Jet engine control comprises tracking either the fan speed or engine pressure ratio setpoints. Further, safe operation entails maintaining several additional parameters, such as high-pressure turbine temperature, combustor pressure, core shaft acceleration and other ones within prescribed limits. A Min-Max selector that features PI controllers is frequently used to handle these requirements. However, this arrangement is overly conservative in the limits management, which unnecessarily slows down the engine response. To overcome this shortcoming, a new controller that adopts the traditional Min-Max structure in combination with the Ndot control, the Conditionally Active and the Conditioning Technique approaches is developed. PI regulators are replaced by dynamic output feedback controllers, which are designed according to a multi-model structured H-infinity methodology. This approach makes it possible to marry robustness with performance, which are two conflicting objectives. Singular value analysis tools demonstrate the robustness of the resulting design. Linear and nonlinear simulations indicate that the proposed controller optimizes the engine response time under the constraint of keeping a set of parameters within prescribed bounds. The features of the proposed design are lucrative for actual implementation in the industry.
{"title":"Multi-model structured H-infinity design of a robust and aggressive turbofan jet engine controller","authors":"Patrick Authié","doi":"10.1115/1.4052916","DOIUrl":"https://doi.org/10.1115/1.4052916","url":null,"abstract":"\u0000 Jet engine control comprises tracking either the fan speed or engine pressure ratio setpoints. Further, safe operation entails maintaining several additional parameters, such as high-pressure turbine temperature, combustor pressure, core shaft acceleration and other ones within prescribed limits. A Min-Max selector that features PI controllers is frequently used to handle these requirements. However, this arrangement is overly conservative in the limits management, which unnecessarily slows down the engine response. To overcome this shortcoming, a new controller that adopts the traditional Min-Max structure in combination with the Ndot control, the Conditionally Active and the Conditioning Technique approaches is developed. PI regulators are replaced by dynamic output feedback controllers, which are designed according to a multi-model structured H-infinity methodology. This approach makes it possible to marry robustness with performance, which are two conflicting objectives. Singular value analysis tools demonstrate the robustness of the resulting design. Linear and nonlinear simulations indicate that the proposed controller optimizes the engine response time under the constraint of keeping a set of parameters within prescribed bounds. The features of the proposed design are lucrative for actual implementation in the industry.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130599094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The balance of inverted pendulum on inclined surfaces is the precursor to their control in unstructured environments. Researchers have devised control algorithms with feedback from contact (encoders - placed at the pendulum joint) and non-contact (gyroscopes, tilt) sensors. We present feedback control of Inverted Pendulum Cart (IPC) on variable inclines using non-contact sensors and a modified error function. The system is in the state of equilibrium when it is not accelerating and not falling over (rotational equilibrium). This is achieved when the pendulum is aligned along the gravity vector. The control feedback is obtained from non-contact sensors comprising of a pair of accelerometers placed on the inverted pendulum and one on the cart. The proposed modified error function is composed of the dynamic (non-gravity) acceleration of the pendulum and the velocity of the cart. We prove that the system is in equilibrium when the modified error is zero. We present algorithm to calculate the dynamic acceleration and angle of the pendulum, and incline angle using accelerometer readings. Here, the cart velocity and acceleration are assumed to be proportional to the motor angular velocity and acceleration. Thereafter, we perform simulation using noisy sensors to illustrate the balance of IPC on surfaces with unknown inclination angles using PID feedback controller with saturated motor torque, including valley profile that resembles a downhill, flat and uphill combination. The successful control of the system using the proposed modified error function and accelerometer feedback argues for future design of controllers for unstructured and unknown environments using all-accelerometer feedback.
{"title":"Balancing inverted pendulum cart on inclines using accelerometers","authors":"Cole Woods, V. Vikas","doi":"10.1115/1.4052712","DOIUrl":"https://doi.org/10.1115/1.4052712","url":null,"abstract":"\u0000 The balance of inverted pendulum on inclined surfaces is the precursor to their control in unstructured environments. Researchers have devised control algorithms with feedback from contact (encoders - placed at the pendulum joint) and non-contact (gyroscopes, tilt) sensors. We present feedback control of Inverted Pendulum Cart (IPC) on variable inclines using non-contact sensors and a modified error function. The system is in the state of equilibrium when it is not accelerating and not falling over (rotational equilibrium). This is achieved when the pendulum is aligned along the gravity vector. The control feedback is obtained from non-contact sensors comprising of a pair of accelerometers placed on the inverted pendulum and one on the cart. The proposed modified error function is composed of the dynamic (non-gravity) acceleration of the pendulum and the velocity of the cart. We prove that the system is in equilibrium when the modified error is zero. We present algorithm to calculate the dynamic acceleration and angle of the pendulum, and incline angle using accelerometer readings. Here, the cart velocity and acceleration are assumed to be proportional to the motor angular velocity and acceleration. Thereafter, we perform simulation using noisy sensors to illustrate the balance of IPC on surfaces with unknown inclination angles using PID feedback controller with saturated motor torque, including valley profile that resembles a downhill, flat and uphill combination. The successful control of the system using the proposed modified error function and accelerometer feedback argues for future design of controllers for unstructured and unknown environments using all-accelerometer feedback.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115994666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Roy, Rajasree Sarkar, Arunava Banerjee, M. Nabi
With the development of miniaturization technology, MEMS electrothermal microgrippers have been widely used owing to their compact size, ease of manufacturing, and low production cost. Since most of these systems are governed by partial differential equations (PDEs), modeling of microgrippers poses a significant challenge for designers. To reduce the overall computational complexity, it is a common practice to model the microgripper system using the finite element method (FEM). During the design process, the geometric and analytical properties of the microgripper influence the system dynamics to a great extent, and this work focuses on studying the effects of such parameter changes. In low voltage applications, the performance of the microgripper is influenced by the geometrical variations, and the air gap. Hence, for the modeling of the microgripper, actuator arm lengths, and the gap between the arms are chosen as the two main geometric design parameters, while the input current density is considered as the analytical design parameter. In this work, the optimized design parameter values for maximum possible displacement are obtained with the use of Sine Cosine Algorithm (SCA). Further, an averaging operation is proposed for efficiently designing the MEMS electrothermal microgripper, and the efficacy of the proposed design methodology is demonstrated through simulation studies.
{"title":"An Efficient Design Procedure for MEMS Electrothermal Microgripper","authors":"A. Roy, Rajasree Sarkar, Arunava Banerjee, M. Nabi","doi":"10.1115/1.4052668","DOIUrl":"https://doi.org/10.1115/1.4052668","url":null,"abstract":"\u0000 With the development of miniaturization technology, MEMS electrothermal microgrippers have been widely used owing to their compact size, ease of manufacturing, and low production cost. Since most of these systems are governed by partial differential equations (PDEs), modeling of microgrippers poses a significant challenge for designers. To reduce the overall computational complexity, it is a common practice to model the microgripper system using the finite element method (FEM). During the design process, the geometric and analytical properties of the microgripper influence the system dynamics to a great extent, and this work focuses on studying the effects of such parameter changes. In low voltage applications, the performance of the microgripper is influenced by the geometrical variations, and the air gap. Hence, for the modeling of the microgripper, actuator arm lengths, and the gap between the arms are chosen as the two main geometric design parameters, while the input current density is considered as the analytical design parameter. In this work, the optimized design parameter values for maximum possible displacement are obtained with the use of Sine Cosine Algorithm (SCA). Further, an averaging operation is proposed for efficiently designing the MEMS electrothermal microgripper, and the efficacy of the proposed design methodology is demonstrated through simulation studies.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115174280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, a new drive concept for brushless direct current (BLDC) motors is introduced. Energy regeneration is optimally managed with the aim of improving the energy efficiency of robot motion controls. The proposed scheme has three independent regenerative drives interconnected in a wye configuration. An augmented model of the robot, joint mechanisms, and BLDC motors is formed, and then a voltage-based control scheme is developed. The control law is obtained by specifying an outer-loop torque controller followed by minimization of power consumption via online constrained quadratic optimization. An experiment is conducted to assess the performance of the proposed concept against an off-the-shelf driver. It is shown that, in terms of energy regeneration and consumption, the developed driver has better performance. Furthermore, the proposed concept showed a reduction of 15% energy consumption for the conditions of the study.
{"title":"A Novel Concept for Energy-Optimal, Independent-Phase Control of Brushless Motor Drivers","authors":"A. Ghorbanpour, H. Richter","doi":"10.1115/1.4052662","DOIUrl":"https://doi.org/10.1115/1.4052662","url":null,"abstract":"\u0000 In this work, a new drive concept for brushless direct current (BLDC) motors is introduced. Energy regeneration is optimally managed with the aim of improving the energy efficiency of robot motion controls. The proposed scheme has three independent regenerative drives interconnected in a wye configuration. An augmented model of the robot, joint mechanisms, and BLDC motors is formed, and then a voltage-based control scheme is developed. The control law is obtained by specifying an outer-loop torque controller followed by minimization of power consumption via online constrained quadratic optimization. An experiment is conducted to assess the performance of the proposed concept against an off-the-shelf driver. It is shown that, in terms of energy regeneration and consumption, the developed driver has better performance. Furthermore, the proposed concept showed a reduction of 15% energy consumption for the conditions of the study.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131235676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dual-stage actuators, which combine two actuators with different characteristics, have gained interest due to their large-range, high-resolution positioning capabilities. Control of such systems is challenging because it requires balancing the relative contributions of the individual actuators in terms of speed, range and precision. The most common approach is to allocate effort to the actuators based on frequency but this can lead to misallocation in the case of low-frequency short-range trajectories. In this paper, the problem of trajectory allocation in dual-stage actuator systems is addressed using a recently developed range-based filter. The theoretical basis of the range-based filter is rigorously derived for the first time and insights regarding its use, specifically its reinterpretation as a speed-based filter, and its range-frequency response characteristics are presented. The new analysis not only explains the behavior of the filter clearly, but it provides a more robust strategy for incorporating range constraints in filter design for different desired trajectories.
{"title":"Speed- and Range-based Filter Design for Dual-Stage Actuator Control","authors":"J. Peyton-Jones, Aleksandra Mitrović, G. Clayton","doi":"10.1115/1.4052663","DOIUrl":"https://doi.org/10.1115/1.4052663","url":null,"abstract":"\u0000 Dual-stage actuators, which combine two actuators with different characteristics, have gained interest due to their large-range, high-resolution positioning capabilities. Control of such systems is challenging because it requires balancing the relative contributions of the individual actuators in terms of speed, range and precision. The most common approach is to allocate effort to the actuators based on frequency but this can lead to misallocation in the case of low-frequency short-range trajectories. In this paper, the problem of trajectory allocation in dual-stage actuator systems is addressed using a recently developed range-based filter. The theoretical basis of the range-based filter is rigorously derived for the first time and insights regarding its use, specifically its reinterpretation as a speed-based filter, and its range-frequency response characteristics are presented. The new analysis not only explains the behavior of the filter clearly, but it provides a more robust strategy for incorporating range constraints in filter design for different desired trajectories.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128209497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Transfer case clutch is crucial in determining traction torque distribution between front and rear tires for four-wheel-drive (4WD) vehicles. Estimating time-varying clutch surface friction coefficient is critical for traction torque control since it is proportional to the clutch output torque. As a result, this paper proposes a real-time adaptive lookup table strategy to provide the time-varying clutch surface friction coefficient. Specifically, the clutch-parameter-dependent (such as clutch output torque and clutch touchpoint distance) friction coefficient is first estimated with available low-cost vehicle sensors (such as wheel speed and vehicle acceleration); and then a clutch-parameter-independent approach is developed for clutch friction coefficient through a one-dimensional lookup table. The table nodes are adaptively updated based on a fast recursive least-squares (RLS) algorithm. Furthermore, the effectiveness of adaptive lookup table is demonstrated by comparing the estimated clutch torque from adaptive lookup table with that estimated from vehicle dynamics, which achieves 14.8 Nm absolute mean squared error (AMSE) and 2.66% relative mean squared error (RMSE).
{"title":"Slip-Clutch Torque Estimation via Real-Time Adaptive Lookup Table","authors":"Wenpeng Wei, Hussein Dourra, G. Zhu","doi":"10.1115/1.4052462","DOIUrl":"https://doi.org/10.1115/1.4052462","url":null,"abstract":"\u0000 Transfer case clutch is crucial in determining traction torque distribution between front and rear tires for four-wheel-drive (4WD) vehicles. Estimating time-varying clutch surface friction coefficient is critical for traction torque control since it is proportional to the clutch output torque. As a result, this paper proposes a real-time adaptive lookup table strategy to provide the time-varying clutch surface friction coefficient. Specifically, the clutch-parameter-dependent (such as clutch output torque and clutch touchpoint distance) friction coefficient is first estimated with available low-cost vehicle sensors (such as wheel speed and vehicle acceleration); and then a clutch-parameter-independent approach is developed for clutch friction coefficient through a one-dimensional lookup table. The table nodes are adaptively updated based on a fast recursive least-squares (RLS) algorithm. Furthermore, the effectiveness of adaptive lookup table is demonstrated by comparing the estimated clutch torque from adaptive lookup table with that estimated from vehicle dynamics, which achieves 14.8 Nm absolute mean squared error (AMSE) and 2.66% relative mean squared error (RMSE).","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125330762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy storage systems (ESSs), such as lithium-ion batteries, are being used today in renewable grid systems to provide the capacity, power, and quick response required for operation in grid applications, including peak shaving, frequency regulation, back-up power, and voltage support. Each application imposes a different duty cycle on the ESS. This represents the charge/discharge profile associated with energy generation and demand. Different duty cycle characteristics can have different effects on the performance, life, and duration of ESSs. Within lithium-ion batteries, various chemistries exist that own different features in terms of specific energy, power, and cycle life, that ultimately determine their usability and performance. Therefore, the characterization of duty cycles is a key to determine how to properly design lithium-ion battery systems for grid applications. Given the usage-dependent degradation trajectories, this research task is a critical step to study the unique aging behaviors of grid batteries. Significant energy and cost savings can be achieved by the optimal application of lithium-ion batteries for grid-energy storage, enabling greater utilization of renewable grid systems. In this paper, we propose an approach, based on unsupervised learning and frequency domain techniques, to characterize duty cycles for the grid-specific peak shaving applications. Finally, we propose synthetic duty cycles to mimic grid-battery dynamic behaviors for use in laboratory testing.
{"title":"Characterization and Synthesis of Duty Cycles for Battery Energy Storage Used in Peak Shaving Dispatch","authors":"Kevin Moy, Seong-Beom Lee, S. Onori","doi":"10.1115/1.4050192","DOIUrl":"https://doi.org/10.1115/1.4050192","url":null,"abstract":"\u0000 Energy storage systems (ESSs), such as lithium-ion batteries, are being used today in renewable grid systems to provide the capacity, power, and quick response required for operation in grid applications, including peak shaving, frequency regulation, back-up power, and voltage support. Each application imposes a different duty cycle on the ESS. This represents the charge/discharge profile associated with energy generation and demand. Different duty cycle characteristics can have different effects on the performance, life, and duration of ESSs. Within lithium-ion batteries, various chemistries exist that own different features in terms of specific energy, power, and cycle life, that ultimately determine their usability and performance. Therefore, the characterization of duty cycles is a key to determine how to properly design lithium-ion battery systems for grid applications. Given the usage-dependent degradation trajectories, this research task is a critical step to study the unique aging behaviors of grid batteries. Significant energy and cost savings can be achieved by the optimal application of lithium-ion batteries for grid-energy storage, enabling greater utilization of renewable grid systems. In this paper, we propose an approach, based on unsupervised learning and frequency domain techniques, to characterize duty cycles for the grid-specific peak shaving applications. Finally, we propose synthetic duty cycles to mimic grid-battery dynamic behaviors for use in laboratory testing.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122441362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This letter presents the design and experimental validation of a real-time image-based feedback control system for metal laser powder bed fusion (LPBF). A coaxial melt pool video stream is used to control laser power in real-time at 2 kHz. Modeling of the melt pool image response to changes in the input laser power is presented. Based on this identified model, a real-time feedback controller is implemented experimentally, on a single track and part scales. On a single-track scale, the controller successfully tracks a time-varying melt pool reference. On a part-level scale, the controller successfully regulates the melt pool image signature to the desired reference value, reducing layer-to-layer signal variation, and eliminating within-layer signal drift.
{"title":"Real-time Image-based Feedback Control of Laser Powder Bed Fusion","authors":"Aleksandr Shkoruta, Sandipan Mishra, S. Rock","doi":"10.1115/1.4051588","DOIUrl":"https://doi.org/10.1115/1.4051588","url":null,"abstract":"\u0000 This letter presents the design and experimental validation of a real-time image-based feedback control system for metal laser powder bed fusion (LPBF). A coaxial melt pool video stream is used to control laser power in real-time at 2 kHz. Modeling of the melt pool image response to changes in the input laser power is presented. Based on this identified model, a real-time feedback controller is implemented experimentally, on a single track and part scales. On a single-track scale, the controller successfully tracks a time-varying melt pool reference. On a part-level scale, the controller successfully regulates the melt pool image signature to the desired reference value, reducing layer-to-layer signal variation, and eliminating within-layer signal drift.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131888428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In autonomous driving systems, advanced sensing technologies (such as Light Detection and Ranging (LIDAR) devices and cameras) can capture high volume of data for real-time traversability analysis. Off-road autonomy is more challenging than other autonomous applications due to the highly unstructured environment with various types of vegetation. The understory with unknown density can create extremely challenging scenarios (such as negative obstacles masked by dense vegetation) by concealing potential obstacles in the terrain, leading to severe vehicle damage, significant financial loss, and even operator injury or death. This paper investigates the impact of understory vegetation density on obstacle detection in off-road traversability analysis. By leveraging a physics-based autonomous driving simulator, a machine learning–based framework is proposed for obstacle detection based on point cloud data captured by LIDAR. It is observed that the increase in the density of understory vegetation adversely affects the classification performance in correctly detecting solid obstacles. With the cumulative approach used in this paper, however, sensitivity results for different density levels converge as the vehicles incorporates more time frame data into the classification algorithm.
{"title":"Assessing Impact of Understory Vegetation Density on Solid Obstacle Detection for Off-Road Autonomous Ground Vehicles","authors":"Morteza Foroutan, Wenmeng Tian, C. Goodin","doi":"10.1115/1.4047816","DOIUrl":"https://doi.org/10.1115/1.4047816","url":null,"abstract":"\u0000 In autonomous driving systems, advanced sensing technologies (such as Light Detection and Ranging (LIDAR) devices and cameras) can capture high volume of data for real-time traversability analysis. Off-road autonomy is more challenging than other autonomous applications due to the highly unstructured environment with various types of vegetation. The understory with unknown density can create extremely challenging scenarios (such as negative obstacles masked by dense vegetation) by concealing potential obstacles in the terrain, leading to severe vehicle damage, significant financial loss, and even operator injury or death. This paper investigates the impact of understory vegetation density on obstacle detection in off-road traversability analysis. By leveraging a physics-based autonomous driving simulator, a machine learning–based framework is proposed for obstacle detection based on point cloud data captured by LIDAR. It is observed that the increase in the density of understory vegetation adversely affects the classification performance in correctly detecting solid obstacles. With the cumulative approach used in this paper, however, sensitivity results for different density levels converge as the vehicles incorporates more time frame data into the classification algorithm.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"122 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116899987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Response amplitude operator (RAO) curves are commonly employed to assess the dynamic behavior of floating offshore structures in the frequency domain. There are multiple methods used to obtain RAOs for numerical models, scaled physical models, and full-scale tests. While for numerical modeling many studies detail the precise methods used, the literature around experimental RAO curves often do not detail them or leave methodological information incomplete. There exists inadequate experimental evidence in assessing the differences in results obtained by following different RAO generation methods from scaled physical testing. This paper addresses this gap by comparing two most popular RAO generation methods: the energy spectra (ES) and the cross spectral auto spectra (CSAS) method. These are experimentally compared on scaled semisubmersible and spar-buoy platforms in an ocean wave basin. Differences of heave and pitch RAOs generated by different methods are investigated. A method for reasonably collating multiple tests to create a representative RAO is also presented. RAO amplitudes vary significantly and how they decay off beyond certain frequencies is dependent on the method adopted to create them. This variation can be a source of significant uncertainty for floating structures for further analysis, design, control, or repair. Some RAOs (e.g., pitch) are sensitive to scaling and should be considered when converting scaled tests to full-scale equivalent. Detailing methods of RAO generation and comparing approaches of developing them can be important for crucial decisions from scaled physical testing of floating structures at design/development stages.
{"title":"Comparison of Response Amplitude Operator Curve Generation Methods for Scaled Floating Renewable Energy Platforms in Ocean Wave Basin","authors":"Deirdre O’Donnell, Jimmy Murphy, V. Pakrashi","doi":"10.1115/1.4049169","DOIUrl":"https://doi.org/10.1115/1.4049169","url":null,"abstract":"Response amplitude operator (RAO) curves are commonly employed to assess the dynamic behavior of floating offshore structures in the frequency domain. There are multiple methods used to obtain RAOs for numerical models, scaled physical models, and full-scale tests. While for numerical modeling many studies detail the precise methods used, the literature around experimental RAO curves often do not detail them or leave methodological information incomplete. There exists inadequate experimental evidence in assessing the differences in results obtained by following different RAO generation methods from scaled physical testing. This paper addresses this gap by comparing two most popular RAO generation methods: the energy spectra (ES) and the cross spectral auto spectra (CSAS) method. These are experimentally compared on scaled semisubmersible and spar-buoy platforms in an ocean wave basin. Differences of heave and pitch RAOs generated by different methods are investigated. A method for reasonably collating multiple tests to create a representative RAO is also presented. RAO amplitudes vary significantly and how they decay off beyond certain frequencies is dependent on the method adopted to create them. This variation can be a source of significant uncertainty for floating structures for further analysis, design, control, or repair. Some RAOs (e.g., pitch) are sensitive to scaling and should be considered when converting scaled tests to full-scale equivalent. Detailing methods of RAO generation and comparing approaches of developing them can be important for crucial decisions from scaled physical testing of floating structures at design/development stages.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130626634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}