The production of methane in coastal sediments and its release to the water column is intensified by anthropogenic eutrophication and bottom water hypoxia, and it is still uncertain whether methane emissions to the atmosphere will be enhanced. Here, we assess seasonal variations in methane dynamics in a eutrophic, seasonally euxinic coastal basin (Scharendijke, Lake Grevelingen). In-situ benthic chamber incubations reveal high rates of methane release from the sediment to the water column (74–163 mmol m−2 d−1) during monthly measurements between March and October 2021. Comparison of these in-situ total benthic methane fluxes and calculated diffusive fluxes point towards a major role for ebullition. In spring and fall, when the water column was oxic, microbial removal of dissolved methane occurred aerobically in the bottom water. In summer, in contrast, dissolved methane accumulated to concentrations of up to 67 μmol L−1 below the oxycline. Shifts in δ13C–CH4 and δD-CH4 towards higher values and the abundant presence of methane oxidizing bacteria point towards removal of methane around the oxycline, likely through both aerobic and anaerobic pathways, with the latter possibly linked to iron oxide reduction. Shifts in δ13C–CH4 and δD-CH4 to lower values above the oxycline indicate that bubble dissolution contributed to dissolved methane. Methane emissions to the atmosphere were observed in all seasons with the highest, in-situ measured diffusive fluxes (1.2 mmol m−2 d−1) upon the onset of water column mixing at the end of summer. Methane release events during the measurement of in-situ water-air fluxes and model calculations point towards a flux of methane to the atmosphere in the form of bubbles, which bypass the microbial methane filter. The model calculations suggest a potential year-round ebullitive methane flux between 30 and 120 mmol m−2 d−1. We conclude that methane emissions from eutrophic coastal systems may be much higher than previously thought because of ebullition.
The processes responsible for the isotopic compositions and abundances of volatile elements in the early solar system remain highly debated. Orders of magnitude variation of (highly) volatile elements exist between different magmatic iron meteorite groups, but it is unclear to what extent their depletions can be explained by evaporation from metal melts during parent body accretion and/or subsequent break up. To this end, we present 86 new evaporation experiments with the aim of constraining the volatility of most volatile metals from metallic melts. The results confirm the previously proposed important effects of S in metal melt on the volatility of the elements of interest governed by their S-loving or S-phobic behavior. Nominally S-loving elements In, Sn, Te, Pb and Bi are significantly more volatile in Fe melt relative to FeS liquid, whereas nominally S-avoiding elements Ga and Sb are more volatile in FeS liquid relative to Fe melt, at a given pressure and temperature. The newly derived volatility sequences for S-free/poor and S-rich metallic melts were also compared with commonly used volatility models based on condensation temperatures. The results indicate significant differences between the latter, including the much more volatile behavior of Te, relative to Se, in both explored bulk compositions, which are traditionally assumed to be equally volatile. The (minimum) degree of volatile element depletion due to evaporation was quantified using the new experimental results and models. A comparison between the volatile element depletions in magmatic iron meteorites and the predicted depletions appropriate for evaporation from Fe melts shows that the latter depletions can be easily reconciled with (an) evaporation event(s). Altogether, the new data and models will provide an important framework when more accurate and precise estimates of magmatic iron meteorite bulk volatile element contents are available.