 Iranian start-ups which are based in accelerators from 2013 to 2018 is applied and 39 variables are extracted from the literature and organized in five groups. Then the sample is fed into six well-known classification algorithms. Two staged stacking as a classification model is the best performer among all other six classification based S/F prediction models and it can predict binary dependent variable of success or failure with accuracy of 89% on average. Also finding shows that “starting from Accelerators”, “creativity and problem solving ability of founders”, “fist mover advantage” and “amount of seed investment” are the four most important variables which affects the start-ups success and the other 15 variables are less important.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47555808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-01DOI: 10.22044/JADM.2020.8105.1945
E. Enayati, Z. Hassani, M. Moodi
Breast cancer is one of the most common cancer in the world. Early detection of cancers cause significantly reduce in morbidity rate and treatment costs. Mammography is a known effective diagnosis method of breast cancer. A way for mammography screening behavior identification is women's awareness evaluation for participating in mammography screening programs. Todays, intelligence systems could identify main factors on specific incident. These could help to the experts in the wide range of areas specially health scopes such as prevention, diagnosis and treatment. In this paper we use a hybrid model called H-BwoaSvm which BWOA is used for detecting effective factors on mammography screening behavior and SVM for classification. Our model is applied on a data set which collected from a segmental analytical descriptive study on 2256 women. Proposed model is operated on data set with 82.27 and 98.89 percent accuracy and select effective features on mammography screening behavior.
{"title":"H-BwoaSvm: A Hybrid Model for Classification and Feature Selection of Mammography Screening Behavior Data","authors":"E. Enayati, Z. Hassani, M. Moodi","doi":"10.22044/JADM.2020.8105.1945","DOIUrl":"https://doi.org/10.22044/JADM.2020.8105.1945","url":null,"abstract":"Breast cancer is one of the most common cancer in the world. Early detection of cancers cause significantly reduce in morbidity rate and treatment costs. Mammography is a known effective diagnosis method of breast cancer. A way for mammography screening behavior identification is women's awareness evaluation for participating in mammography screening programs. Todays, intelligence systems could identify main factors on specific incident. These could help to the experts in the wide range of areas specially health scopes such as prevention, diagnosis and treatment. In this paper we use a hybrid model called H-BwoaSvm which BWOA is used for detecting effective factors on mammography screening behavior and SVM for classification. Our model is applied on a data set which collected from a segmental analytical descriptive study on 2256 women. Proposed model is operated on data set with 82.27 and 98.89 percent accuracy and select effective features on mammography screening behavior.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43041475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-01DOI: 10.22044/JADM.2019.7506.1894
S. Beigi, M. Amin-Naseri
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-sensitive learning for credit card fraud detection. In the first step, useful features are identified using genetic algorithm. Next, the optimal resampling strategy is determined based on the design of experiments (DOE) and response surface methodologies. Finally, the cost sensitive C4.5 algorithm is used as the base learner in the Adaboost algorithm. Using a real-time data set, results show that applying the proposed method significantly reduces the misclassification cost by at least 14% compared with Decision tree, Naive bayes, Bayesian Network, Neural network and Artificial immune system.
{"title":"Credit Card Fraud Detection using Data mining and Statistical Methods","authors":"S. Beigi, M. Amin-Naseri","doi":"10.22044/JADM.2019.7506.1894","DOIUrl":"https://doi.org/10.22044/JADM.2019.7506.1894","url":null,"abstract":"Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-sensitive learning for credit card fraud detection. In the first step, useful features are identified using genetic algorithm. Next, the optimal resampling strategy is determined based on the design of experiments (DOE) and response surface methodologies. Finally, the cost sensitive C4.5 algorithm is used as the base learner in the Adaboost algorithm. Using a real-time data set, results show that applying the proposed method significantly reduces the misclassification cost by at least 14% compared with Decision tree, Naive bayes, Bayesian Network, Neural network and Artificial immune system.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46775009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-01DOI: 10.22044/JADM.2020.7797.1920
Mansoore Saeedzarandi, Hossien Nezamabadi-pour, S. Saryazdi
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wavelet based image denoising, selecting a proper model for wavelet coefficients is very important. In this paper, we model wavelet coefficients in each sub-band by heavy-tail distributions that are from scale mixture of normal distribution family. The parameters of distributions are estimated adaptively to model the correlation between the coefficient amplitudes, so the intra-scale dependency of wavelet coefficients is also considered. The denoising results confirm the effectiveness of the proposed method.
{"title":"Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation","authors":"Mansoore Saeedzarandi, Hossien Nezamabadi-pour, S. Saryazdi","doi":"10.22044/JADM.2020.7797.1920","DOIUrl":"https://doi.org/10.22044/JADM.2020.7797.1920","url":null,"abstract":"Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wavelet based image denoising, selecting a proper model for wavelet coefficients is very important. In this paper, we model wavelet coefficients in each sub-band by heavy-tail distributions that are from scale mixture of normal distribution family. The parameters of distributions are estimated adaptively to model the correlation between the coefficient amplitudes, so the intra-scale dependency of wavelet coefficients is also considered. The denoising results confirm the effectiveness of the proposed method.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45648669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-01DOI: 10.22044/JADM.2019.7564.1900
N. Rezaee, H. Momeni
Model checking is an automatic technique for software verification through which all reachable states are generated from an initial state to finding errors and desirable patterns. In the model checking approach, the behavior and structure of system should be modeled. Graph transformation system is a graphical formal modeling language to specify and model the system. However, modeling of large systems with the graph transformation system suffers from the state space explosion problem which usually requires huge amounts of computational resources. In this paper, we propose a hybrid meta-heuristic approach to deal with this searching problem in the graph transformation system because meta-heuristic algorithms are efficient solutions to traverse the graph of large systems. Our approach, using Artificial Bee Colony and Simulated Annealing, replaces a full state space generation, only by producing part of it checking the safety, and finding errors (e.g., deadlock). The experimental results show that our proposed approach is more efficient and accurate compared to other approaches.
{"title":"A Hybrid Meta-heuristic Approach to Cope with State Space Explosion in Model Checking Technique for Deadlock Freeness","authors":"N. Rezaee, H. Momeni","doi":"10.22044/JADM.2019.7564.1900","DOIUrl":"https://doi.org/10.22044/JADM.2019.7564.1900","url":null,"abstract":"Model checking is an automatic technique for software verification through which all reachable states are generated from an initial state to finding errors and desirable patterns. In the model checking approach, the behavior and structure of system should be modeled. Graph transformation system is a graphical formal modeling language to specify and model the system. However, modeling of large systems with the graph transformation system suffers from the state space explosion problem which usually requires huge amounts of computational resources. In this paper, we propose a hybrid meta-heuristic approach to deal with this searching problem in the graph transformation system because meta-heuristic algorithms are efficient solutions to traverse the graph of large systems. Our approach, using Artificial Bee Colony and Simulated Annealing, replaces a full state space generation, only by producing part of it checking the safety, and finding errors (e.g., deadlock). The experimental results show that our proposed approach is more efficient and accurate compared to other approaches.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45814349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-01DOI: 10.22044/JADM.2019.8768.2011
M. Zarezade, E. Nourani, Asgarali Bouyer
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as instability, low accuracy, randomness, etc. The G-CN algorithm is one of local methods that uses the same label propagation as the LPA method, but unlike the LPA, only the labels of boundary nodes are updated at each iteration that reduces its execution time. However, it has resolution limit and low accuracy problem. To overcome these problems, this paper proposes an improved community detection method called SD-GCN which uses a hybrid node scoring and synchronous label updating of boundary nodes, along with disabling random label updating in initial updates. In the first phase, it updates the label of boundary nodes in a synchronous manner using the obtained score based on degree centrality and common neighbor measures. In addition, we defined a new method for merging communities in second phase which is faster than modularity-based methods. Extensive set of experiments are conducted to evaluate performance of the SD-GCN on small and large-scale real-world networks and artificial networks. These experiments verify significant improvement in the accuracy and stability of community detection approaches in parallel with shorter execution time in a linear time complexity.
{"title":"Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks","authors":"M. Zarezade, E. Nourani, Asgarali Bouyer","doi":"10.22044/JADM.2019.8768.2011","DOIUrl":"https://doi.org/10.22044/JADM.2019.8768.2011","url":null,"abstract":"Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as instability, low accuracy, randomness, etc. The G-CN algorithm is one of local methods that uses the same label propagation as the LPA method, but unlike the LPA, only the labels of boundary nodes are updated at each iteration that reduces its execution time. However, it has resolution limit and low accuracy problem. To overcome these problems, this paper proposes an improved community detection method called SD-GCN which uses a hybrid node scoring and synchronous label updating of boundary nodes, along with disabling random label updating in initial updates. In the first phase, it updates the label of boundary nodes in a synchronous manner using the obtained score based on degree centrality and common neighbor measures. In addition, we defined a new method for merging communities in second phase which is faster than modularity-based methods. Extensive set of experiments are conducted to evaluate performance of the SD-GCN on small and large-scale real-world networks and artificial networks. These experiments verify significant improvement in the accuracy and stability of community detection approaches in parallel with shorter execution time in a linear time complexity.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47031432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-10DOI: 10.22044/JADM.2020.7835.1922
Abbas Salehi, B. Masoumi
Biogeography-Based Optimization (BBO) algorithm has recently been of great interest to researchers for simplicity of implementation, efficiency, and the low number of parameters. The BBO Algorithm in optimization problems is one of the new algorithms which have been developed based on the biogeography concept. This algorithm uses the idea of animal migration to find suitable habitats for solving optimization problems. The BBO algorithm has three principal operators called migration, mutation and elite selection. The migration operator plays a very important role in sharing information among the candidate habitats. The original BBO algorithm, due to its poor exploration and exploitation, sometimes does not perform desirable results. On the other hand, the Edge Assembly Crossover (EAX) has been one of the high power crossovers for acquiring offspring and it increased the diversity of the population. The combination of biogeography-based optimization algorithm and EAX can provide high efficiency in solving optimization problems, including the traveling salesman problem (TSP). This paper proposed a combination of those approaches to solve traveling salesman problem. The new hybrid approach was examined with standard datasets for TSP in TSPLIB. In the experiments, the performance of the proposed approach was better than the original BBO and four others widely used metaheuristics algorithms.
{"title":"Solving Traveling Salesman Problem based on Biogeography-based Optimization and Edge Assembly Cross-over","authors":"Abbas Salehi, B. Masoumi","doi":"10.22044/JADM.2020.7835.1922","DOIUrl":"https://doi.org/10.22044/JADM.2020.7835.1922","url":null,"abstract":"Biogeography-Based Optimization (BBO) algorithm has recently been of great interest to researchers for simplicity of implementation, efficiency, and the low number of parameters. The BBO Algorithm in optimization problems is one of the new algorithms which have been developed based on the biogeography concept. This algorithm uses the idea of animal migration to find suitable habitats for solving optimization problems. The BBO algorithm has three principal operators called migration, mutation and elite selection. The migration operator plays a very important role in sharing information among the candidate habitats. The original BBO algorithm, due to its poor exploration and exploitation, sometimes does not perform desirable results. On the other hand, the Edge Assembly Crossover (EAX) has been one of the high power crossovers for acquiring offspring and it increased the diversity of the population. The combination of biogeography-based optimization algorithm and EAX can provide high efficiency in solving optimization problems, including the traveling salesman problem (TSP). This paper proposed a combination of those approaches to solve traveling salesman problem. The new hybrid approach was examined with standard datasets for TSP in TSPLIB. In the experiments, the performance of the proposed approach was better than the original BBO and four others widely used metaheuristics algorithms.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47370856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-10DOI: 10.22044/JADM.2020.7847.1924
M. Abdollahi, M. A. Shoorehdeli
There are various automatic programming models inspired by evolutionary computation techniques. Due to the importance of devising an automatic mechanism to explore the complicated search space of mathematical problems where numerical methods fails, evolutionary computations are widely studied and applied to solve real world problems. One of the famous algorithm in optimization problem is shuffled frog leaping algorithm (SFLA) which is inspired by behaviour of frogs to find the highest quantity of available food by searching their environment both locally and globally. The results of SFLA prove that it is competitively effective to solve problems. In this paper, Shuffled Frog Leaping Programming (SFLP) inspired by SFLA is proposed as a novel type of automatic programming model to solve symbolic regression problems based on tree representation. Also, in SFLP, a new mechanism for improving constant numbers in the tree structure is proposed. In this way, different domains of mathematical problems can be addressed with the use of proposed method. To find out about the performance of generated solutions by SFLP, various experiments were conducted using a number of benchmark functions. The results were also compared with other evolutionary programming algorithms like BBP, GSP, GP and many variants of GP.
{"title":"Shuffled Frog-Leaping Programming for Solving Regression Problems","authors":"M. Abdollahi, M. A. Shoorehdeli","doi":"10.22044/JADM.2020.7847.1924","DOIUrl":"https://doi.org/10.22044/JADM.2020.7847.1924","url":null,"abstract":"There are various automatic programming models inspired by evolutionary computation techniques. Due to the importance of devising an automatic mechanism to explore the complicated search space of mathematical problems where numerical methods fails, evolutionary computations are widely studied and applied to solve real world problems. One of the famous algorithm in optimization problem is shuffled frog leaping algorithm (SFLA) which is inspired by behaviour of frogs to find the highest quantity of available food by searching their environment both locally and globally. The results of SFLA prove that it is competitively effective to solve problems. In this paper, Shuffled Frog Leaping Programming (SFLP) inspired by SFLA is proposed as a novel type of automatic programming model to solve symbolic regression problems based on tree representation. Also, in SFLP, a new mechanism for improving constant numbers in the tree structure is proposed. In this way, different domains of mathematical problems can be addressed with the use of proposed method. To find out about the performance of generated solutions by SFLP, various experiments were conducted using a number of benchmark functions. The results were also compared with other evolutionary programming algorithms like BBP, GSP, GP and many variants of GP.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48011292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}