This paper investigates the theoretical Cram´er-Rao bounds on estimation accuracy of longitudinal vehicle dynamics parameters. This analysis is motivated by the value of parameter estimation in various applications, including chassis model validation and active safety. Relevant literature addresses this demand through algorithms capable of estimating chassis parameters for diverse conditions. While the implementation of such algorithms has been studied, the question of fundamental limits on their accuracy remains largely unexplored. We address this question by presenting two contributions. First, this paper presents theoretical findings which reveal the prevailing effects underpinning vehicle chassis parameter identifiability. We then validate these findings with data from on-road experiments. Our results demonstrate, among a variety of effects, the strong relevance of road grade variability in determining parameter identifiability from a drive cycle. These findings can motivate improved experimental designs in the future.
{"title":"Fisher Identifiability Analysis of Longitudinal Vehicle Dynamics","authors":"Aaron Kandel, Mohamed Wahba, H. Fathy","doi":"10.1115/1.4052990","DOIUrl":"https://doi.org/10.1115/1.4052990","url":null,"abstract":"\u0000 This paper investigates the theoretical Cram´er-Rao bounds on estimation accuracy of longitudinal vehicle dynamics parameters. This analysis is motivated by the value of parameter estimation in various applications, including chassis model validation and active safety. Relevant literature addresses this demand through algorithms capable of estimating chassis parameters for diverse conditions. While the implementation of such algorithms has been studied, the question of fundamental limits on their accuracy remains largely unexplored. We address this question by presenting two contributions. First, this paper presents theoretical findings which reveal the prevailing effects underpinning vehicle chassis parameter identifiability. We then validate these findings with data from on-road experiments. Our results demonstrate, among a variety of effects, the strong relevance of road grade variability in determining parameter identifiability from a drive cycle. These findings can motivate improved experimental designs in the future.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126935292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a method to imitate flatness-based controllers for mobile robots using neural networks. Sample case studies for a unicycle mobile robot and an unmanned aerial vehicle (UAV) quadcopter are presented. The goals of this paper are to (1) train a neural network to approximate a previously designed flatness-based controller, which takes in the desired trajectories previously planned in the flatness space and robot states in a general state space, and (2) present a dynamic training approach to learn models with high-dimensional inputs. It is shown that a simple feedforward neural network could adequately compute the highly nonlinear state variables transformation from general state space to flatness space and replace the complicated designed heuristic to avoid singularities in the control law. This paper also presents a new dynamic training method for models with high-dimensional independent inputs, serving as a reference for learning models with a multitude of inputs. Training procedures and simulations are presented to show both the effectiveness of this novel training approach and the performance of the well-trained neural network.
{"title":"Learning Flatness-Based Controller Using Neural Networks","authors":"Hailin Ren, Jingyuan Qi, P. Ben-Tzvi","doi":"10.1115/1.4046776","DOIUrl":"https://doi.org/10.1115/1.4046776","url":null,"abstract":"\u0000 This paper presents a method to imitate flatness-based controllers for mobile robots using neural networks. Sample case studies for a unicycle mobile robot and an unmanned aerial vehicle (UAV) quadcopter are presented. The goals of this paper are to (1) train a neural network to approximate a previously designed flatness-based controller, which takes in the desired trajectories previously planned in the flatness space and robot states in a general state space, and (2) present a dynamic training approach to learn models with high-dimensional inputs. It is shown that a simple feedforward neural network could adequately compute the highly nonlinear state variables transformation from general state space to flatness space and replace the complicated designed heuristic to avoid singularities in the control law. This paper also presents a new dynamic training method for models with high-dimensional independent inputs, serving as a reference for learning models with a multitude of inputs. Training procedures and simulations are presented to show both the effectiveness of this novel training approach and the performance of the well-trained neural network.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133301404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kelilah L Wolkowicz, R. Leary, J. Moore, S. Brennan
Typically, mobile vehicles follow the same paths repeatedly, resulting in a common path bounded with some variance. These paths are often punctuated by branches into other paths based on decision-making in the area around the branch. This work applies a statistical methodology to determine decision-making regions for branching paths. An average path is defined in the proposed algorithm, as well as boundaries representing variances along the path. The boundaries along each branching path intersect near the decision point; these intersections in path variances are used to determine path-branching locations. The resulting analysis provides decision points that are robust to typical path conditions, such as two paths that may not clearly diverge at a specific location. Additionally, the methodology defines decision region radii that encompass statistical memberships of a location relative to the branching paths. To validate the proposed technique, an off-line implementation of the decision-making region algorithm is applied to previously classified wheelchair path subsets. Results show robust detection of decision regions that intuitively agree with user decision-making in real-world path following. For the experimental situation of this study, approximately 70% of path locations were outside of decision regions and thus could be navigated with a significant reduction in user inputs.
{"title":"Statistical Determination of Decision-Making Regions for Branching Paths: An Algorithm With a Wheelchair Assistance Application","authors":"Kelilah L Wolkowicz, R. Leary, J. Moore, S. Brennan","doi":"10.1115/1.4046578","DOIUrl":"https://doi.org/10.1115/1.4046578","url":null,"abstract":"\u0000 Typically, mobile vehicles follow the same paths repeatedly, resulting in a common path bounded with some variance. These paths are often punctuated by branches into other paths based on decision-making in the area around the branch. This work applies a statistical methodology to determine decision-making regions for branching paths. An average path is defined in the proposed algorithm, as well as boundaries representing variances along the path. The boundaries along each branching path intersect near the decision point; these intersections in path variances are used to determine path-branching locations. The resulting analysis provides decision points that are robust to typical path conditions, such as two paths that may not clearly diverge at a specific location. Additionally, the methodology defines decision region radii that encompass statistical memberships of a location relative to the branching paths. To validate the proposed technique, an off-line implementation of the decision-making region algorithm is applied to previously classified wheelchair path subsets. Results show robust detection of decision regions that intuitively agree with user decision-making in real-world path following. For the experimental situation of this study, approximately 70% of path locations were outside of decision regions and thus could be navigated with a significant reduction in user inputs.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"131 1-2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123574770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we established an analytical model that avoids extensive numerical computation for the analysis of a hydraulically amplified dielectric elastomer actuator. This actuator comprises a thin elastomer shell filled with an incompressible dielectric fluid coupled with a pair of electrodes placed in the central area. Application of high voltage on the electrodes inflates the actuator due to the induced Maxwell stress that pressurizes the incompressible dielectric fluid. The lumped parameter model predicts the stable functional region and the snap-through instability in the actuator. The model was compared with multi-physics finite element models that considered both linear elastic and nonlinear Mooney–Rivlin materials. The proposed model showed good agreement in the estimation of the actuation strain and the hydrostatic pressure as a function of voltage when compared to the finite element results. The average error in the axial and radial actuation using the proposed analytical model and nonlinear finite element method models was 1.62% and 3.42%, respectively. This shows the model strength in the estimation of the actuator states and the critical voltage to avoid snap-through instability, required in applications such as control algorithms.
{"title":"Lumped Parameter Modeling and Snap-Through Stability Analysis of Planar Hydraulically Amplified Dielectric Elastomer Actuators","authors":"A. Zamanian, D. Son, P. Krueger, E. Richer","doi":"10.1115/1.4046398","DOIUrl":"https://doi.org/10.1115/1.4046398","url":null,"abstract":"In this paper, we established an analytical model that avoids extensive numerical computation for the analysis of a hydraulically amplified dielectric elastomer actuator. This actuator comprises a thin elastomer shell filled with an incompressible dielectric fluid coupled with a pair of electrodes placed in the central area. Application of high voltage on the electrodes inflates the actuator due to the induced Maxwell stress that pressurizes the incompressible dielectric fluid. The lumped parameter model predicts the stable functional region and the snap-through instability in the actuator. The model was compared with multi-physics finite element models that considered both linear elastic and nonlinear Mooney–Rivlin materials. The proposed model showed good agreement in the estimation of the actuation strain and the hydrostatic pressure as a function of voltage when compared to the finite element results. The average error in the axial and radial actuation using the proposed analytical model and nonlinear finite element method models was 1.62% and 3.42%, respectively. This shows the model strength in the estimation of the actuator states and the critical voltage to avoid snap-through instability, required in applications such as control algorithms.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115952550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saad N. Yousaf, Victoria S. Joshi, J. E. Britt, Chad G. Rose, M. O'Malley
Although soft robotic assistive gloves have high potential for restoring functional independence for individuals with motor impairment, their lack of rigid components makes it difficult to obtain accurate position sensing to validate their performance. To track soft device motion, standard practice relies on costly optical motion capture techniques, which have reduced accuracy due to limitations in marker occlusion and device deformation. We propose the Instrumented Hand as a low-cost, open-source measurement tool to serve as a standard solution for acquiring joint-level position and torque measurements from magnetoresistive sensors. Shown in a case study, the Instrumented Hand can be used to validate soft wearable devices and evaluate range of motion (ROM) and torque capabilities.
{"title":"Design and Characterization of a Passive Instrumented Hand","authors":"Saad N. Yousaf, Victoria S. Joshi, J. E. Britt, Chad G. Rose, M. O'Malley","doi":"10.1115/1.4046449","DOIUrl":"https://doi.org/10.1115/1.4046449","url":null,"abstract":"\u0000 Although soft robotic assistive gloves have high potential for restoring functional independence for individuals with motor impairment, their lack of rigid components makes it difficult to obtain accurate position sensing to validate their performance. To track soft device motion, standard practice relies on costly optical motion capture techniques, which have reduced accuracy due to limitations in marker occlusion and device deformation. We propose the Instrumented Hand as a low-cost, open-source measurement tool to serve as a standard solution for acquiring joint-level position and torque measurements from magnetoresistive sensors. Shown in a case study, the Instrumented Hand can be used to validate soft wearable devices and evaluate range of motion (ROM) and torque capabilities.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115308509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The complex dynamic behaviors of legged locomotion on stationary terrain have been extensively analyzed using a simplified dynamic model called the spring-loaded inverted pendulum (SLIP) model. However, legged locomotion on dynamic platforms has not been thoroughly investigated even by using a simplified dynamic model such as SLIP. In this paper, we present the modeling, analysis, and control of a SLIP model running on dynamic platforms. Three types of dynamic platforms are considered: (a) a sinusoidally excited rigid-body platform; (b) a spring-supported rigid-body platform; and (c) an Euler–Bernoulli beam. These platforms capture some important domains of real-world locomotion terrain (e.g., harmonically excited platforms, suspended floors, and bridges). The interaction force model and the equations of motion of the SLIP-platform systems are derived. Numerical simulations of SLIP running on the three types of dynamic platforms reveal that the platform movement can destabilize the SLIP even when the initial conditions of the SLIP motion are within the domain of attraction of its motion on flat, stationary platforms. A simple control strategy that can sustain the forward motion of a SLIP on dynamic platforms is then synthesized. The effectiveness of the proposed control strategy in sustaining SLIP motion on dynamic platforms is validated through simulations.
{"title":"Modeling, Analysis, and Control of SLIP Running on Dynamic Platforms","authors":"A. Iqbal, Zhujun Mao, Yan Gu","doi":"10.1115/1.4046962","DOIUrl":"https://doi.org/10.1115/1.4046962","url":null,"abstract":"\u0000 The complex dynamic behaviors of legged locomotion on stationary terrain have been extensively analyzed using a simplified dynamic model called the spring-loaded inverted pendulum (SLIP) model. However, legged locomotion on dynamic platforms has not been thoroughly investigated even by using a simplified dynamic model such as SLIP. In this paper, we present the modeling, analysis, and control of a SLIP model running on dynamic platforms. Three types of dynamic platforms are considered: (a) a sinusoidally excited rigid-body platform; (b) a spring-supported rigid-body platform; and (c) an Euler–Bernoulli beam. These platforms capture some important domains of real-world locomotion terrain (e.g., harmonically excited platforms, suspended floors, and bridges). The interaction force model and the equations of motion of the SLIP-platform systems are derived. Numerical simulations of SLIP running on the three types of dynamic platforms reveal that the platform movement can destabilize the SLIP even when the initial conditions of the SLIP motion are within the domain of attraction of its motion on flat, stationary platforms. A simple control strategy that can sustain the forward motion of a SLIP on dynamic platforms is then synthesized. The effectiveness of the proposed control strategy in sustaining SLIP motion on dynamic platforms is validated through simulations.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125947389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael LiBretto, Y. Cho, Yonghan Ahn, Chang-Soo Han, J. Ueda
This paper presents a method to determine an optimal configuration of a teleoperated excavator to minimize the induced undercarriage oscillation for robust end-point stabilization. Treating the excavator as a kinematically redundant system, where non-unique combinations of the undercarriage position and arm posture can locate the end-point at the same reference. A specific configuration can be chosen to not excite undercarriage oscillation with simple end-point error feedback control without model-based or measurement-based vibration suppression. Robust stability measures based on normalized coprime factorization as well as modal decomposition solve the redundancy of the kinematics. An advantage of this approach is that the control engineer can proceed as if the excavator arm is fixed to rigid ground, which is practically not the case, and apply simple traditional Jacobian-based end-point control.
{"title":"Configuration Optimization for End-Point Stabilization of Redundant Manipulators With Base Flexibility","authors":"Michael LiBretto, Y. Cho, Yonghan Ahn, Chang-Soo Han, J. Ueda","doi":"10.1115/dscc2019-9129","DOIUrl":"https://doi.org/10.1115/dscc2019-9129","url":null,"abstract":"\u0000 This paper presents a method to determine an optimal configuration of a teleoperated excavator to minimize the induced undercarriage oscillation for robust end-point stabilization. Treating the excavator as a kinematically redundant system, where non-unique combinations of the undercarriage position and arm posture can locate the end-point at the same reference. A specific configuration can be chosen to not excite undercarriage oscillation with simple end-point error feedback control without model-based or measurement-based vibration suppression. Robust stability measures based on normalized coprime factorization as well as modal decomposition solve the redundancy of the kinematics. An advantage of this approach is that the control engineer can proceed as if the excavator arm is fixed to rigid ground, which is practically not the case, and apply simple traditional Jacobian-based end-point control.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"113 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126365287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electrified vehicle (EV) batteries that have reached the automotive end of life are providing a low-cost energy storage solution for grid-connected systems, such as DC fast charge stations (DCFCs). There are several challenges associated with the integration of second life batteries (SLBs) in power systems, such as the definition of a systematic approach for the concurrent optimization of performance and lifetime with the aim of minimizing the investment and operating costs. This paper proposes the application of automotive SLBs to DCFC stations where high-power grid connection is not available or feasible. The SLBs are charged using a low-power grid connection and then provide DCFC power to the EVs. An optimal control problem has been formulated to identify the energy management control (EMC) strategy that allows minimizing the replacement rate of the SLBs, while ensuring the EV load request is match.
{"title":"Lifetime Optimization for a Grid-Friendly DC Fast Charge Station With Second Life Batteries","authors":"M. D’Arpino, Massimo Cancian","doi":"10.1115/dscc2019-9105","DOIUrl":"https://doi.org/10.1115/dscc2019-9105","url":null,"abstract":"\u0000 Electrified vehicle (EV) batteries that have reached the automotive end of life are providing a low-cost energy storage solution for grid-connected systems, such as DC fast charge stations (DCFCs). There are several challenges associated with the integration of second life batteries (SLBs) in power systems, such as the definition of a systematic approach for the concurrent optimization of performance and lifetime with the aim of minimizing the investment and operating costs. This paper proposes the application of automotive SLBs to DCFC stations where high-power grid connection is not available or feasible. The SLBs are charged using a low-power grid connection and then provide DCFC power to the EVs. An optimal control problem has been formulated to identify the energy management control (EMC) strategy that allows minimizing the replacement rate of the SLBs, while ensuring the EV load request is match.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115962656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael T. Benson, Harish Sathishchandra, G. Clayton, S. Andersson
In this article, a compressive sensing-based reconstruction algorithm is applied to data acquired from a nodding multibeam Lidar system following a Lissajous-like trajectory. Multibeam Lidar systems provide 3D depth information of the environment, but the vertical resolution of these devices may be insufficient in many applications. To mitigate this issue, the Lidar can be nodded to obtain higher vertical resolution at the cost of increased scan time. Using Lissajous-like nodding trajectories allows for the trade-off between scan time and horizontal and vertical resolutions through the choice of scan parameters. These patterns also naturally subsample the imaged area. In this article, a compressive sensing-based reconstruction algorithm is applied to the data collected during a relatively fast and therefore low-resolution Lissajous-like scan. Experiments and simulations show the feasibility of this method and compare the reconstructions to those made using simple nearest-neighbor interpolation.
{"title":"Compressive Sensing-Based Reconstruction of Lissajous-Like Nodding Lidar Data","authors":"Michael T. Benson, Harish Sathishchandra, G. Clayton, S. Andersson","doi":"10.1115/dscc2019-9201","DOIUrl":"https://doi.org/10.1115/dscc2019-9201","url":null,"abstract":"\u0000 In this article, a compressive sensing-based reconstruction algorithm is applied to data acquired from a nodding multibeam Lidar system following a Lissajous-like trajectory. Multibeam Lidar systems provide 3D depth information of the environment, but the vertical resolution of these devices may be insufficient in many applications. To mitigate this issue, the Lidar can be nodded to obtain higher vertical resolution at the cost of increased scan time. Using Lissajous-like nodding trajectories allows for the trade-off between scan time and horizontal and vertical resolutions through the choice of scan parameters. These patterns also naturally subsample the imaged area. In this article, a compressive sensing-based reconstruction algorithm is applied to the data collected during a relatively fast and therefore low-resolution Lissajous-like scan. Experiments and simulations show the feasibility of this method and compare the reconstructions to those made using simple nearest-neighbor interpolation.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127123006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we address nonlinear moving horizon estimation (NMHE) of vehicle lateral speed, as well as the road friction coefficient, using measured signals from sensors common to modern series-production automobiles. Due to nonlinear vehicle dynamics, a standard nonlinear moving horizon formulation leads to non-convex optimization problems, and numerical optimization algorithms can be trapped in undesirable local minima, leading to incorrect solutions. To address the challenge of non-convex cost functions, we propose an estimator with a two-level hierarchy. At the high level, a grid search combined with numerical optimization aims to find reference estimates that are sufficiently close to the global optimum. The reference estimates are refined at the low level leading to high-precision solutions. Our algorithm ensures that the estimates converge to the true values for the nominal model without the need for accurate initialization. Our design is tested in simulation with both the nominal model as well as a high-fidelity model of Autonomoose, the self-driving car of the University of Waterloo.
{"title":"Hierarchical Nonlinear Moving Horizon Estimation of Vehicle Lateral Speed and Road Friction Coefficient","authors":"C. Jin, A. Maitland, J. McPhee","doi":"10.1115/dscc2019-9069","DOIUrl":"https://doi.org/10.1115/dscc2019-9069","url":null,"abstract":"\u0000 In this paper, we address nonlinear moving horizon estimation (NMHE) of vehicle lateral speed, as well as the road friction coefficient, using measured signals from sensors common to modern series-production automobiles. Due to nonlinear vehicle dynamics, a standard nonlinear moving horizon formulation leads to non-convex optimization problems, and numerical optimization algorithms can be trapped in undesirable local minima, leading to incorrect solutions. To address the challenge of non-convex cost functions, we propose an estimator with a two-level hierarchy. At the high level, a grid search combined with numerical optimization aims to find reference estimates that are sufficiently close to the global optimum. The reference estimates are refined at the low level leading to high-precision solutions. Our algorithm ensures that the estimates converge to the true values for the nominal model without the need for accurate initialization. Our design is tested in simulation with both the nominal model as well as a high-fidelity model of Autonomoose, the self-driving car of the University of Waterloo.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127303798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}