Agriculture is under pressure to provide food for a growing population and the feedstock required to drive the bioeconomy. Methods to breed and genetically modify plants are inadequate to keep pace. When engineering crops, traits are painstakingly introduced into plants one-at-a-time, combine unpredictably, and are continuously expressed. Synthetic biology is changing these paradigms with new genome construction tools, computer aided design (CAD), and artificial intelligence (AI). “Smart plants” contain circuits that respond to environmental change, alter morphology, or respond to threats. Further, the plant and associated microbes (fungi, bacteria, archaea) are now being viewed by genetic engineers as a holistic system. Historically, plant health has been enhanced by many natural and laboratory-evolved soil microbes marketed to enhance growth or provide nutrients, or pest/stress resistance. Synthetic biology has expanded the number of species that can be engineered, increased the complexity of engineered functions, controlled environmental release, and can assemble stable consortia. New CAD tools will manage genetic engineering projects spanning multiple plant genomes (nucleus, chloroplast, mitochondrion) and the thousands of genomes of associated bacteria/fungi. This review covers advanced genetic engineering techniques to drive the next agricultural revolution, as well as push plant engineering into new realms for manufacturing, infrastructure, sensing, and remediation.
Bionic structured milli-fluidics, as an emerging interdisciplinary subject of fluidics and biomimetics, is fast developing due to its diverse applications in various fields such as biomedical detection, material synthesis, water collection, etc. Researchers have mimicked natural surfaces with unique milli-structures like Araucaria leaves and cactus to achieve droplet manipulation for milli-fluidics. Furthermore, wetting gradient surfaces and external stimuli, including light, thermal, electricity, magnetism, and acoustics, have been utilized to create energy gradients and enhance bionic structured milli-fluidic performance. We comprehensively review the passive methods (bioinspired structures) and active strategies (external fields) for milli-fluidics. Moreover, the relationships between Laplace pressure, wettability gradients, and milli-fluidics are discussed first. Then, the advantages and disadvantages of different external stimuli are examined, and future directions for the field are suggested as well. Finally, a brief overview of key issues, current obstacles, and emerging trends of bionic structured milli-fluidics is presented, aiming to provide guidance for future research endeavors.

