Porous semiconductor photocatalysts have recevied consideralbe attention to resolve the issues of the current environmental pollution and future energy supply. As a new class of porous crystalline materials, Hydrogen-bonded organic frameworks (HOFs) are self-assembled through hydrogen-bonding interactions between organic building blocks. Due to the weak interactions of hydrogen bonds, HOF materials possess more flexible frameworks compared to other porous materials formed via strong bonds (covalent bonds and coordination bonds). Combined with their structural polymorphism and ease of modification, HOFs exhibit multifunctionality in enhancing crystal photoelectric performance and responding to external stimuli such as light, temperature, and pressure, demonstrating their potential under various reaction condition. Furthermore, their metal-free composition, renewability, and recyclability endow them with excellent biocompatibility and low toxicity, addressing public concerns about environmental issues, reducing waste, and improving economic feasibility. However, current strategies to enhance the photocatalytic performance of HOFs by improving stability are relatively scarce. The mechanisms behind their stimulus-responsive behavior also present significant scientific issues that require in-depth exploration. Based on these existing issues, this review focuses on discussing material properties, design principles, synthesis methods, photocatalytic application includiong photocatalytic hydrogen production, CO2 reduction, and H2O2 generation, as well as strategies for enhancing stability and photocatalytic performance. Additionally, this paper highlights the main challenges that need to be addressed and proposes future research directions. This review will hlep promote the rapid development of HOFs in the field of solar energy conversion.
多孔半导体光催化剂在解决当前环境污染和未来能源供应问题方面受到了广泛关注。作为一类新型多孔晶体材料,氢键有机框架(HOFs)是通过有机构件之间的氢键相互作用自组装而成的。由于氢键的相互作用较弱,与其他通过强键(共价键和配位键)形成的多孔材料相比,氢键有机框架材料具有更灵活的框架。结合其结构多态性和易修饰性,HOF 在提高晶体光电性能和响应光、温度和压力等外部刺激方面表现出多功能性,显示了其在各种反应条件下的潜力。此外,HOF 的无金属成分、可再生性和可回收性使其具有良好的生物相容性和低毒性,从而解决了公众对环境问题的担忧,减少了浪费,提高了经济可行性。然而,目前通过提高稳定性来增强 HOFs 光催化性能的策略相对匮乏。其刺激响应行为背后的机制也是需要深入探讨的重大科学问题。基于这些现有问题,本综述重点讨论了材料特性、设计原理、合成方法、光催化应用(包括光催化制氢、还原 CO2 和生成 H2O2)以及提高稳定性和光催化性能的策略。此外,本文还强调了需要应对的主要挑战,并提出了未来的研究方向。本综述将有助于促进 HOFs 在太阳能转换领域的快速发展。
{"title":"Customized Structures of Hydrogen-Bonded Organic Frameworks towards Photocatalysis","authors":"Chengdi Ma, Liyang Qin, Tianhua Zhou, Jian Zhang","doi":"10.1039/d4ee03766a","DOIUrl":"https://doi.org/10.1039/d4ee03766a","url":null,"abstract":"Porous semiconductor photocatalysts have recevied consideralbe attention to resolve the issues of the current environmental pollution and future energy supply. As a new class of porous crystalline materials, Hydrogen-bonded organic frameworks (HOFs) are self-assembled through hydrogen-bonding interactions between organic building blocks. Due to the weak interactions of hydrogen bonds, HOF materials possess more flexible frameworks compared to other porous materials formed via strong bonds (covalent bonds and coordination bonds). Combined with their structural polymorphism and ease of modification, HOFs exhibit multifunctionality in enhancing crystal photoelectric performance and responding to external stimuli such as light, temperature, and pressure, demonstrating their potential under various reaction condition. Furthermore, their metal-free composition, renewability, and recyclability endow them with excellent biocompatibility and low toxicity, addressing public concerns about environmental issues, reducing waste, and improving economic feasibility. However, current strategies to enhance the photocatalytic performance of HOFs by improving stability are relatively scarce. The mechanisms behind their stimulus-responsive behavior also present significant scientific issues that require in-depth exploration. Based on these existing issues, this review focuses on discussing material properties, design principles, synthesis methods, photocatalytic application includiong photocatalytic hydrogen production, CO2 reduction, and H2O2 generation, as well as strategies for enhancing stability and photocatalytic performance. Additionally, this paper highlights the main challenges that need to be addressed and proposes future research directions. This review will hlep promote the rapid development of HOFs in the field of solar energy conversion.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"90 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1038/s41566-024-01549-1
Paolo Pintus, Mario Dumont, Vivswan Shah, Toshiya Murai, Yuya Shoji, Duanni Huang, Galan Moody, John E. Bowers, Nathan Youngblood
Processing information in the optical domain promises advantages in both speed and energy efficiency over existing digital hardware for a variety of emerging applications in artificial intelligence and machine learning. A typical approach to photonic processing is to multiply a rapidly changing optical input vector with a matrix of fixed optical weights. However, encoding these weights on-chip using an array of photonic memory cells is currently limited by a wide range of material- and device-level issues, such as the programming speed, extinction ratio and endurance, among others. Here we propose a new approach to encoding optical weights for in-memory photonic computing using magneto-optic memory cells comprising heterogeneously integrated cerium-substituted yttrium iron garnet (Ce:YIG) on silicon micro-ring resonators. We show that leveraging the non-reciprocal phase shift in such magneto-optic materials offers several key advantages over existing architectures, providing a fast (1 ns), efficient (143 fJ per bit) and robust (2.4 billion programming cycles) platform for on-chip optical processing.
{"title":"Integrated non-reciprocal magneto-optics with ultra-high endurance for photonic in-memory computing","authors":"Paolo Pintus, Mario Dumont, Vivswan Shah, Toshiya Murai, Yuya Shoji, Duanni Huang, Galan Moody, John E. Bowers, Nathan Youngblood","doi":"10.1038/s41566-024-01549-1","DOIUrl":"https://doi.org/10.1038/s41566-024-01549-1","url":null,"abstract":"<p>Processing information in the optical domain promises advantages in both speed and energy efficiency over existing digital hardware for a variety of emerging applications in artificial intelligence and machine learning. A typical approach to photonic processing is to multiply a rapidly changing optical input vector with a matrix of fixed optical weights. However, encoding these weights on-chip using an array of photonic memory cells is currently limited by a wide range of material- and device-level issues, such as the programming speed, extinction ratio and endurance, among others. Here we propose a new approach to encoding optical weights for in-memory photonic computing using magneto-optic memory cells comprising heterogeneously integrated cerium-substituted yttrium iron garnet (Ce:YIG) on silicon micro-ring resonators. We show that leveraging the non-reciprocal phase shift in such magneto-optic materials offers several key advantages over existing architectures, providing a fast (1 ns), efficient (143 fJ per bit) and robust (2.4 billion programming cycles) platform for on-chip optical processing.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"109 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard Pacalaj, Yifan Dong, Ivan Ramirez, Roderick MacKenzie, Mehrdad Hosseini, Eva Bittrich, Julian E. Heger, Pascal Kaienburg, Subhrangsu Mukherjee, Jiaying Wu, Moritz Riede, Harald Ade, Peter Müller-Buschbaum, Martin Pfeiffer, James Durrant
Vacuum-processed organic solar cells (VP-OSCs) possess many advantages for scalability. However, as the academic community focusses on high performing solution-processed OSCs, detailed studies about the relation between morphology and device characteristics in VP-OSCs are rare. Here, we present a study on a model donor/fullerene VP-OSC system deposited at different substrate temperatures. Substrate heating results in increases in current density and fill factor (FF). Changes in morphology are characterised by grazing-incidence wide-angle scattering (GIWAXS) and resonant soft X-ray scattering (RSoXS). The increase in the degree of crystallinity and preferential orientation of the donor molecule in heated samples results in enhanced absorption increasing current density. The exciton and charge separation efficiency were studied by transient absorption and photoluminescence quenching showing only minor differences. To study the FF differences, charge transport and non-geminate recombination are studied by optoelectronic measurements and device simulations. The charge carrier kinetics are governed by a large density of trap states. While the energetic disorder and non-geminate recombination under open circuit conditions remain largely unchanged, the increased effective mobility and lower transport disorder observed in photocurrent transients explain the increased collection efficiency for heated devices. We relate this to the increased donor phase purity. Our results suggest that charge recombination and transport are governed by different aspects of disorder related to amorphous and crystalline donor phases. Quantitative comparison with high FF solution-processed OSCs reveals that the low mobility limits FF. Finally, drift-diffusion simulations give an outlook for possible performance increases through further optimisation of the deposition control.
{"title":"From Generation to Collection – Impact of Deposition Temperature on Charge Carrier Dynamics of High-Performance Vacuum-Processed Organic Solar Cells","authors":"Richard Pacalaj, Yifan Dong, Ivan Ramirez, Roderick MacKenzie, Mehrdad Hosseini, Eva Bittrich, Julian E. Heger, Pascal Kaienburg, Subhrangsu Mukherjee, Jiaying Wu, Moritz Riede, Harald Ade, Peter Müller-Buschbaum, Martin Pfeiffer, James Durrant","doi":"10.1039/d4ee03623a","DOIUrl":"https://doi.org/10.1039/d4ee03623a","url":null,"abstract":"Vacuum-processed organic solar cells (VP-OSCs) possess many advantages for scalability. However, as the academic community focusses on high performing solution-processed OSCs, detailed studies about the relation between morphology and device characteristics in VP-OSCs are rare. Here, we present a study on a model donor/fullerene VP-OSC system deposited at different substrate temperatures. Substrate heating results in increases in current density and fill factor (FF). Changes in morphology are characterised by grazing-incidence wide-angle scattering (GIWAXS) and resonant soft X-ray scattering (RSoXS). The increase in the degree of crystallinity and preferential orientation of the donor molecule in heated samples results in enhanced absorption increasing current density. The exciton and charge separation efficiency were studied by transient absorption and photoluminescence quenching showing only minor differences. To study the FF differences, charge transport and non-geminate recombination are studied by optoelectronic measurements and device simulations. The charge carrier kinetics are governed by a large density of trap states. While the energetic disorder and non-geminate recombination under open circuit conditions remain largely unchanged, the increased effective mobility and lower transport disorder observed in photocurrent transients explain the increased collection efficiency for heated devices. We relate this to the increased donor phase purity. Our results suggest that charge recombination and transport are governed by different aspects of disorder related to amorphous and crystalline donor phases. Quantitative comparison with high FF solution-processed OSCs reveals that the low mobility limits FF. Finally, drift-diffusion simulations give an outlook for possible performance increases through further optimisation of the deposition control.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"24 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ya Chen, Xin Gao, Zheng Zhen, Xiao Chen, Ling Huang, Deli Zhou, Tengfei Hu, Bozhen Ren, Runjing Xu, Jiayi Chen, Xiaodong Chen, Lifeng Cui, Guoxiu Wang
The electrochemical performance of all-solid-state Li metal batteries (ASSLMBs) can be prominently consolidated by resolving the challenges triggered by the uncontrolled growth of Li dendrites throughout the solid electrolytes (SEs). Herein, a well-defined composite of micron-Li6PS5Cl (LPSC) and nano-Li1.3Al0.3Ti1.7(PO4)3 (LATP) is architected as a LPSC-LATP interlayer sandwiched between LPSC electrolytes for ASSLMBs. This fabrication exerts the electron-blocking functionalities to alleviate the probability of reacting with Li+ ions for the formation of anode-initiated and grain boundaries (GBs)-initiated dendrites. More importantly, it also creates localized eliminated micro-environments of Li dendrites through the high transient reactivity between them and the remaining cracks can be dynamically and effectively filled by decomposition products, thereby prominently suppresses the Li dendrite nucleation, propagation and penetration as well as simultaneously contributing to the enhancement of battery performance and stability. With this approach, a fine-tuned LPSC-LATP (8S-2O) interlayer enables symmetrical Li/LPSC/8S-2O/LPSC/Li cells to achieve a ultra-high critical current density (CCD) of over 5 mA cm−2 at room temperature, and ultra-long cycles at current density of 10 mA cm−2 for over 1600 h. Additionally, ASSLMBs employing commercial LiCoO2 cathodes can deliver exceptional durability, with an extremely high 85.6% retention of initial discharge capacity and coulombic efficiency (CE) of >99.6% after 1200 cycles at 1C (1.28 mA cm-2). These experimental batteries demonstrate the application prospect of this configuration of SEs for the commercialization of ASSLMBs.
全固态锂金属电池(ASSLMB)的电化学性能可以通过解决锂枝晶在整个固体电解质(SE)中不受控制地生长所引发的挑战而得到显著提高。在这里,一种定义明确的微米级锂6PS5Cl(LPSC)和纳米级锂1.3Al0.3Ti1.7(PO4)3(LATP)复合材料被设计成夹在LPSC电解质之间的LPSC-LATP中间层,用于ASSLMB。这种结构具有电子阻断功能,可降低与 Li+ 离子反应形成阳极引发和晶界(GBs)引发的树枝状突起的概率。更重要的是,它还能通过锂枝晶之间的高瞬态反应性创造出局部消除锂枝晶的微环境,剩余裂纹可被分解产物动态有效地填充,从而显著抑制锂枝晶的成核、传播和渗透,同时有助于提高电池的性能和稳定性。利用这种方法,经过微调的 LPSC-LATP (8S-2O) 夹层可使对称的 Li/LPSC/8S-2O/LPSC/Li 电池在室温下达到超过 5 mA cm-2 的超高临界电流密度 (CCD),并在 10 mA cm-2 的电流密度下实现超过 1600 小时的超长循环。此外,采用商用钴酸锂阴极的 ASSLMB 还具有极高的耐用性,在 1C 温度(1.28 mA cm-2)下循环 1200 次后,初始放电容量保持率高达 85.6%,库仑效率(CE)达 99.6%。这些实验电池证明了这种 SE 配置在 ASSLMB 商业化方面的应用前景。
{"title":"The Construction of Multifunctional Solid Electrolytes Interlayers for Stabilizing Li6PS5Cl-based All-Solid-State Lithium Metal Batteries","authors":"Ya Chen, Xin Gao, Zheng Zhen, Xiao Chen, Ling Huang, Deli Zhou, Tengfei Hu, Bozhen Ren, Runjing Xu, Jiayi Chen, Xiaodong Chen, Lifeng Cui, Guoxiu Wang","doi":"10.1039/d4ee03289f","DOIUrl":"https://doi.org/10.1039/d4ee03289f","url":null,"abstract":"The electrochemical performance of all-solid-state Li metal batteries (ASSLMBs) can be prominently consolidated by resolving the challenges triggered by the uncontrolled growth of Li dendrites throughout the solid electrolytes (SEs). Herein, a well-defined composite of micron-Li6PS5Cl (LPSC) and nano-Li1.3Al0.3Ti1.7(PO4)3 (LATP) is architected as a LPSC-LATP interlayer sandwiched between LPSC electrolytes for ASSLMBs. This fabrication exerts the electron-blocking functionalities to alleviate the probability of reacting with Li+ ions for the formation of anode-initiated and grain boundaries (GBs)-initiated dendrites. More importantly, it also creates localized eliminated micro-environments of Li dendrites through the high transient reactivity between them and the remaining cracks can be dynamically and effectively filled by decomposition products, thereby prominently suppresses the Li dendrite nucleation, propagation and penetration as well as simultaneously contributing to the enhancement of battery performance and stability. With this approach, a fine-tuned LPSC-LATP (8S-2O) interlayer enables symmetrical Li/LPSC/8S-2O/LPSC/Li cells to achieve a ultra-high critical current density (CCD) of over 5 mA cm−2 at room temperature, and ultra-long cycles at current density of 10 mA cm−2 for over 1600 h. Additionally, ASSLMBs employing commercial LiCoO2 cathodes can deliver exceptional durability, with an extremely high 85.6% retention of initial discharge capacity and coulombic efficiency (CE) of >99.6% after 1200 cycles at 1C (1.28 mA cm-2). These experimental batteries demonstrate the application prospect of this configuration of SEs for the commercialization of ASSLMBs.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"44 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fengqi You, Xueyu Tian, Samuel D Stranks, Jinsong Huang, Vasilis Fthenakis, Yang Yang
Halide perovskite photovoltaics (PVs) are poised to become a critical high-efficiency renewable energy technology in the fight against climate change. This perspective aims to ensure the viability of perovskite PV as a sustainable technology by focusing on key areas such as end-of-life management and sustainability analysis. It highlights the current lack of comprehensive frameworks that incorporate circular solar economy principles, ecosystem impacts, and climate commitments. To address this gap, we propose a multi-scale analytical and modeling framework specifically designed for perovskite PVs. This approach integrates dynamic material flow analysis and life cycle assessment to reshape our understanding of material usage, with an emphasis on critical material demand and recycling opportunities. It seeks to provide in-depth insights into the socio-economic and environmental impacts of material consumption, particularly as perovskite PVs become more prevalent. Additionally, future research should explore distributed manufacturing to optimize costs and reduce environmental impacts, as well as evaluate the benefits of integrating perovskite PVs with agriculture to promote sustainable sector coupling.
{"title":"Perspectives for Sustainability Analysis of Scalable Perovskite Photovoltaics","authors":"Fengqi You, Xueyu Tian, Samuel D Stranks, Jinsong Huang, Vasilis Fthenakis, Yang Yang","doi":"10.1039/d4ee03956d","DOIUrl":"https://doi.org/10.1039/d4ee03956d","url":null,"abstract":"Halide perovskite photovoltaics (PVs) are poised to become a critical high-efficiency renewable energy technology in the fight against climate change. This perspective aims to ensure the viability of perovskite PV as a sustainable technology by focusing on key areas such as end-of-life management and sustainability analysis. It highlights the current lack of comprehensive frameworks that incorporate circular solar economy principles, ecosystem impacts, and climate commitments. To address this gap, we propose a multi-scale analytical and modeling framework specifically designed for perovskite PVs. This approach integrates dynamic material flow analysis and life cycle assessment to reshape our understanding of material usage, with an emphasis on critical material demand and recycling opportunities. It seeks to provide in-depth insights into the socio-economic and environmental impacts of material consumption, particularly as perovskite PVs become more prevalent. Additionally, future research should explore distributed manufacturing to optimize costs and reduce environmental impacts, as well as evaluate the benefits of integrating perovskite PVs with agriculture to promote sustainable sector coupling.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"194 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gi-Hyeok Lee, Suwon Lee, Jiliang Zhang, Bernardine Rinkel, Matthew J. Crafton, Zengqing Zhuo, Youngju Choi, Jialu Li, Junghoon Yang, Jongwook W. Heo, Byung-Chun Park, Bryan D. McCloskey, Maxim Avdeev, Wanli Yang, Yong-Mook Kang
The chemical reactions and phase transitions at high voltages are generally considered to determine the electrochemical properties of high-voltage layered cathodes such as Ni-rich rhombohedral oxides. Even if significantly higher SOCs (states-of-charge) are utilized above the capability of transition metal redox (primarily Ni and Co), the effect of oxygen redox on Ni-rich rhombohedral oxides still looks mysterious thereby necessitating research that can clarify the relationships between redox reactions and phase transitions. Here, we performed a comprehensive and comparative study of the cationic and anionic redox reactions, as well as the structural evolution of a series of commercial Ni-rich layered oxides with and without Al doping. We combined the results from X-ray spectroscopy, operando electrochemical mass spectrometry, and neutron diffraction with electrochemical properties, and revealed the different oxygen redox activities associated with structural and electrochemical degradations. We reveal that Al doping suppresses the irreversible oxygen release, however enhances the lattice oxygen oxidization. With this modulated oxygen redox activity, the Ni-rich layered oxides' notorious H2-H3 structural phase transition becomes highly reversible. Our findings disentangle the different oxygen redox activities during high-voltage cycling and clarify the role of dopants in the Ni-rich layered oxides in terms of structural and electrochemical stability, shedding lights on the future directions of optimizing layered cathode materials for safer high energy-density secondary batteries.
一般认为,高电压下的化学反应和相变决定了高压层状阴极(如富镍斜方氧化物)的电化学特性。即使利用的 SOC(电荷状态)大大高于过渡金属氧化还原(主要是镍和钴)的能力,氧氧化还原对富镍斜方氧化物的影响仍然是个谜,因此有必要进行研究,以阐明氧化还原反应和相变之间的关系。在此,我们对阳离子和阴离子氧化还原反应以及一系列掺杂和未掺杂铝的商用富镍层状氧化物的结构演变进行了全面的比较研究。我们将 X 射线光谱、操作电化学质谱和中子衍射的结果与电化学特性相结合,揭示了与结构和电化学退化相关的不同氧氧化还原活动。我们发现,铝掺杂抑制了不可逆氧释放,但却增强了晶格氧氧化。随着氧氧化还原活性的调节,富镍层状氧化物声名狼藉的 H2-H3 结构相变变得高度可逆。我们的研究结果揭示了高压循环过程中不同的氧氧化还原活性,阐明了掺杂剂在富镍层状氧化物的结构和电化学稳定性方面的作用,为优化层状正极材料以制造更安全的高能量密度二次电池指明了未来的方向。
{"title":"Oxygen Redox Activities Governing High-Voltage Charging Reversibility of Ni-Rich Layered Cathodes","authors":"Gi-Hyeok Lee, Suwon Lee, Jiliang Zhang, Bernardine Rinkel, Matthew J. Crafton, Zengqing Zhuo, Youngju Choi, Jialu Li, Junghoon Yang, Jongwook W. Heo, Byung-Chun Park, Bryan D. McCloskey, Maxim Avdeev, Wanli Yang, Yong-Mook Kang","doi":"10.1039/d4ee03832k","DOIUrl":"https://doi.org/10.1039/d4ee03832k","url":null,"abstract":"The chemical reactions and phase transitions at high voltages are generally considered to determine the electrochemical properties of high-voltage layered cathodes such as Ni-rich rhombohedral oxides. Even if significantly higher SOCs (states-of-charge) are utilized above the capability of transition metal redox (primarily Ni and Co), the effect of oxygen redox on Ni-rich rhombohedral oxides still looks mysterious thereby necessitating research that can clarify the relationships between redox reactions and phase transitions. Here, we performed a comprehensive and comparative study of the cationic and anionic redox reactions, as well as the structural evolution of a series of commercial Ni-rich layered oxides with and without Al doping. We combined the results from X-ray spectroscopy, operando electrochemical mass spectrometry, and neutron diffraction with electrochemical properties, and revealed the different oxygen redox activities associated with structural and electrochemical degradations. We reveal that Al doping suppresses the irreversible oxygen release, however enhances the lattice oxygen oxidization. With this modulated oxygen redox activity, the Ni-rich layered oxides' notorious H2-H3 structural phase transition becomes highly reversible. Our findings disentangle the different oxygen redox activities during high-voltage cycling and clarify the role of dopants in the Ni-rich layered oxides in terms of structural and electrochemical stability, shedding lights on the future directions of optimizing layered cathode materials for safer high energy-density secondary batteries.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"12 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial nitrogen fixation has been pivotal in escalating agricultural productivity and sustaining exponential human population growth. Nonetheless, these practices have concurrently perturbed the natural nitrogen cycle, engendering a plethora of environmental challenges. The advent of electrochemical nitrogen transformation techniques represents a burgeoning avenue for rectifying the nitrogen cycle's imbalance and for synthesizing value-added nitrogenous products from atmospheric nitrogen. In this review, we delve into the recent progress concerning the electrocatalytic interconversion among key nitrogen species, namely N2, NOx(-), and NH3. Our examination encompasses a multifaceted analysis, including the elucidation of reaction mechanisms and a critical evaluation of the intrinsic challenges behind each reaction and the strategies to boost their translation to practical applications. Extending beyond primary nitrogen transformations, we also assess a spectrum of emergent and promising directions. These include lithium-mediated nitrogen fixation, carbon-nitrogen coupling reactions, and the development of electrochemical batteries harnessing nitrogen transformation chemistry. This review aims to offer a critical and forward-looking perspective on the role of electrocatalysis in modulating the nitrogen cycle and to highlight untapped opportunities for its application in a myriad of innovative domains.
{"title":"Electrocatalytic nitrogen cycle: mechanism, materials, and momentum","authors":"Laiquan Li, Linyuan Xu, Hanyun Wang, Haohong Wei, Cheng Tang, Guisheng Li, Yuhai Dou, Huakun Liu, Shi Xue Dou","doi":"10.1039/d4ee03156c","DOIUrl":"https://doi.org/10.1039/d4ee03156c","url":null,"abstract":"Artificial nitrogen fixation has been pivotal in escalating agricultural productivity and sustaining exponential human population growth. Nonetheless, these practices have concurrently perturbed the natural nitrogen cycle, engendering a plethora of environmental challenges. The advent of electrochemical nitrogen transformation techniques represents a burgeoning avenue for rectifying the nitrogen cycle's imbalance and for synthesizing value-added nitrogenous products from atmospheric nitrogen. In this review, we delve into the recent progress concerning the electrocatalytic interconversion among key nitrogen species, namely N2, NOx(-), and NH3. Our examination encompasses a multifaceted analysis, including the elucidation of reaction mechanisms and a critical evaluation of the intrinsic challenges behind each reaction and the strategies to boost their translation to practical applications. Extending beyond primary nitrogen transformations, we also assess a spectrum of emergent and promising directions. These include lithium-mediated nitrogen fixation, carbon-nitrogen coupling reactions, and the development of electrochemical batteries harnessing nitrogen transformation chemistry. This review aims to offer a critical and forward-looking perspective on the role of electrocatalysis in modulating the nitrogen cycle and to highlight untapped opportunities for its application in a myriad of innovative domains.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"21 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Ding, Erming Feng, Siyuan Lu, Jianhui Chang, Caoyu Long, S.C. Tong, Hengyue Li, Junliang Yang
Residual stresses generated within perovskite films during the high-temperature annealing and cooling process are the key contributors to reduce device performance and lifespan deterioration. Herein, a strategy of surface micro-etching and reconstruction is developed to regulate the stresses in triple-cation (formamidine, methylamine, cesium) perovskite film. Precise stoichiometric mixture of L-lactic acid (LA) and isopropanol (IPA) is used to controllably dissolve the surface of perovskite film, followed by octylammonium iodide (OAI) post-treatment, enabling a sinking reconstruction of 2D perovskite from surface to bulk phase and achieving a benign transition from surface tensile stress to compressive stress, as well as a more matchable interface energy level. As a result, the target perovskite solar cells (PSCs) yield an obviously enhanced power conversion efficiency (PCE) of 25.54%, which is the highest reported PCE for triple-cation PSCs. Meanwhile, PSC modules with 10.4 cm2 achieve a PCE of 21.02%. Furthermore, the surface micro-etched and reconstructed PSCs exhibit superior stability, and the PSC devices without encapsulation can maintain 83% of original efficiency after 500 hours illumination at maximum power point (MPPT) tracking in N2 atmosphere. The research provides a valuable avenue to improve PSC stability and efficiency by regulating residual stresses through surface micro-etching and reconstruction.
{"title":"Stress Regulation via Surface Micro-etching and Reconstruction for Enhancing Triple-Cation Perovskite Solar Cells with the Efficiency of 25.54%","authors":"Yang Ding, Erming Feng, Siyuan Lu, Jianhui Chang, Caoyu Long, S.C. Tong, Hengyue Li, Junliang Yang","doi":"10.1039/d4ee04248d","DOIUrl":"https://doi.org/10.1039/d4ee04248d","url":null,"abstract":"Residual stresses generated within perovskite films during the high-temperature annealing and cooling process are the key contributors to reduce device performance and lifespan deterioration. Herein, a strategy of surface micro-etching and reconstruction is developed to regulate the stresses in triple-cation (formamidine, methylamine, cesium) perovskite film. Precise stoichiometric mixture of L-lactic acid (LA) and isopropanol (IPA) is used to controllably dissolve the surface of perovskite film, followed by octylammonium iodide (OAI) post-treatment, enabling a sinking reconstruction of 2D perovskite from surface to bulk phase and achieving a benign transition from surface tensile stress to compressive stress, as well as a more matchable interface energy level. As a result, the target perovskite solar cells (PSCs) yield an obviously enhanced power conversion efficiency (PCE) of 25.54%, which is the highest reported PCE for triple-cation PSCs. Meanwhile, PSC modules with 10.4 cm2 achieve a PCE of 21.02%. Furthermore, the surface micro-etched and reconstructed PSCs exhibit superior stability, and the PSC devices without encapsulation can maintain 83% of original efficiency after 500 hours illumination at maximum power point (MPPT) tracking in N2 atmosphere. The research provides a valuable avenue to improve PSC stability and efficiency by regulating residual stresses through surface micro-etching and reconstruction.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"194 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1038/s41566-024-01548-2
Anchit Srivastava, Andreas Herbst, Mahdi M. Bidhendi, Max Kieker, Francesco Tani, Hanieh Fattahi
Measuring transient optical fields is pivotal not only for understanding ultrafast phenomena but also for the quantitative detection of various molecular species in a sample. Here we demonstrate near-petahertz electric field detection of a few femtosecond pulses with 200 attosecond temporal resolution and subfemtojoule detection sensitivity. By field-resolved detection of the impulsively excited molecules in the liquid phase, termed femtosecond fieldoscopy, we demonstrate temporal isolation of the response of the target molecules from those of the environment and the excitation pulse. In a proof-of-concept analysis of aqueous and liquid samples, we demonstrate field-sensitive detection of combination bands of 4.13 μmol ethanol for the first time. This method expands the scope of aqueous sample analysis to higher detection sensitivity and dynamic range, while the simultaneous direct measurements of phase and intensity information pave the path towards high-resolution biological spectro-microscopy.
{"title":"Near-petahertz fieldoscopy of liquid","authors":"Anchit Srivastava, Andreas Herbst, Mahdi M. Bidhendi, Max Kieker, Francesco Tani, Hanieh Fattahi","doi":"10.1038/s41566-024-01548-2","DOIUrl":"https://doi.org/10.1038/s41566-024-01548-2","url":null,"abstract":"<p>Measuring transient optical fields is pivotal not only for understanding ultrafast phenomena but also for the quantitative detection of various molecular species in a sample. Here we demonstrate near-petahertz electric field detection of a few femtosecond pulses with 200 attosecond temporal resolution and subfemtojoule detection sensitivity. By field-resolved detection of the impulsively excited molecules in the liquid phase, termed femtosecond fieldoscopy, we demonstrate temporal isolation of the response of the target molecules from those of the environment and the excitation pulse. In a proof-of-concept analysis of aqueous and liquid samples, we demonstrate field-sensitive detection of combination bands of 4.13 μmol ethanol for the first time. This method expands the scope of aqueous sample analysis to higher detection sensitivity and dynamic range, while the simultaneous direct measurements of phase and intensity information pave the path towards high-resolution biological spectro-microscopy.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"10 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1038/s41566-024-01537-5
Michael P. Nielsen, Andreas Pusch, Phoebe M. Pearce, Muhammad H. Sazzad, Peter J. Reece, Martin A. Green, Nicholas J. Ekins-Daukes
Power can be generated from radiative exchange between two bodies with different temperatures—from the radiative cooling of the Earth’s surface into space, for example. Thermoradiative diodes are low-bandgap optoelectronic devices in which the occupancies of the valence and conduction bands are established through radiative exchange with the external environment. A warm diode viewing cold surroundings will spontaneously develop a reverse electrical bias, which, combined with the recombination current from the radiative imbalance, generates electrical power. Here we review the operating principles of the thermoradiative diode in both the radiative limit and in the presence of non-radiative processes. We discuss some present limitations and opportunities for improved performance together with potential applications such as night-sky power generation and waste-heat recovery. This article reviews the concept of using thermoradiative diodes for power conversion, and discusses potential applications such as night-sky power generation and waste-heat recovery.
{"title":"Semiconductor thermoradiative power conversion","authors":"Michael P. Nielsen, Andreas Pusch, Phoebe M. Pearce, Muhammad H. Sazzad, Peter J. Reece, Martin A. Green, Nicholas J. Ekins-Daukes","doi":"10.1038/s41566-024-01537-5","DOIUrl":"10.1038/s41566-024-01537-5","url":null,"abstract":"Power can be generated from radiative exchange between two bodies with different temperatures—from the radiative cooling of the Earth’s surface into space, for example. Thermoradiative diodes are low-bandgap optoelectronic devices in which the occupancies of the valence and conduction bands are established through radiative exchange with the external environment. A warm diode viewing cold surroundings will spontaneously develop a reverse electrical bias, which, combined with the recombination current from the radiative imbalance, generates electrical power. Here we review the operating principles of the thermoradiative diode in both the radiative limit and in the presence of non-radiative processes. We discuss some present limitations and opportunities for improved performance together with potential applications such as night-sky power generation and waste-heat recovery. This article reviews the concept of using thermoradiative diodes for power conversion, and discusses potential applications such as night-sky power generation and waste-heat recovery.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"18 11","pages":"1137-1146"},"PeriodicalIF":32.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}