Pub Date : 2021-05-15DOI: 10.22044/JADM.2021.9955.2133
A. Hadian, M. Bagherian, B. F. Vajargah
Background: One of the most important concepts in cloud computing is modeling the problem as a multi-layer optimization problem which leads to cost savings in designing and operating the networks. Previous researchers have modeled the two-layer network operating problem as an Integer Linear Programming (ILP) problem, and due to the computational complexity of solving it jointly, they suggested a two-stage procedure for solving it by considering one layer at each stage. Aim: In this paper, considering the ILP model and using some properties of it, we propose a heuristic algorithm for solving the model jointly, considering unicast, multicast, and anycast flows simultaneously. Method: We first sort demands in decreasing order and use a greedy method to realize demands in order. Due to the high computational complexity of ILP model, the proposed heuristic algorithm is suitable for networks with a large number of nodes; In this regard, various examples are solved by CPLEX and MATLAB soft wares. Results: Our simulation results show that for small values of M and N CPLEX fails to find the optimal solution, while AGA finds a near-optimal solution quickly. Conclusion: The proposed greedy algorithm could solve the large-scale networks approximately in polynomial time and its approximation is reasonable.
{"title":"A Heuristic Algorithm for Multi-layer Network Optimization in Cloud Computing","authors":"A. Hadian, M. Bagherian, B. F. Vajargah","doi":"10.22044/JADM.2021.9955.2133","DOIUrl":"https://doi.org/10.22044/JADM.2021.9955.2133","url":null,"abstract":"Background: One of the most important concepts in cloud computing is modeling the problem as a multi-layer optimization problem which leads to cost savings in designing and operating the networks. Previous researchers have modeled the two-layer network operating problem as an Integer Linear Programming (ILP) problem, and due to the computational complexity of solving it jointly, they suggested a two-stage procedure for solving it by considering one layer at each stage. Aim: In this paper, considering the ILP model and using some properties of it, we propose a heuristic algorithm for solving the model jointly, considering unicast, multicast, and anycast flows simultaneously. Method: We first sort demands in decreasing order and use a greedy method to realize demands in order. Due to the high computational complexity of ILP model, the proposed heuristic algorithm is suitable for networks with a large number of nodes; In this regard, various examples are solved by CPLEX and MATLAB soft wares. Results: Our simulation results show that for small values of M and N CPLEX fails to find the optimal solution, while AGA finds a near-optimal solution quickly. Conclusion: The proposed greedy algorithm could solve the large-scale networks approximately in polynomial time and its approximation is reasonable.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42272911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-15DOI: 10.22044/JADM.2021.9800.2118
E. Kalhor, B. Bakhtiari
Feature selection is the one of the most important steps in designing speech emotion recognition systems. Because there is uncertainty as to which speech feature is related to which emotion, many features must be taken into account and, for this purpose, identifying the most discriminative features is necessary. In the interest of selecting appropriate emotion-related speech features, the current paper focuses on a multi-task approach. For this reason, the study considers each speaker as a task and proposes a multi-task objective function to select features. As a result, the proposed method chooses one set of speaker-independent features of which the selected features are discriminative in all emotion classes. Correspondingly, multi-class classifiers are utilized directly or binary classifications simply perform multi-class classifications. In addition, the present work employs two well-known datasets, the Berlin and Enterface. The experiments also applied the openSmile toolkit to extract more than 6500 features. After feature selection phase, the results illustrated that the proposed method selects the features which is common in the different runs. Also, the runtime of proposed method is the lowest in comparison to other methods. Finally, 7 classifiers are employed and the best achieved performance is 73.76% for the Berlin dataset and 72.17% for the Enterface dataset, in the faced of a new speaker .These experimental results then show that the proposed method is superior to existing state-of-the-art methods.
{"title":"Multi-Task Feature Selection for Speech Emotion Recognition: Common Speaker-Independent Features Among Emotions","authors":"E. Kalhor, B. Bakhtiari","doi":"10.22044/JADM.2021.9800.2118","DOIUrl":"https://doi.org/10.22044/JADM.2021.9800.2118","url":null,"abstract":"Feature selection is the one of the most important steps in designing speech emotion recognition systems. Because there is uncertainty as to which speech feature is related to which emotion, many features must be taken into account and, for this purpose, identifying the most discriminative features is necessary. In the interest of selecting appropriate emotion-related speech features, the current paper focuses on a multi-task approach. For this reason, the study considers each speaker as a task and proposes a multi-task objective function to select features. As a result, the proposed method chooses one set of speaker-independent features of which the selected features are discriminative in all emotion classes. Correspondingly, multi-class classifiers are utilized directly or binary classifications simply perform multi-class classifications. In addition, the present work employs two well-known datasets, the Berlin and Enterface. The experiments also applied the openSmile toolkit to extract more than 6500 features. After feature selection phase, the results illustrated that the proposed method selects the features which is common in the different runs. Also, the runtime of proposed method is the lowest in comparison to other methods. Finally, 7 classifiers are employed and the best achieved performance is 73.76% for the Berlin dataset and 72.17% for the Enterface dataset, in the faced of a new speaker .These experimental results then show that the proposed method is superior to existing state-of-the-art methods.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42787293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-17DOI: 10.22044/JADM.2021.10344.2171
Nahid Mabhoot, H. Momeni
Interest in cloud computing has grown considerably over recent years, primarily due to scalable virtualized resources. So, cloud computing has contributed to the advancement of real-time applications such as signal processing, environment surveillance and weather forecast where time and energy considerations to perform the tasks are critical. In real-time applications, missing the deadlines for the tasks will cause catastrophic consequences; thus, real-time task scheduling in cloud computing environment is an important and essential issue. Furthermore, energy-saving in cloud data center, regarding the benefits such as reduction of system operating costs and environmental protection is an important concern that is considered during recent years and is reducible with appropriate task scheduling. In this paper, we present an energy-aware task scheduling approach, namely EaRTs for real-time applications. We employ the virtualization and consolidation technique subject to minimizing the energy consumptions, improve resource utilization and meeting the deadlines of tasks. In the consolidation technique, scale up and scale down of virtualized resources could improve the performance of task execution. The proposed approach comprises four algorithms, namely Energy-aware Task Scheduling in Cloud Computing(ETC), Vertical VM Scale Up(V2S), Horizontal VM Scale up(HVS) and Physical Machine Scale Down(PSD). We present the formal model of the proposed approach using Timed Automata to prove precisely the schedulability feature and correctness of EaRTs. We show that our proposed approach is more efficient in terms of deadline hit ratio, resource utilization and energy consumption compared to other energy-aware real-time tasks scheduling algorithms.
{"title":"An Energy-aware Real-time Task Scheduling Approach in a Cloud Computing Environment","authors":"Nahid Mabhoot, H. Momeni","doi":"10.22044/JADM.2021.10344.2171","DOIUrl":"https://doi.org/10.22044/JADM.2021.10344.2171","url":null,"abstract":"Interest in cloud computing has grown considerably over recent years, primarily due to scalable virtualized resources. So, cloud computing has contributed to the advancement of real-time applications such as signal processing, environment surveillance and weather forecast where time and energy considerations to perform the tasks are critical. In real-time applications, missing the deadlines for the tasks will cause catastrophic consequences; thus, real-time task scheduling in cloud computing environment is an important and essential issue. Furthermore, energy-saving in cloud data center, regarding the benefits such as reduction of system operating costs and environmental protection is an important concern that is considered during recent years and is reducible with appropriate task scheduling. In this paper, we present an energy-aware task scheduling approach, namely EaRTs for real-time applications. We employ the virtualization and consolidation technique subject to minimizing the energy consumptions, improve resource utilization and meeting the deadlines of tasks. In the consolidation technique, scale up and scale down of virtualized resources could improve the performance of task execution. The proposed approach comprises four algorithms, namely Energy-aware Task Scheduling in Cloud Computing(ETC), Vertical VM Scale Up(V2S), Horizontal VM Scale up(HVS) and Physical Machine Scale Down(PSD). We present the formal model of the proposed approach using Timed Automata to prove precisely the schedulability feature and correctness of EaRTs. We show that our proposed approach is more efficient in terms of deadline hit ratio, resource utilization and energy consumption compared to other energy-aware real-time tasks scheduling algorithms.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48069079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-01DOI: 10.22044/JADM.2021.9783.2109
Ali Alijamaat, A. Nikravanshalmani, P. Bayat
Multiple Sclerosis (MS) is a disease that destructs the central nervous system cell protection, destroys sheaths of immune cells, and causes lesions. Examination and diagnosis of lesions by specialists is usually done manually on Magnetic Resonance Imaging (MRI) images of the brain. Factors such as small sizes of lesions, their dispersion in the brain, similarity of lesions to some other diseases, and their overlap can lead to the misdiagnosis. Automatic image detection methods as auxiliary tools can increase the diagnosis accuracy. To this end, traditional image processing methods and deep learning approaches have been used. Deep Convolutional Neural Network is a common method of deep learning to detect lesions in images. In this network, the convolution layer extracts the specificities; and the pooling layer decreases the specificity map size. The present research uses the wavelet-transform-based pooling. In addition to decomposing the input image and reducing its size, the wavelet transform highlights sharp changes in the image and better describes local specificities. Therefore, using this transform can improve the diagnosis. The proposed method is based on six convolutional layers, two layers of wavelet pooling, and a completely connected layer that had a better amount of accuracy than the studied methods. The accuracy of 98.92%, precision of 99.20%, and specificity of 98.33% are obtained by testing the image data of 38 patients and 20 healthy individuals.
{"title":"Diagnosis of Multiple Sclerosis Disease in Brain MRI Images using Convolutional Neural Networks based on Wavelet Pooling","authors":"Ali Alijamaat, A. Nikravanshalmani, P. Bayat","doi":"10.22044/JADM.2021.9783.2109","DOIUrl":"https://doi.org/10.22044/JADM.2021.9783.2109","url":null,"abstract":"Multiple Sclerosis (MS) is a disease that destructs the central nervous system cell protection, destroys sheaths of immune cells, and causes lesions. Examination and diagnosis of lesions by specialists is usually done manually on Magnetic Resonance Imaging (MRI) images of the brain. Factors such as small sizes of lesions, their dispersion in the brain, similarity of lesions to some other diseases, and their overlap can lead to the misdiagnosis. Automatic image detection methods as auxiliary tools can increase the diagnosis accuracy. To this end, traditional image processing methods and deep learning approaches have been used. Deep Convolutional Neural Network is a common method of deep learning to detect lesions in images. In this network, the convolution layer extracts the specificities; and the pooling layer decreases the specificity map size. The present research uses the wavelet-transform-based pooling. In addition to decomposing the input image and reducing its size, the wavelet transform highlights sharp changes in the image and better describes local specificities. Therefore, using this transform can improve the diagnosis. The proposed method is based on six convolutional layers, two layers of wavelet pooling, and a completely connected layer that had a better amount of accuracy than the studied methods. The accuracy of 98.92%, precision of 99.20%, and specificity of 98.33% are obtained by testing the image data of 38 patients and 20 healthy individuals.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45837186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-01DOI: 10.22044/JADM.2020.9788.2110
M. Mohammadzadeh, H. Khosravi
Today, video games have a special place among entertainment. In this article, we have developed an interactive video game for mobile devices. In this game, the user can control the game’s character by his face and hand gestures. Cascading classifiers along with Haar-like features and local binary patterns are used for hand gesture recognition and face detection. The game’s character moves according to the current hand and face state received from the frontal camera. Various ideas are used to achieve the appropriate accuracy and speed. Unity 3D and OpenCV for Unity are employed to design and implement the video game. The programming language is C#. This game is written in C# and developed for both Windows and Android operating systems. Experiments show an accuracy of 86.4% in the detection of five gestures. It also has an acceptable frame rate and can run at 11 fps and 8 fps in Windows and Android respectively.
今天,电子游戏在娱乐中占有特殊的地位。在本文中,我们为移动设备开发了一款交互式视频游戏。在这个游戏中,用户可以通过他的脸和手势来控制游戏角色。级联分类器与haar特征和局部二进制模式一起用于手势识别和人脸检测。游戏角色根据从正面摄像头接收到的当前手和面部状态移动。为了达到适当的精度和速度,采用了各种方法。使用Unity 3D和OpenCV for Unity来设计和实现视频游戏。编程语言是c#。这款游戏是用c#编写的,适用于Windows和Android操作系统。实验表明,对五种手势的检测准确率为86.4%。它也有一个可接受的帧率,可以在Windows和Android分别以11帧/秒和8帧/秒运行。
{"title":"A Novel Approach to Communicate with Video Game Character using Cascade Classifiers","authors":"M. Mohammadzadeh, H. Khosravi","doi":"10.22044/JADM.2020.9788.2110","DOIUrl":"https://doi.org/10.22044/JADM.2020.9788.2110","url":null,"abstract":"Today, video games have a special place among entertainment. In this article, we have developed an interactive video game for mobile devices. In this game, the user can control the game’s character by his face and hand gestures. Cascading classifiers along with Haar-like features and local binary patterns are used for hand gesture recognition and face detection. The game’s character moves according to the current hand and face state received from the frontal camera. Various ideas are used to achieve the appropriate accuracy and speed. Unity 3D and OpenCV for Unity are employed to design and implement the video game. The programming language is C#. This game is written in C# and developed for both Windows and Android operating systems. Experiments show an accuracy of 86.4% in the detection of five gestures. It also has an acceptable frame rate and can run at 11 fps and 8 fps in Windows and Android respectively.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45397741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-01DOI: 10.22044/JADM.2021.10433.2179
M. Saffarian, V. Babaiyan, K. Namakin, F. Taheri, T. Kazemi
Today, Metabolic Syndrome in the age group of children and adolescents has become a global concern. In this paper, a data mining model is used to determine a continuous Metabolic Syndrome (cMetS) score using Linear Discriminate Analysis (cMetS-LDA). The decision tree model is used to specify the calculated optimal cut-off point cMetS-LDA. In order to evaluate the method, multilayer perceptron neural network (NN) and Support Vector Machine (SVM) models were used and statistical significance of the results was tested with Wilcoxon signed-rank test. According to the results of this test, the proposed CART is significantly better than the NN and SVM models. The ranking results in this study showed that the most important risk factors in making cMetS-LDA were WC, SBP, HDL and TG for males and WC, TG, HDL and SBP for females. Our research results show that high TG and central obesity have the greatest impact on MetS and FBS has no effect on the final prognosis. The results also indicate that in the preliminary stages of MetS, WC, HDL and SBP are the most important influencing factors that play an important role in forecasting.
{"title":"Developing a Novel Continuous Metabolic Syndrome Score: A Data Mining Based Model","authors":"M. Saffarian, V. Babaiyan, K. Namakin, F. Taheri, T. Kazemi","doi":"10.22044/JADM.2021.10433.2179","DOIUrl":"https://doi.org/10.22044/JADM.2021.10433.2179","url":null,"abstract":"Today, Metabolic Syndrome in the age group of children and adolescents has become a global concern. In this paper, a data mining model is used to determine a continuous Metabolic Syndrome (cMetS) score using Linear Discriminate Analysis (cMetS-LDA). The decision tree model is used to specify the calculated optimal cut-off point cMetS-LDA. In order to evaluate the method, multilayer perceptron neural network (NN) and Support Vector Machine (SVM) models were used and statistical significance of the results was tested with Wilcoxon signed-rank test. According to the results of this test, the proposed CART is significantly better than the NN and SVM models. The ranking results in this study showed that the most important risk factors in making cMetS-LDA were WC, SBP, HDL and TG for males and WC, TG, HDL and SBP for females. Our research results show that high TG and central obesity have the greatest impact on MetS and FBS has no effect on the final prognosis. The results also indicate that in the preliminary stages of MetS, WC, HDL and SBP are the most important influencing factors that play an important role in forecasting.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41831597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-01DOI: 10.22044/JADM.2021.9957.2131
K. Kiani, R. Hematpour, R. Rastgoo
Image colorization is an interesting yet challenging task due to the descriptive nature of getting a natural-looking color image from any grayscale image. To tackle this challenge and also have a fully automatic procedure, we propose a Convolutional Neural Network (CNN)-based model to benefit from the impressive ability of CNN in the image processing tasks. To this end, we propose a deep-based model for automatic grayscale image colorization. Harnessing from convolutional-based pre-trained models, we fuse three pre-trained models, VGG16, ResNet50, and Inception-v2, to improve the model performance. The average of three model outputs is used to obtain more rich features in the model. The fused features are fed to an encoder-decoder network to obtain a color image from a grayscale input image. We perform a step-by-step analysis of different pre-trained models and fusion methodologies to include a more accurate combination of these models in the proposed model. Results on LFW and ImageNet datasets confirm the effectiveness of our model compared to state-of-the-art alternatives in the field.
{"title":"Automatic Grayscale Image Colorization using a Deep Hybrid Model","authors":"K. Kiani, R. Hematpour, R. Rastgoo","doi":"10.22044/JADM.2021.9957.2131","DOIUrl":"https://doi.org/10.22044/JADM.2021.9957.2131","url":null,"abstract":"Image colorization is an interesting yet challenging task due to the descriptive nature of getting a natural-looking color image from any grayscale image. To tackle this challenge and also have a fully automatic procedure, we propose a Convolutional Neural Network (CNN)-based model to benefit from the impressive ability of CNN in the image processing tasks. To this end, we propose a deep-based model for automatic grayscale image colorization. Harnessing from convolutional-based pre-trained models, we fuse three pre-trained models, VGG16, ResNet50, and Inception-v2, to improve the model performance. The average of three model outputs is used to obtain more rich features in the model. The fused features are fed to an encoder-decoder network to obtain a color image from a grayscale input image. We perform a step-by-step analysis of different pre-trained models and fusion methodologies to include a more accurate combination of these models in the proposed model. Results on LFW and ImageNet datasets confirm the effectiveness of our model compared to state-of-the-art alternatives in the field.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42410164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-14DOI: 10.22044/JADM.2021.9583.2090
S. Mavaddati, S. Mavaddati
Development of an automatic system to classify the type of rice grains is an interesting research area in the scientific fields associated with modern agriculture. In recent years, different techniques are employed to identify the types of various agricultural products. Also, different color-based and texture-based features are used to yield the desired results in the classification procedure. This paper proposes a classification algorithm to detect different rice types by extracting features from the bulk samples. The feature space in this algorithm includes the fractal-based features of the extracted coefficients from the wavelet packet transform analysis. This feature vector is combined with other texture-based features and used to learn a model related to each rice type using the Gaussian mixture model classifier. Also, a sparse structured principal component analysis algorithm is applied to reduce the dimension of the feature vector and lead to the precise classification rate with less computational time. The results of the proposed classifier are compared with the results obtained from the other presented classification procedures in this context. The simulation results, along with a meaningful statistical test, show that the proposed algorithm based on the combinational features is able to detect precisely the type of rice grains with more than 99% accuracy. Also, the proposed algorithm can detect the rice quality for different percentages of combination with other rice grains with 99.75% average accuracy.
{"title":"Rice Classification with Fractal-based Features based on Sparse Structured Principal Component Analysis and Gaussian Mixture Model","authors":"S. Mavaddati, S. Mavaddati","doi":"10.22044/JADM.2021.9583.2090","DOIUrl":"https://doi.org/10.22044/JADM.2021.9583.2090","url":null,"abstract":"Development of an automatic system to classify the type of rice grains is an interesting research area in the scientific fields associated with modern agriculture. In recent years, different techniques are employed to identify the types of various agricultural products. Also, different color-based and texture-based features are used to yield the desired results in the classification procedure. This paper proposes a classification algorithm to detect different rice types by extracting features from the bulk samples. The feature space in this algorithm includes the fractal-based features of the extracted coefficients from the wavelet packet transform analysis. This feature vector is combined with other texture-based features and used to learn a model related to each rice type using the Gaussian mixture model classifier. Also, a sparse structured principal component analysis algorithm is applied to reduce the dimension of the feature vector and lead to the precise classification rate with less computational time. The results of the proposed classifier are compared with the results obtained from the other presented classification procedures in this context. The simulation results, along with a meaningful statistical test, show that the proposed algorithm based on the combinational features is able to detect precisely the type of rice grains with more than 99% accuracy. Also, the proposed algorithm can detect the rice quality for different percentages of combination with other rice grains with 99.75% average accuracy.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42497146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-14DOI: 10.22044/JADM.2020.8801.2018
S. H. Erfani
Facial expressions are part of human language and are often used to convey emotions. Since humans are very different in their emotional representation through various media, the recognition of facial expression becomes a challenging problem in machine learning methods. Emotion and sentiment analysis also have become new trends in social media. Deep Convolutional Neural Network (DCNN) is one of the newest learning methods in recent years that model a human's brain. DCNN achieves better accuracy with big data such as images. In this paper an automatic facial expression recognition (FER) method using the deep convolutional neural network is proposed. In this work, a way is provided to overcome the overfitting problem in training the deep convolutional neural network for FER, and also an effective pre-processing phase is proposed that is improved the accuracy of facial expression recognition. Here the results for recognition of seven emotional states (neutral, happiness, sadness, surprise, anger, fear, disgust) have been presented by applying the proposed method on the two largely used public datasets (JAFFE and CK+). The results show that in the proposed method, the accuracy of the FER is better than traditional FER methods and is about 98.59% and 96.89% for JAFFE and CK+ datasets, respectively.
{"title":"Automatic Facial Expression Recognition Method Using Deep Convolutional Neural Network","authors":"S. H. Erfani","doi":"10.22044/JADM.2020.8801.2018","DOIUrl":"https://doi.org/10.22044/JADM.2020.8801.2018","url":null,"abstract":"Facial expressions are part of human language and are often used to convey emotions. Since humans are very different in their emotional representation through various media, the recognition of facial expression becomes a challenging problem in machine learning methods. Emotion and sentiment analysis also have become new trends in social media. Deep Convolutional Neural Network (DCNN) is one of the newest learning methods in recent years that model a human's brain. DCNN achieves better accuracy with big data such as images. In this paper an automatic facial expression recognition (FER) method using the deep convolutional neural network is proposed. In this work, a way is provided to overcome the overfitting problem in training the deep convolutional neural network for FER, and also an effective pre-processing phase is proposed that is improved the accuracy of facial expression recognition. Here the results for recognition of seven emotional states (neutral, happiness, sadness, surprise, anger, fear, disgust) have been presented by applying the proposed method on the two largely used public datasets (JAFFE and CK+). The results show that in the proposed method, the accuracy of the FER is better than traditional FER methods and is about 98.59% and 96.89% for JAFFE and CK+ datasets, respectively.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48674119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-13DOI: 10.22044/JADM.2020.9014.2037
F. Jafarinejad, R. Farzbood
Image retrieval is a basic task in many content-based image systems. Achieving high precision, while maintaining computation time is very important in relevance feedback-based image retrieval systems. This paper establishes an analogy between this and the task of image classification. Therefore, in the image retrieval problem, we will obtain an optimized decision surface that separates dataset images into two categories of relevant/irrelevant images corresponding to the query image. This problem will be viewed and solved as an optimization problem using particle optimization algorithm. Although the particle swarm optimization (PSO) algorithm is widely used in the field of image retrieval, no one use it for directly feature weighting. Information extracted from user feedbacks will guide particles in order to find the optimal weights of various features of images (Color-, shape- or texture-based features). Fusion of these very non-homogenous features need a feature weighting algorithm that will take place by the help of PSO algorithm. Accordingly, an innovative fitness function is proposed to evaluate each particle’s position. Experimental results on Wang dataset and Corel-10k indicate that average precision of the proposed method is higher than other semi-automatic and automatic approaches. Moreover, the proposed method suggest a reduction in the computational complexity in comparison to other PSO-based image retrieval methods.
{"title":"Relevance Feedback-based Image Retrieval using Particle Swarm Optimization","authors":"F. Jafarinejad, R. Farzbood","doi":"10.22044/JADM.2020.9014.2037","DOIUrl":"https://doi.org/10.22044/JADM.2020.9014.2037","url":null,"abstract":"Image retrieval is a basic task in many content-based image systems. Achieving high precision, while maintaining computation time is very important in relevance feedback-based image retrieval systems. This paper establishes an analogy between this and the task of image classification. Therefore, in the image retrieval problem, we will obtain an optimized decision surface that separates dataset images into two categories of relevant/irrelevant images corresponding to the query image. This problem will be viewed and solved as an optimization problem using particle optimization algorithm. Although the particle swarm optimization (PSO) algorithm is widely used in the field of image retrieval, no one use it for directly feature weighting. Information extracted from user feedbacks will guide particles in order to find the optimal weights of various features of images (Color-, shape- or texture-based features). Fusion of these very non-homogenous features need a feature weighting algorithm that will take place by the help of PSO algorithm. Accordingly, an innovative fitness function is proposed to evaluate each particle’s position. Experimental results on Wang dataset and Corel-10k indicate that average precision of the proposed method is higher than other semi-automatic and automatic approaches. Moreover, the proposed method suggest a reduction in the computational complexity in comparison to other PSO-based image retrieval methods.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48224499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}