首页 > 最新文献

Geochimica et Cosmochimica Acta最新文献

英文 中文
Neodymium isotopes in marginal seawater trace continental weathering inputs 边缘海水中的钕同位素显示大陆风化输入
IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-12-06 DOI: 10.1016/j.gca.2025.12.003
Zhaojie Yu, Zehua Song, Xiaojie Tang, David J. Wilson, Germain Bayon, Yi Huang, Xiaoying Kang, Hualong Jin, Shiming Wan, Christophe Colin
{"title":"Neodymium isotopes in marginal seawater trace continental weathering inputs","authors":"Zhaojie Yu, Zehua Song, Xiaojie Tang, David J. Wilson, Germain Bayon, Yi Huang, Xiaoying Kang, Hualong Jin, Shiming Wan, Christophe Colin","doi":"10.1016/j.gca.2025.12.003","DOIUrl":"https://doi.org/10.1016/j.gca.2025.12.003","url":null,"abstract":"","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"94 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145689930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of shallow-marine carbonates as archives of seawater cerium isotope composition: implications for paleoredox reconstruction 浅海碳酸盐作为海水铈同位素组成档案的评价:古氧化还原重建的意义
IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-12-06 DOI: 10.1016/j.gca.2025.12.006
Mengchun Cao, Sihui Chen, Yi-Bo Lin, Ryoichi Nakada, Kai Sheng, Jian Cao, Shu-zhong Shen
{"title":"Evaluation of shallow-marine carbonates as archives of seawater cerium isotope composition: implications for paleoredox reconstruction","authors":"Mengchun Cao, Sihui Chen, Yi-Bo Lin, Ryoichi Nakada, Kai Sheng, Jian Cao, Shu-zhong Shen","doi":"10.1016/j.gca.2025.12.006","DOIUrl":"https://doi.org/10.1016/j.gca.2025.12.006","url":null,"abstract":"","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"3 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145689921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental determination of equilibrium sulfur isotope fractionation factors in the gas-silicate melt-sulfide liquid system 气体-硅酸盐熔体-硫化物液体体系平衡硫同位素分馏因子的实验测定
IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-12-04 DOI: 10.1016/j.gca.2025.12.001
Shashank Prabha-Mohan , Kenneth T. Koga , Diego F. Narváez , Estelle F. Rose-Koga , Jabrane Labidi
Sulfur, despite its minor presence (∼ 250 µg.g−1) in the bulk silicate Earth, can exhibit high solubility in melts, up to 1.5 wt. %, depending on the melt’s oxidation state. Sulfur is also integral to the formation of economically significant metal ores. This study reports high-temperature equilibrium sulfur isotope fractionation between melt, sulfide, and gas phases using a dynamic 1-atm gas-mixing furnace. Equilibrium experiments conducted on a basaltic system at temperatures of 1200, 1300, and 1400 °C indicate that equilibrium sulfur isotope fractionation between a sulfide liquid and SO2 gas is a linear function of oxygen concentration in the sulfide phase. The fractionation factor is expected to be close to 0 ‰, for a pure FeS sulfide liquid. The experiments also reveal an isotopic fractionation of S from – 0.49 ± 0.97 up to + 5.30 ± 0.59 ‰ between the silicate melt and sulfide liquid, with the silicate melt being enriched in 34S. This variation was best modelled by combining compositional elements of sulfide liquid (oxygen and sulfur) and silicate melt (MgO and Na2O). Our results show a new mechanism of sulfur isotope fractionation between silicate melt and sulfide liquid that results in isotopically heavier melts without sulfate due to the presence of oxygen in the sulfide liquid. Applying our model to Mid-Oceanic Ridge Basalts (MORBs) shows zero S isotope fractionation is expected when the composition of the sulfide liquid is between Fe0.92S and Fe0.86SO0.05. This study shows that measurements of oxygen concentration in natural sulfides are required to accurately interpret sulfur isotope compositions during magma evolution.
硫,尽管它的存在很少(~ 250µg)。g−1)在硅酸盐土中,可以在熔体中表现出高溶解度,高达1.5 wt. %,取决于熔体的氧化状态。硫也是形成具有重要经济意义的金属矿石不可或缺的元素。本研究报告了熔体、硫化物和气相之间的高温平衡硫同位素分馏,采用动态1-atm气体混合炉。在1200、1300和1400℃的玄武岩体系中进行的平衡实验表明,硫化物液体和SO2气体之间的平衡硫同位素分馏是硫化物相中氧浓度的线性函数。对于纯FeS硫化物液体,分馏系数预计接近0‰。硫化物与硅酸盐熔体之间存在- 0.49±0.97‰~ + 5.30±0.59‰的S同位素分异,硅酸盐熔体富集34S。这种变化最好通过结合硫化物液体(氧和硫)和硅酸盐熔体(MgO和Na2O)的组成元素来模拟。我们的研究结果表明,在硅酸盐熔体和硫化物液体之间存在一种新的硫同位素分馏机制,由于硫化物液体中存在氧,导致同位素较重的无硫酸盐熔体。将该模型应用于中洋脊玄武岩(MORBs),结果表明,当硫化物液体的组成在Fe0.92S ~ Fe0.86SO0.05之间时,S同位素分馏为零。该研究表明,在岩浆演化过程中,需要测量天然硫化物中的氧浓度来准确解释硫同位素组成。
{"title":"Experimental determination of equilibrium sulfur isotope fractionation factors in the gas-silicate melt-sulfide liquid system","authors":"Shashank Prabha-Mohan ,&nbsp;Kenneth T. Koga ,&nbsp;Diego F. Narváez ,&nbsp;Estelle F. Rose-Koga ,&nbsp;Jabrane Labidi","doi":"10.1016/j.gca.2025.12.001","DOIUrl":"10.1016/j.gca.2025.12.001","url":null,"abstract":"<div><div>Sulfur, despite its minor presence (∼ 250 µg.g<sup>−1</sup>) in the bulk silicate Earth, can exhibit high solubility in melts, up to 1.5 wt. %, depending on the melt’s oxidation state. Sulfur is also integral to the formation of economically significant metal ores. This study reports high-temperature equilibrium sulfur isotope fractionation between melt, sulfide, and gas phases using a dynamic 1-atm gas-mixing furnace. Equilibrium experiments conducted on a basaltic system at temperatures of 1200, 1300, and 1400 °C indicate that equilibrium sulfur isotope fractionation between a sulfide liquid and SO<sub>2</sub> gas is a linear function of oxygen concentration in the sulfide phase. The fractionation factor is expected to be close to 0 ‰, for a pure FeS sulfide liquid. The experiments also reveal an isotopic fractionation of S from – 0.49 ± 0.97 up to + 5.30 ± 0.59 ‰ between the silicate melt and sulfide liquid, with the silicate melt being enriched in <sup>34</sup>S. This variation was best modelled by combining compositional elements of sulfide liquid (oxygen and sulfur) and silicate melt (MgO and Na<sub>2</sub>O). Our results show a new mechanism of sulfur isotope fractionation between silicate melt and sulfide liquid that results in isotopically heavier melts without sulfate due to the presence of oxygen in the sulfide liquid. Applying our model to Mid-Oceanic Ridge Basalts (MORBs) shows zero S isotope fractionation is expected when the composition of the sulfide liquid is between Fe<sub>0.92</sub>S and Fe<sub>0.86</sub>SO<sub>0.05</sub>. This study shows that measurements of oxygen concentration in natural sulfides are required to accurately interpret sulfur isotope compositions during magma evolution.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"413 ","pages":"Pages 187-203"},"PeriodicalIF":5.0,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145690058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and theoretical investigation of antimony isotope fractionation during Sb(III) adsorption on iron (oxyhydr)oxides under anaerobic environment 厌氧环境下Sb(III)吸附铁(氧)氧化物过程中锑同位素分馏的实验与理论研究
IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-12-03 DOI: 10.1016/j.gca.2025.11.050
Wenju Wang, Hai-Bo Qin, Jian-Ming Zhu, Hongtao He, Decan Tan, Peng Zhao, Yan Zhang, Chengshuai Liu, Yoshio Takahashi, Mingshi Wang
{"title":"Experimental and theoretical investigation of antimony isotope fractionation during Sb(III) adsorption on iron (oxyhydr)oxides under anaerobic environment","authors":"Wenju Wang, Hai-Bo Qin, Jian-Ming Zhu, Hongtao He, Decan Tan, Peng Zhao, Yan Zhang, Chengshuai Liu, Yoshio Takahashi, Mingshi Wang","doi":"10.1016/j.gca.2025.11.050","DOIUrl":"https://doi.org/10.1016/j.gca.2025.11.050","url":null,"abstract":"","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"1 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145658134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precipitation kinetics and C isotope fractionation of rhodochrosite at 298.15 K 298.15 K下菱锰矿沉淀动力学及C同位素分馏
IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-12-03 DOI: 10.1016/j.gca.2025.12.002
Clancy Zhijian Jiang, Ziwei Liu, Nicholas J. Tosca
<div><div>Before the rise of atmospheric oxygen, the release and transport of soluble manganese ( <figure><img></figure> ) represented the entry point of the earliest Mn cycle. The Mn cycle on early Earth is thought to have resembled that of Fe due to their geochemical similarities. However, kinetic data pertaining to <figure><img></figure> mineralisation are lacking, and thus we lack a complete understanding of the fate of <figure><img></figure> in aqueous systems on early Earth. This study investigates Mn mineralisation and precipitation kinetics through three processes at room temperature: (1) the homogeneous nucleation of rhodochrosite (MnCO<sub>3</sub>) from oversaturated solutions, (2) seeded rhodochrosite crystal growth under varying solution chemistry, and (3) the competing homogeneous nucleation between rhodochrosite and <figure><img></figure> -silicates in silica-rich solutions.</div><div>These experimental data show that homogeneous nucleation of rhodochrosite only takes place above a significantly elevated solution saturation (<span><math><mrow><mi>Ω</mi><mo>≳</mo></mrow></math></span> 380). The rate of nucleation (<span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi><mi>u</mi><mi>c</mi><mi>l</mi></mrow></msub></math></span>) can be described with a generalised rate law: <span><span><span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi><mi>u</mi><mi>c</mi><mi>l</mi></mrow></msub><mspace></mspace><mrow><mo>(</mo><mstyle><mi>m</mi><mi>o</mi><mi>l</mi></mstyle><mspace></mspace><msup><mrow><mstyle><mi>k</mi><mi>g</mi></mstyle></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace></mspace><msup><mrow><mstyle><mi>s</mi></mstyle></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>147</mn><mo>exp</mo><mfenced><mrow><mfrac><mrow><mo>−</mo><mn>83</mn><mo>.</mo><mn>974</mn></mrow><mrow><msup><mrow><mrow><mo>(</mo><mo>log</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></mfenced><mo>.</mo></mrow></math></span></span></span>Once nucleated, the crystal growth rate (<span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>g</mi><mi>r</mi><mi>w</mi></mrow></msub></math></span>; BET-surface area normalised) can be delineated as a function of solution chemistry (1 <span><math><mrow><mo><</mo><mi>Ω</mi><mo><</mo></mrow></math></span> 380), following a rate law that reflects a mixed diffusion- (1st order) and surface reaction-controlled (2nd order) growth mechanism: <span><span><span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>g</mi><mi>r</mi><mi>w</mi></mrow></msub><mspace></mspace><mrow><mo>(</mo><mstyle><mi>m</mi><mi>o</mi><mi>l</mi></mstyle><mspace></mspace><msup><mrow><mstyle><mi>k</mi><mi>g</mi></mstyle></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace></mspace><msup><mrow><mstyle><mi>s</mi></mstyle></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mo>=<
在大气氧气上升之前,可溶性锰()的释放和转运代表了最早锰循环的切入点。由于地球化学上的相似性,早期地球上的锰循环被认为与铁的循环相似。然而,缺乏与矿化有关的动力学数据,因此我们对早期地球水系统的命运缺乏完整的了解。本研究在室温下通过三个过程研究锰的矿化和沉淀动力学:(1)过饱和溶液中红锰矿(MnCO3)的均匀成核,(2)不同溶液化学条件下红锰矿种子晶体的生长,以及(3)富硅溶液中红锰矿和-硅酸盐之间的竞争均匀成核。这些实验数据表明,只有当溶液饱和度显著提高(Ω约380)时,才会发生菱锰矿的均匀成核。成核速率(rnucl)可以用广义速率定律来描述:rnucl(molkg−1s−1)=0.147exp−83.974(logΩavg)2。一旦成核,晶体生长速率(rgrow; bett -表面积归一化)可以描述为溶液化学的函数(1 <;Ω< 380),遵循反映混合扩散-(一级)和表面反应控制(二级)生长机制的速率定律:rgrow (molkg−1s−1)=10−11.684(Ωavg−1)1.420,R2 = 0.91。在相当的过饱和条件下,红锰矿的生长速度比菱铁矿(FeCO3)快10倍左右,但比方解石(CaCO3)慢6个数量级。尽管它们的生长动力学相似,但与菱铁矿相比,远离平衡的菱铁矿生长导致的碳同位素动力学效应可以忽略不计(Δ13C小于- 1.27‰),而菱铁矿则表现出明显的同位素动力学分馏。这种差异归因于红锰矿生长过程中广泛的溶解和再沉淀,使沉淀和母体溶液的同位素组成均匀化。富硅溶液([SiO2(aq)] = 1.25 mmol kg-1)中-碳酸盐和-硅酸盐相互竞争的成核实验表明,与Fe(II)-硅酸盐体系相反,-硅酸盐在与早期地球地表水相关的条件下不会沉淀。总之,这些实验室观察表明,在地球早期的缺氧水生系统中,含Mn(II)的固相不太可能限制水中Mn(II)的浓度,并表明最重要的去除途径包括氧化还原转化和/或结合到含ca的碳酸盐矿物中。
{"title":"Precipitation kinetics and C isotope fractionation of rhodochrosite at 298.15 K","authors":"Clancy Zhijian Jiang,&nbsp;Ziwei Liu,&nbsp;Nicholas J. Tosca","doi":"10.1016/j.gca.2025.12.002","DOIUrl":"10.1016/j.gca.2025.12.002","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Before the rise of atmospheric oxygen, the release and transport of soluble manganese ( &lt;figure&gt;&lt;img&gt;&lt;/figure&gt; ) represented the entry point of the earliest Mn cycle. The Mn cycle on early Earth is thought to have resembled that of Fe due to their geochemical similarities. However, kinetic data pertaining to &lt;figure&gt;&lt;img&gt;&lt;/figure&gt; mineralisation are lacking, and thus we lack a complete understanding of the fate of &lt;figure&gt;&lt;img&gt;&lt;/figure&gt; in aqueous systems on early Earth. This study investigates Mn mineralisation and precipitation kinetics through three processes at room temperature: (1) the homogeneous nucleation of rhodochrosite (MnCO&lt;sub&gt;3&lt;/sub&gt;) from oversaturated solutions, (2) seeded rhodochrosite crystal growth under varying solution chemistry, and (3) the competing homogeneous nucleation between rhodochrosite and &lt;figure&gt;&lt;img&gt;&lt;/figure&gt; -silicates in silica-rich solutions.&lt;/div&gt;&lt;div&gt;These experimental data show that homogeneous nucleation of rhodochrosite only takes place above a significantly elevated solution saturation (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;≳&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; 380). The rate of nucleation (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) can be described with a generalised rate law: &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mstyle&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mstyle&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;147&lt;/mn&gt;&lt;mo&gt;exp&lt;/mo&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;83&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;974&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;log&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;Once nucleated, the crystal growth rate (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;; BET-surface area normalised) can be delineated as a function of solution chemistry (1 &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; 380), following a rate law that reflects a mixed diffusion- (1st order) and surface reaction-controlled (2nd order) growth mechanism: &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mstyle&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mstyle&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"413 ","pages":"Pages 204-217"},"PeriodicalIF":5.0,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145657977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluid-silicate melt Cu isotope fractionation and its impact on δ65/63Cu heterogeneity in porphyry copper deposits and associated arc magmas 流体硅酸盐熔体Cu同位素分馏及其对斑岩铜矿及伴生弧岩浆δ65/63Cu非均质性的影响
IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-12-02 DOI: 10.1016/j.gca.2025.11.039
Jianping Li , A.E. Williams-Jones , Shitao Zhang , Huayong Chen
Fluid exsolution associated with arc magmatism at subduction zones is an essential process for the transfer of volatiles and enrichment of ore metals in the upper crust. As an incompatible and fluid-mobile element, Cu and its isotopes can be used as tracers of magmatic-hydrothermal activity and metal source. The isotopic fractionation of Cu between aqueous fluids and silicate magmas is still not well quantified. To shed light on this process, we evaluated the equilibrium isotope fractionation of Cu between aqueous fluids and coexisting silicate melts (Δδ65Cufluid-melt) experimentally at 850℃ and 200 MPa for a variety of fluid and melt compositions. The results of these experiments show that low chlorinity (1 mol/kg H2O) aqueous fluids are isotopically heavier with respect to Cu than the coexisting silicate melts, i.e., the Δδ65Cufluid-melt values are from + 0.03 ‰ to + 0.17 ‰. These values correlate negatively with the alumina saturation index (ASI) of the melt. Increasing the fluid chlorinity decreases the preference of the heavy Cu isotopes for the fluid, leading to heavier Cu-isotopic values for the silicate melt, i.e., the Δδ65Cufluid-melt value decreases from + 0.04 ‰ at a fluid chlorinity of ∼1 m ol/kg H2O to −0.35 ‰ at a fluid chlorinity of ∼4 m ol/kg H2O. We attribute this change to a change in the dominant Cu species in the fluid from CuCl0 to a Cu complex with a higher Cl ligand number, i.e., (Na, K)CuCl30. The results of our study suggest that it should be possible to use Δδ65Cufluid-melt values to trace the evolution of Cu isotope composition in the exsolved fluid and residual magma and evaluate their possible effects on the Cu-isotopic signature of different parts of porphyry (±skarn) copper systems. The results may also find application in distinguishing between intrusions that have exsolved fluid (potentially fertile) from intrusions that have not exsolved fluid (potentially barren), and thereby provide an important tool for use in the exploration for deposits of this important commodity.
与俯冲带弧岩浆作用相关的流体溶蚀是上地壳挥发物转移和矿石金属富集的重要过程。铜及其同位素是一种不相容的可流动元素,可作为岩浆热液活动和金属来源的示踪剂。铜在水流体和硅酸盐岩浆之间的同位素分馏尚未得到很好的量化。为了阐明这一过程,我们在850℃和200 MPa条件下,对不同流体和熔体组成的水相流体和共存的硅酸盐熔体(Δδ65Cufluid-melt)进行了平衡同位素分馏实验。实验结果表明,低氯度(1 mol/kg H2O)水溶液相对于共存的硅酸盐熔体,其Cu同位素重,即Δδ65Cufluid-melt值在+ 0.03‰~ + 0.17‰之间。这些值与熔体的氧化铝饱和指数(ASI)负相关。增加流体的氯含量降低了重Cu同位素对流体的偏好,导致硅酸盐熔体的Cu同位素值更大,即Δδ65Cufluid-melt值从流体氯含量为~ 1 m ol/kg H2O时的+ 0.04‰下降到流体氯含量为~ 4 m ol/kg H2O时的- 0.35‰。我们将这种变化归因于流体中的优势Cu物种从CuCl0转变为具有更高Cl配体数的Cu配合物,即(Na, K)CuCl30。我们的研究结果表明,利用Δδ65Cufluid-melt值可以追踪出溶流体和残余岩浆中Cu同位素组成的演化,并评价它们对斑岩(±矽卡岩)铜体系不同部位Cu同位素特征的可能影响。研究结果还可用于区分具有溶出流体(可能肥沃)的侵入体和未溶出流体(可能贫瘠)的侵入体,从而为勘探这种重要商品的矿床提供重要工具。
{"title":"Fluid-silicate melt Cu isotope fractionation and its impact on δ65/63Cu heterogeneity in porphyry copper deposits and associated arc magmas","authors":"Jianping Li ,&nbsp;A.E. Williams-Jones ,&nbsp;Shitao Zhang ,&nbsp;Huayong Chen","doi":"10.1016/j.gca.2025.11.039","DOIUrl":"10.1016/j.gca.2025.11.039","url":null,"abstract":"<div><div>Fluid exsolution associated with arc magmatism at subduction zones is an essential process for the transfer of volatiles and enrichment of ore metals in the upper crust. As an incompatible and fluid-mobile element, Cu and its isotopes can be used as tracers of magmatic-hydrothermal activity and metal source. The isotopic fractionation of Cu between aqueous fluids and silicate magmas is still not well quantified. To shed light on this process, we evaluated the equilibrium isotope fractionation of Cu between aqueous fluids and coexisting silicate melts (Δδ<sup>65</sup>Cu<sub>fluid-melt</sub>) experimentally at 850℃ and 200 MPa for a variety of fluid and melt compositions. The results of these experiments show that low chlorinity (1 mol/kg H<sub>2</sub>O) aqueous fluids are isotopically heavier with respect to Cu than the coexisting silicate melts, i.e., the Δδ<sup>65</sup>Cu<sub>fluid-melt</sub> values are from + 0.03 ‰ to + 0.17 ‰. These values correlate negatively with the alumina saturation index (ASI) of the melt. Increasing the fluid chlorinity decreases the preference of the heavy Cu isotopes for the fluid, leading to heavier Cu-isotopic values for the silicate melt, i.e., the Δδ<sup>65</sup>Cu<sub>fluid-melt</sub> value decreases from + 0.04 ‰ at a fluid chlorinity of ∼1 m ol/kg H<sub>2</sub>O to −0.35 ‰ at a fluid chlorinity of ∼4 m ol/kg H<sub>2</sub>O. We attribute this change to a change in the dominant Cu species in the fluid from CuCl<sup>0</sup> to a Cu complex with a higher Cl ligand number, i.e., (Na, K)CuCl<sub>3</sub><sup>0</sup>. The results of our study suggest that it should be possible to use Δδ<sup>65</sup>Cu<sub>fluid-melt</sub> values to trace the evolution of Cu isotope composition in the exsolved fluid and residual magma and evaluate their possible effects on the Cu-isotopic signature of different parts of porphyry (±skarn) copper systems. The results may also find application in distinguishing between intrusions that have exsolved fluid (potentially fertile) from intrusions that have not exsolved fluid (potentially barren), and thereby provide an important tool for use in the exploration for deposits of this important commodity.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"413 ","pages":"Pages 1-17"},"PeriodicalIF":5.0,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145657978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nickel isotopic evidence for potential deep magmatic sulfide ore bodies in orogenic settings 造山带深部岩浆硫化物矿体的镍同位素证据
IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-12-02 DOI: 10.1016/j.gca.2025.11.052
Peng-Yi Li , Shui-Jiong Wang , Fu-Ping Pei , Guan-Wen Yu , Bing-Qian Ding , Zi-Cheng Guan , Kai Song , Wen-Liang Xu
Ni isotopes have significant potential as the genetic indicators in magmatic Cu–Ni sulfide deposits. However, the mechanisms underlying Ni isotope fractionation in sulfide-bearing and sulfide-barren mafic–ultramafic intrusions remain poorly constrained. Here, we analyzed Ni isotopes of five mafic–ultramafic intrusions along the Changchun–Yanji suture zone in the southeastern Central Asian Orogenic Belt (CAOB). These mafic–ultramafic intrusions exhibit arc-like trace element characteristics, with enrichment in large-ion lithophile elements (LILEs) and depletion in high-field-strength elements (HFSEs), suggesting a metasomatized mantle source. Based on their spatial distribution and Ni isotopic compositions, these intrusions can be divided into two groups: the normal-Ni isotopic group, which includes sulfide-barren intrusions (Jiaohe, Badaohezi and Bakeshu) situated to the west of Dunhua–Mishan (Dun–Mi) Fault; and the heavy-Ni isotopic group including sulfide-bearing Piaohechuan No.4 and sulfide-barren Qinglinzi intrusions located near and to the east of the Dun–Mi Fault. The normal-Ni isotopic intrusions formed at ca. 222–246 Ma, and exhibit an average δ60/58Ni value of +0.11 ‰ (2SD) comparable to that of the bulk silicate Earth (BSE). In contrast, the heavy-Ni isotopic intrusions formed at ca. 218 Ma, and show substantially high δ60/58Ni values (avg. δ60/58Ni of +0.36 ‰, 2SD). Notably, sulfide minerals from the Piaohechuan No.4 intrusion display lighter Ni isotopic compositions (δ60/58Ni value of −0.32 to −0.80 ‰). In conclusion, the heavy-Ni isotopic intrusions were derived from highly oxidized lithospheric mantle and experienced light δ60/58Ni sulfide segregation, as evidenced by Rayleigh fractionation modeling. The mechanisms underlying Ni isotope fractionation in sulfide-bearing and sulfide-barren mafic–ultramafic intrusions are sulfide segregation with light δ60/58Ni values. Additionally, we conclude that the eastern region, characterized by a highly oxidized mantle, exhibits potential for Ni–Cu sulfide mineralization, and that the exploration of magmatic Ni–Cu sulfide deposits in orogenic settings should focus on the mafic–ultramafic intrusions with high δ60/58Ni values.
镍同位素作为岩浆型铜镍硫化物矿床成因指示物具有重要的潜力。然而,含硫化物和无硫化物基性-超镁铁质侵入体中镍同位素分选的机制尚不清楚。本文对中亚造山带(CAOB)东南部长春-延吉缝合带5个基性-超基性岩体的Ni同位素进行了分析。这些基性-超基性侵入体表现出弧状微量元素特征,大离子亲石元素(LILEs)富集,高场强元素(hfse)亏缺,表明地幔源区存在交代作用。根据其空间分布和镍同位素组成,可将其划分为两类:正镍同位素组,包括位于敦密断裂以西的焦河、八道河子和巴可树等硫化物贫化岩体;重镍同位素群包括含硫化物的漂河川4号和无硫化物的青林子侵入体,位于敦密断裂带及其以东。正常镍同位素侵入体形成于222 ~ 246 Ma, δ60/58Ni平均值为+0.11‰(2SD),与大块硅酸盐土(BSE)相当。重ni同位素侵入体形成于约218 Ma, δ60/58Ni值较高(平均δ60/58Ni值为+0.36‰,2SD)。漂河川4号岩体硫化物矿物的Ni同位素组成较轻(δ60/58Ni值为−0.32 ~−0.80‰)。Rayleigh分馏模拟结果表明,重镍同位素侵入体来源于高氧化岩石圈地幔,并经历了轻δ60/58Ni硫化物偏析。含硫化物和无硫化物基性-超镁铁质侵入体中镍同位素分馏的机制是硫化物偏析,δ60/58Ni值较轻。此外,东部地区以高氧化地幔为特征,具有镍铜硫化物成矿潜力,造山带岩浆型镍铜硫化物矿床勘探应以高δ60/58Ni值的基性-超基性侵入体为重点。
{"title":"Nickel isotopic evidence for potential deep magmatic sulfide ore bodies in orogenic settings","authors":"Peng-Yi Li ,&nbsp;Shui-Jiong Wang ,&nbsp;Fu-Ping Pei ,&nbsp;Guan-Wen Yu ,&nbsp;Bing-Qian Ding ,&nbsp;Zi-Cheng Guan ,&nbsp;Kai Song ,&nbsp;Wen-Liang Xu","doi":"10.1016/j.gca.2025.11.052","DOIUrl":"10.1016/j.gca.2025.11.052","url":null,"abstract":"<div><div>Ni isotopes have significant potential as the genetic indicators in magmatic Cu–Ni sulfide deposits. However, the mechanisms underlying Ni isotope fractionation in sulfide-bearing and sulfide-barren mafic–ultramafic intrusions remain poorly constrained. Here, we analyzed Ni isotopes of five mafic–ultramafic intrusions along the Changchun–Yanji suture zone in the southeastern Central Asian Orogenic Belt (CAOB). These mafic–ultramafic intrusions exhibit arc-like trace element characteristics, with enrichment in large-ion lithophile elements (LILEs) and depletion in high-field-strength elements (HFSEs), suggesting a metasomatized mantle source. Based on their spatial distribution and Ni isotopic compositions, these intrusions can be divided into two groups: the normal-Ni isotopic group, which includes sulfide-barren intrusions (Jiaohe, Badaohezi and Bakeshu) situated to the west of Dunhua–Mishan (Dun–Mi) Fault; and the heavy-Ni isotopic group including sulfide-bearing Piaohechuan No.4 and sulfide-barren Qinglinzi intrusions located near and to the east of the Dun–Mi Fault. The normal-Ni isotopic intrusions formed at ca. 222–246 Ma, and exhibit an average <em>δ</em><sup>60/58</sup>Ni value of +0.11 ‰ (2SD) comparable to that of the bulk silicate Earth (BSE). In contrast, the heavy-Ni isotopic intrusions formed at ca. 218 Ma, and show substantially high <em>δ</em><sup>60/58</sup>Ni values (avg. <em>δ</em><sup>60/58</sup>Ni of +0.36 ‰, 2SD). Notably, sulfide minerals from the Piaohechuan No.4 intrusion display lighter Ni isotopic compositions (<em>δ</em><sup>60/58</sup>Ni value of −0.32 to −0.80 ‰). In conclusion, the heavy-Ni isotopic intrusions were derived from highly oxidized lithospheric mantle and experienced light <em>δ</em><sup>60/58</sup>Ni sulfide segregation, as evidenced by Rayleigh fractionation modeling. The mechanisms underlying Ni isotope fractionation in sulfide-bearing and sulfide-barren mafic–ultramafic intrusions are sulfide segregation with light <em>δ</em><sup>60/58</sup>Ni values. Additionally, we conclude that the eastern region, characterized by a highly oxidized mantle, exhibits potential for Ni–Cu sulfide mineralization, and that the exploration of magmatic Ni–Cu sulfide deposits in orogenic settings should focus on the mafic–ultramafic intrusions with high <em>δ</em><sup>60/58</sup>Ni values.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"413 ","pages":"Pages 171-186"},"PeriodicalIF":5.0,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145657979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recycled carbon in the mantle source of carbonatites: A magnesium isotopic perspective 碳酸盐岩地幔源中的再循环碳:镁同位素的视角
IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-12-02 DOI: 10.1016/j.gca.2025.11.048
Anupam Banerjee, Fang-Zhen Teng, M. Satish-Kumar, K.M. Preeti
{"title":"Recycled carbon in the mantle source of carbonatites: A magnesium isotopic perspective","authors":"Anupam Banerjee, Fang-Zhen Teng, M. Satish-Kumar, K.M. Preeti","doi":"10.1016/j.gca.2025.11.048","DOIUrl":"https://doi.org/10.1016/j.gca.2025.11.048","url":null,"abstract":"","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"101 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145657980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subduction erosion intensifying carbonate-rich material recycling revealed by Mg-Zn isotopic evidence from high-Mg andesites in central Tibet
IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-12-02 DOI: 10.1016/j.gca.2025.11.051
Jialiang Li , Wei-Qiang Ji , Xiao-Chi Liu , Jingao Liu , Fu-Yuan Wu
Subduction erosion has been suggested as a major process that transfers crustal material into the mantle at convergent systems. However, to date, few studies have attempted to establish a link between subduction erosion and deep carbon cycling. High-Mg andesites are thought as key magmatic markers of crust-mantle interaction. Here, we report elemental and Sr-Nd-Hf-Mg-Zn isotopic data for ca. 167–166 Ma high-Mg andesites from the DaruTso magmatic arc, central Tibet. The key geochemical observations, such as arc-type trace element patterns, high Th/La (0.46–0.58) and Th (12.0–13.8 ppm) contents, very enriched Sr-Nd-Hf isotope compositions ((87Sr/86Sr)i = 0.7078–0.7088; εNd(t) = −9.5 to −8.8; εHf(t) = −7.4 to −5.7), and more variable Mg but heavier Zn isotopic compositions (δ26Mg = −0.30 ‰ to −0.13 ‰; δ66Zn = 0.35 ‰ to 0.46 ‰) than that of the mantle (δ26Mg = −0.25 ± 0.04 ‰; δ66Zn = 0.18 ± 0.05 ‰), imply that these lavas are derived from subarc mantle magma sources containing both recycled terrigenous siliciclastic and carbonate sediments. In addition, the inverse δ26Mg-δ66Zn correlations and their linear variations with CaO/Al2O3, CaO/TiO2 and La/Sm are jointly interpreted to reflect carbonatitic metasomatism associated with the northern subduction of the Tethys Ocean. The co-variations between δ26Mg-δ66Zn and (87Sr/86Sr)iNd(t)-εHf(t) provide evidence for the potential of both recycled terrigenous siliciclastic sediments and calcium carbonates to modify subarc mantle Mg-Zn isotopic compositions. These features, coupled with other independent geological archives, suggest DaruTso high-Mg magma generation via partial melting of eroded forearc carbonate-rich components and subsequent interaction with mantle peridotite. Evidently subduction erosion processes are key for transporting substantial quantities of carbonate-rich sediments into the Tethys subarc mantle, which may have helped drive high volcanic CO2 emission rates over the Mesozoic. This study presents solid evidence of magmatic rock Mg-Zn isotopes for revealing the effect of subduction erosion on deep carbon cycle and provides a new perspective on the Earth’s long-term carbon cycles.
俯冲侵蚀被认为是一个将地壳物质转移到地幔的主要过程。然而,迄今为止,很少有研究试图建立俯冲侵蚀与深层碳循环之间的联系。高镁安山岩被认为是壳幔相互作用的关键岩浆标志。本文报道了西藏中部大utso岩浆弧约167 ~ 166 Ma高镁安山岩的元素和Sr-Nd-Hf-Mg-Zn同位素数据。关键地球化学观测结果为弧型微量元素模式,高Th/La(0.46 ~ 0.58)和Th (12.0 ~ 13.8 ppm)含量,Sr-Nd-Hf同位素组成非常富集((87Sr/86Sr)i = 0.7078 ~ 0.7088;εNd(t) = - 9.5 ~ - 8.8;δ26Mg = - 0.25±0.04‰,δ66Zn = 0.18±0.05‰,δ26Mg = - 0.30‰~ - 0.13‰,δ66Zn = 0.35‰~ 0.46‰,表明这些岩浆来源于弧下地幔岩浆源,岩浆源中既有陆源硅屑沉积岩,也有陆源碳酸盐沉积岩。此外,δ26Mg-δ66Zn逆相关性及其与CaO/Al2O3、CaO/TiO2和La/Sm的线性变化共同解释了与特提斯洋北俯冲有关的碳酸盐岩交代作用。δ26Mg-δ66Zn与(87Sr/86Sr)i-εNd(t)-εHf(t)的共变表明,再生陆源硅质碎屑沉积物和碳酸钙可能改变次弧地幔Mg-Zn同位素组成。这些特征与其他独立的地质档案相结合,表明大utso高镁岩浆是通过侵蚀弧前富碳酸盐组分的部分熔融和随后与地幔橄榄岩的相互作用而形成的。显然,俯冲侵蚀过程是将大量富含碳酸盐的沉积物输送到特提斯弧下地幔的关键,这可能有助于推动中生代火山二氧化碳的高排放率。该研究为揭示俯冲侵蚀对深部碳循环的影响提供了岩浆岩Mg-Zn同位素的确凿证据,为研究地球长期碳循环提供了新的视角。
{"title":"Subduction erosion intensifying carbonate-rich material recycling revealed by Mg-Zn isotopic evidence from high-Mg andesites in central Tibet","authors":"Jialiang Li ,&nbsp;Wei-Qiang Ji ,&nbsp;Xiao-Chi Liu ,&nbsp;Jingao Liu ,&nbsp;Fu-Yuan Wu","doi":"10.1016/j.gca.2025.11.051","DOIUrl":"10.1016/j.gca.2025.11.051","url":null,"abstract":"<div><div>Subduction erosion has been suggested as a major process that transfers crustal material into the mantle at convergent systems. However, to date, few studies have attempted to establish a link between subduction erosion and deep carbon cycling. High-Mg andesites are thought as key magmatic markers of crust-mantle interaction. Here, we report elemental and Sr-Nd-Hf-Mg-Zn isotopic data for ca. 167–166 Ma high-Mg andesites from the DaruTso magmatic arc, central Tibet. The key geochemical observations, such as arc-type trace element patterns, high Th/La (0.46–0.58) and Th (12.0–13.8 ppm) contents, very enriched Sr-Nd-Hf isotope compositions ((<sup>87</sup>Sr/<sup>86</sup>Sr)<sub>i</sub> = 0.7078–0.7088; ε<em><sub>Nd</sub></em>(t) = −9.5 to −8.8; ε<em><sub>Hf</sub></em>(t) = −7.4 to −5.7), and more variable Mg but heavier Zn isotopic compositions (δ<sup>26</sup>Mg = −0.30 ‰ to −0.13 ‰; δ<sup>66</sup>Zn = 0.35 ‰ to 0.46 ‰) than that of the mantle (δ<sup>26</sup>Mg = −0.25 ± 0.04 ‰; δ<sup>66</sup>Zn = 0.18 ± 0.05 ‰), imply that these lavas are derived from subarc mantle magma sources containing both recycled terrigenous siliciclastic and carbonate sediments. In addition, the inverse δ<sup>26</sup>Mg-δ<sup>66</sup>Zn correlations and their linear variations with CaO/Al<sub>2</sub>O<sub>3</sub>, CaO/TiO<sub>2</sub> and La/Sm are jointly interpreted to reflect carbonatitic metasomatism associated with the northern subduction of the Tethys Ocean. The co-variations between δ<sup>26</sup>Mg-δ<sup>66</sup>Zn and (<sup>87</sup>Sr/<sup>86</sup>Sr)<sub>i</sub>-ε<em><sub>Nd</sub></em>(t)-ε<em><sub>Hf</sub></em>(t) provide evidence for the potential of both recycled terrigenous siliciclastic sediments and calcium carbonates to modify subarc mantle Mg-Zn isotopic compositions. These features, coupled with other independent geological archives, suggest DaruTso high-Mg magma generation via partial melting of eroded forearc carbonate-rich components and subsequent interaction with mantle peridotite. Evidently subduction erosion processes are key for transporting substantial quantities of carbonate-rich sediments into the Tethys subarc mantle, which may have helped drive high volcanic CO<sub>2</sub> emission rates over the Mesozoic. This study presents solid evidence of magmatic rock Mg-Zn isotopes for revealing the effect of subduction erosion on deep carbon cycle and provides a new perspective on the Earth’s long-term carbon cycles.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"413 ","pages":"Pages 156-170"},"PeriodicalIF":5.0,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145657976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weathering of skarn deposits offsets decarbonation during Jurassic-Cretaceous mineralization in East Asia 夕卡岩沉积的风化作用抵消了东亚侏罗纪-白垩纪矿化过程中的脱碳作用
IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-12-02 DOI: 10.1016/j.gca.2025.11.049
Wei Liu, Xu Chu, Wenrong Cao, Bo Wan
{"title":"Weathering of skarn deposits offsets decarbonation during Jurassic-Cretaceous mineralization in East Asia","authors":"Wei Liu, Xu Chu, Wenrong Cao, Bo Wan","doi":"10.1016/j.gca.2025.11.049","DOIUrl":"https://doi.org/10.1016/j.gca.2025.11.049","url":null,"abstract":"","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"27 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145657981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Geochimica et Cosmochimica Acta
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1