首页 > 最新文献

Chemical Reviews最新文献

英文 中文
Optical biosensors towards the clinic 走向临床的光学生物传感器
IF 32.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1038/s41566-024-01559-z
Giampaolo Pitruzzello
Nature Photonics spoke with Hatice Altug, from the École Polytechnique Fédérale de Lausanne (EPFL), Thomas Krauss, from the University of York, and Malini Olivo from the Agency for Science, Technology and Research (A*STAR) about optical biosensors and their prospects and challenges for clinical translation.
自然-光子学》采访了洛桑联邦理工学院(EPFL)的哈蒂斯-阿尔图格(Hatice Altug)、约克大学的托马斯-克劳斯(Thomas Krauss)和科学、技术和研究机构(A*STAR)的马利尼-奥利沃(Malini Olivo),探讨了光学生物传感器及其临床转化的前景和挑战。
{"title":"Optical biosensors towards the clinic","authors":"Giampaolo Pitruzzello","doi":"10.1038/s41566-024-01559-z","DOIUrl":"10.1038/s41566-024-01559-z","url":null,"abstract":"Nature Photonics spoke with Hatice Altug, from the École Polytechnique Fédérale de Lausanne (EPFL), Thomas Krauss, from the University of York, and Malini Olivo from the Agency for Science, Technology and Research (A*STAR) about optical biosensors and their prospects and challenges for clinical translation.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"18 11","pages":"1126-1128"},"PeriodicalIF":32.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear optical colloidal metacrystals 非线性光学胶体元晶体
IF 35 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1038/s41566-024-01558-0
Ye Zhang, David D. Xu, Ibrahim Tanriover, Wenjie Zhou, Yuanwei Li, Rafael López-Arteaga, Koray Aydin, Chad A. Mirkin

Atomic and molecular structure inversion symmetry breaking in naturally occurring crystals dictate their physical properties including nonlinear optical (NLO) effects, piezo- or ferroelectricity, and non-reciprocal charge transport behaviour. With metamaterials composed of nanoscale building blocks (that is, meta-atoms), the spatial inversion symmetry violation on planar surfaces leads to spin-controlled photonics as well as NLO metasurfaces. Synthetically, low-symmetry 3D metacrystals can be synthesized, but NLO behaviour has not been identified so far (for example, harmonic generations). Herein we show how DNA-mediated assembly of octahedron-shaped plasmonic gold nanocrystals can be used to design and deliberately synthesize non-centrosymmetric and centrosymmetric colloidal crystals. Importantly, while the centrosymmetric structures do not exhibit substantial second-harmonic generation, the non-centrosymmetric crystals do—a consequence of the asymmetric distribution of localized electric fields in plasmonic hotspots. Moreover, this non-centrosymmetric NLO metacrystal represents a 3D NLO metamaterial being developed via a bottom-up approach, exhibiting a maximum second-harmonic generation conversion efficiency of 10−9 to surpass the efficiencies observed in the majority of plasmonic 2D metasurfaces. Finally, the DNA-loading density on the particle building blocks can be used to toggle between the centrosymmetric and non-centrosymmetric phases.

天然晶体中的原子和分子结构反转对称性破坏决定了它们的物理特性,包括非线性光学(NLO)效应、压电性或铁电性以及非互易电荷传输行为。对于由纳米级构件(即元原子)组成的超材料,平面上的空间反转对称性违反会导致自旋控制光子学和 NLO 超表面。低对称性三维元晶体可以合成,但至今尚未发现 NLO 行为(例如谐波发生)。在此,我们展示了如何利用 DNA 介导的八面体形质子金纳米晶体组装来设计和有意合成非中心对称和中心对称胶体晶体。重要的是,虽然中心对称结构不会产生大量二次谐波,但非中心对称晶体却能产生二次谐波--这是等离子热点局部电场分布不对称的结果。此外,这种非中心对称 NLO 超晶体代表了一种通过自下而上方法开发的三维 NLO 超材料,其最大二次谐波发生转换效率为 10-9,超过了在大多数等离子体二维超表面中观察到的效率。最后,粒子构件上的 DNA 负载密度可用于在中心对称和非中心对称相之间切换。
{"title":"Nonlinear optical colloidal metacrystals","authors":"Ye Zhang, David D. Xu, Ibrahim Tanriover, Wenjie Zhou, Yuanwei Li, Rafael López-Arteaga, Koray Aydin, Chad A. Mirkin","doi":"10.1038/s41566-024-01558-0","DOIUrl":"https://doi.org/10.1038/s41566-024-01558-0","url":null,"abstract":"<p>Atomic and molecular structure inversion symmetry breaking in naturally occurring crystals dictate their physical properties including nonlinear optical (NLO) effects, piezo- or ferroelectricity, and non-reciprocal charge transport behaviour. With metamaterials composed of nanoscale building blocks (that is, meta-atoms), the spatial inversion symmetry violation on planar surfaces leads to spin-controlled photonics as well as NLO metasurfaces. Synthetically, low-symmetry 3D metacrystals can be synthesized, but NLO behaviour has not been identified so far (for example, harmonic generations). Herein we show how DNA-mediated assembly of octahedron-shaped plasmonic gold nanocrystals can be used to design and deliberately synthesize non-centrosymmetric and centrosymmetric colloidal crystals. Importantly, while the centrosymmetric structures do not exhibit substantial second-harmonic generation, the non-centrosymmetric crystals do—a consequence of the asymmetric distribution of localized electric fields in plasmonic hotspots. Moreover, this non-centrosymmetric NLO metacrystal represents a 3D NLO metamaterial being developed via a bottom-up approach, exhibiting a maximum second-harmonic generation conversion efficiency of 10<sup>−9</sup> to surpass the efficiencies observed in the majority of plasmonic 2D metasurfaces. Finally, the DNA-loading density on the particle building blocks can be used to toggle between the centrosymmetric and non-centrosymmetric phases.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"16 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light–matter interactions driven by lasers at highest intensities 最高强度激光驱动的光物质相互作用
IF 32.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1038/s41566-024-01554-4
Stepan Bulanov
The interaction of electrons and photons lies at the very foundation of quantum electrodynamics. However, if an electron is able to scatter off several hundred photons, provided by a high-power laser, new physical phenomena come into play. This might pave a way for future light sources and photon–photon colliders.
电子与光子的相互作用是量子电动力学的基础。然而,如果一个电子能够散射由高功率激光器提供的几百个光子,新的物理现象就会出现。这可能会为未来的光源和光子-光子对撞机铺平道路。
{"title":"Light–matter interactions driven by lasers at highest intensities","authors":"Stepan Bulanov","doi":"10.1038/s41566-024-01554-4","DOIUrl":"10.1038/s41566-024-01554-4","url":null,"abstract":"The interaction of electrons and photons lies at the very foundation of quantum electrodynamics. However, if an electron is able to scatter off several hundred photons, provided by a high-power laser, new physical phenomena come into play. This might pave a way for future light sources and photon–photon colliders.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"18 11","pages":"1131-1132"},"PeriodicalIF":32.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduction of Bulk and Interface Defects via Photo-annealing Treatment for High-efficiency Antimony Selenide Solar Cells 通过光退火处理减少块体和界面缺陷,实现高效硒化锑太阳能电池
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1039/d4ee02877e
Xiaoyang Liang, Xinhua Wang, Qiwei Chang, Bingxin Yang, Wei Dang, Zheng Zhang, Yingnan Guo, Lin Yang, Zhiqiang Li
Antimony selenide (Sb2Se3) exhibits outstanding photoelectric characteristics and has significant potential for application in photovoltaic devices. However, Sb2Se3 solar cells are hindered by severe carrier combinations at both the heterojunction interface and within the Sb2Se3 bulk, thereby limiting the improvement of device power conversion efficiency (PCE). This study presents a novel strategy for regulating the interface of the Sb2Se3/CdS heterojunction using a photo-annealing treatment. During this process, element substitution near the heterojunction efficiently prompts atomic rearrangement, leading to improved lattice matching at the interface and a reduction in the density of interface defects. Furthermore, the diffusion of Cd into the Sb2Se3 absorber facilitated the passivation of deep antisite and vacancy defects in the bulk of Sb2Se3. The photo-annealing process effectively enables the reduction of interface defects at the heterojunction interface and deep-level traps in the bulk of Sb2Se3. Consequently, this enhances the quality of the Sb2Se3/CdS heterojunction and facilitates the transport and collection of photo-generated carriers in the device. The resultant Sb2Se3/CdS heterojunction solar cells achieve a PCE of up to 10.58% (certified efficiency of 10.18%), making them the most efficient Sb2Se3 solar cells ever recorded. This work provides novel insights into the passivation of defects at the heterojunction and within the absorber bulk, highlighting pathways to enhance the photovoltaic performance of Sb2Se3 solar cells.
硒化锑(Sb2Se3)具有出色的光电特性,在光伏设备中的应用潜力巨大。然而,Sb2Se3 太阳能电池受到异质结界面和 Sb2Se3 体内部严重的载流子组合的阻碍,从而限制了器件功率转换效率(PCE)的提高。本研究提出了一种利用光退火处理调节 Sb2Se3/CdS 异质结界面的新策略。在此过程中,异质结附近的元素置换有效地促进了原子重排,从而改善了界面处的晶格匹配,降低了界面缺陷的密度。此外,镉向 Sb2Se3 吸收体的扩散促进了 Sb2Se3 体中深层反位和空位缺陷的钝化。光退火工艺有效地减少了异质结界面上的界面缺陷和 Sb2Se3 体中的深层陷阱。因此,这提高了 Sb2Se3/CdS 异质结的质量,有利于光生载流子在器件中的传输和收集。由此产生的 Sb2Se3/CdS 异质结太阳能电池的 PCE 高达 10.58%(认证效率为 10.18%),是迄今为止效率最高的 Sb2Se3 太阳能电池。这项工作为异质结和吸收体内部缺陷的钝化提供了新的见解,为提高 Sb2Se3 太阳能电池的光电性能指明了道路。
{"title":"Reduction of Bulk and Interface Defects via Photo-annealing Treatment for High-efficiency Antimony Selenide Solar Cells","authors":"Xiaoyang Liang, Xinhua Wang, Qiwei Chang, Bingxin Yang, Wei Dang, Zheng Zhang, Yingnan Guo, Lin Yang, Zhiqiang Li","doi":"10.1039/d4ee02877e","DOIUrl":"https://doi.org/10.1039/d4ee02877e","url":null,"abstract":"Antimony selenide (Sb2Se3) exhibits outstanding photoelectric characteristics and has significant potential for application in photovoltaic devices. However, Sb2Se3 solar cells are hindered by severe carrier combinations at both the heterojunction interface and within the Sb2Se3 bulk, thereby limiting the improvement of device power conversion efficiency (PCE). This study presents a novel strategy for regulating the interface of the Sb2Se3/CdS heterojunction using a photo-annealing treatment. During this process, element substitution near the heterojunction efficiently prompts atomic rearrangement, leading to improved lattice matching at the interface and a reduction in the density of interface defects. Furthermore, the diffusion of Cd into the Sb2Se3 absorber facilitated the passivation of deep antisite and vacancy defects in the bulk of Sb2Se3. The photo-annealing process effectively enables the reduction of interface defects at the heterojunction interface and deep-level traps in the bulk of Sb2Se3. Consequently, this enhances the quality of the Sb2Se3/CdS heterojunction and facilitates the transport and collection of photo-generated carriers in the device. The resultant Sb2Se3/CdS heterojunction solar cells achieve a PCE of up to 10.58% (certified efficiency of 10.18%), making them the most efficient Sb2Se3 solar cells ever recorded. This work provides novel insights into the passivation of defects at the heterojunction and within the absorber bulk, highlighting pathways to enhance the photovoltaic performance of Sb2Se3 solar cells.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"6 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twisted topological light illuminates molecular chirality 扭曲拓扑光照亮分子手性
IF 32.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1038/s41566-024-01553-5
Daria Smirnova, Alexander B. Khanikaev
A nonlinear optical response to a new form of light, dubbed chiral topological light owing to its local chirality and global topological characteristics, is enabling unprecedented enantiosensitivity and robustness of chiro-optical spectroscopies as a result of structured light–matter interactions at deep subwavelength scales.
由于其局部手性和全局拓扑特性,一种被称为手性拓扑光的新型光的非线性光学响应,在深亚波长尺度的结构化光-物质相互作用下,实现了前所未有的对映灵敏度和坚固耐用的气光学光谱。
{"title":"Twisted topological light illuminates molecular chirality","authors":"Daria Smirnova,&nbsp;Alexander B. Khanikaev","doi":"10.1038/s41566-024-01553-5","DOIUrl":"10.1038/s41566-024-01553-5","url":null,"abstract":"A nonlinear optical response to a new form of light, dubbed chiral topological light owing to its local chirality and global topological characteristics, is enabling unprecedented enantiosensitivity and robustness of chiro-optical spectroscopies as a result of structured light–matter interactions at deep subwavelength scales.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"18 11","pages":"1133-1134"},"PeriodicalIF":32.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photon-trapping detector 光子捕获探测器
IF 32.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1038/s41566-024-01560-6
Noriaki Horiuchi
{"title":"Photon-trapping detector","authors":"Noriaki Horiuchi","doi":"10.1038/s41566-024-01560-6","DOIUrl":"10.1038/s41566-024-01560-6","url":null,"abstract":"","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"18 11","pages":"1135-1135"},"PeriodicalIF":32.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling nanoscale fluid miscible behaviors with nanofluidic slim-tube 用纳米流体细管揭示纳米级流体混溶行为
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-30 DOI: 10.1039/d4ee02292k
Zengding Wang, Tianjiang Zhang, Shanchao Liu, Keli Ding, Tengyu Liu, Jun Yao, Hai Sun, Yongfei Yang, Lei Zhang, Wen-Dong Wang, Cunqi Jia, Mojdeh Delshad, Kamy Sepehrnoori, Junjie Zhong
Fluid miscible behaviors in nanoporous media are crucial for applications such as carbon capture, utilization, and storage (CCUS), membrane separation, subsurface pollutant remediation, and geothermal extraction. Confinement effects at the nanoscale cause fluid miscible behaviors to deviate from bulk phases, and the underlying mechanisms remain inadequately understood. Here, we developed a nanofluidic slim-tube method to directly visualize fluid miscible behaviors and measure the minimum miscibility pressure (MMP) at the nanoscale. Focusing on CO2-hydrocarbon systems—an intersection of low-carbon energy transition and environmental sustainability—we investigated miscibility within multiscale porous media featuring pore sizes from 100 nm to 10 μm for the first time. Our results demonstrate that in nanoporous media, the CO2 diffusion front advances faster than the displacement front, indicating that molecular diffusion dominates mass transport. Miscible flow reduces CO2 fingering caused by mobility differences, achieving ~100% displacement efficiency. In multiscale porous media, distinct miscible stages emerge due to fluid composition variations at different scales and CO2 selective extraction. Our experimental findings also reveal that MMP decreases in nanoporous media compared to bulk values. However, in multiscale porous media, MMP exceeds the theoretical prediction in the largest pore size, underscoring the necessity for theories that consider multiscale confinement effects. This study presents a novel nanofluidic approach to elucidate nanoscale fluid miscible behaviors and the impact of pore structures, providing an important strategy for quantifying fluid miscibility in complex porous media.
纳米多孔介质中的流体混溶行为对于碳捕获、利用和储存(CCUS)、膜分离、地下污染物修复和地热提取等应用至关重要。纳米尺度的致密效应会导致流体混溶行为偏离体相,而对其潜在机制的了解仍然不足。在此,我们开发了一种纳米流体细管方法,可直接观察流体混溶行为,并测量纳米尺度的最小混溶压力(MMP)。我们以二氧化碳-碳氢化合物系统--低碳能源转型和环境可持续发展的交汇点--为重点,首次研究了多尺度多孔介质(孔径从 100 纳米到 10 微米不等)中的混溶性。我们的研究结果表明,在纳米多孔介质中,二氧化碳的扩散前沿比位移前沿前进得更快,这表明分子扩散主导了质量传输。混杂流减少了流动性差异造成的二氧化碳指状现象,实现了约 100% 的置换效率。在多尺度多孔介质中,由于不同尺度的流体成分变化和二氧化碳的选择性萃取,会出现不同的混溶阶段。我们的实验结果还显示,在纳米多孔介质中,MMP 比块体值要低。然而,在多尺度多孔介质中,最大孔径的 MMP 超过了理论预测值,这突出了考虑多尺度约束效应的理论的必要性。本研究提出了一种新颖的纳米流体方法来阐明纳米级流体混溶行为和孔隙结构的影响,为量化复杂多孔介质中的流体混溶性提供了重要策略。
{"title":"Unveiling nanoscale fluid miscible behaviors with nanofluidic slim-tube","authors":"Zengding Wang, Tianjiang Zhang, Shanchao Liu, Keli Ding, Tengyu Liu, Jun Yao, Hai Sun, Yongfei Yang, Lei Zhang, Wen-Dong Wang, Cunqi Jia, Mojdeh Delshad, Kamy Sepehrnoori, Junjie Zhong","doi":"10.1039/d4ee02292k","DOIUrl":"https://doi.org/10.1039/d4ee02292k","url":null,"abstract":"Fluid miscible behaviors in nanoporous media are crucial for applications such as carbon capture, utilization, and storage (CCUS), membrane separation, subsurface pollutant remediation, and geothermal extraction. Confinement effects at the nanoscale cause fluid miscible behaviors to deviate from bulk phases, and the underlying mechanisms remain inadequately understood. Here, we developed a nanofluidic slim-tube method to directly visualize fluid miscible behaviors and measure the minimum miscibility pressure (MMP) at the nanoscale. Focusing on CO2-hydrocarbon systems—an intersection of low-carbon energy transition and environmental sustainability—we investigated miscibility within multiscale porous media featuring pore sizes from 100 nm to 10 μm for the first time. Our results demonstrate that in nanoporous media, the CO2 diffusion front advances faster than the displacement front, indicating that molecular diffusion dominates mass transport. Miscible flow reduces CO2 fingering caused by mobility differences, achieving ~100% displacement efficiency. In multiscale porous media, distinct miscible stages emerge due to fluid composition variations at different scales and CO2 selective extraction. Our experimental findings also reveal that MMP decreases in nanoporous media compared to bulk values. However, in multiscale porous media, MMP exceeds the theoretical prediction in the largest pore size, underscoring the necessity for theories that consider multiscale confinement effects. This study presents a novel nanofluidic approach to elucidate nanoscale fluid miscible behaviors and the impact of pore structures, providing an important strategy for quantifying fluid miscibility in complex porous media.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"35 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theory-Guided Development of a Barium-Doped Cobalt Catalyst for Ammonia Decomposition 在理论指导下开发用于氨分解的掺钡钴催化剂
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-29 DOI: 10.1039/d4ee02874k
Alexander Gunnarson, ANG CAO, Olivia Fjord Sloth, Miriam Varón, Ruben Bueno Villoro, Thomas Veile, Christian Danvad Damsgaard, Cathrine Frandsen, Jens Kehlet Norskov, Ib Chorkendorff
The efficiency of the catalytic decomposition of ammonia is a central challenge for the use of ammonia as a potential hydrogen vector and fuel for heavy-duty applications. In this study, we explore the promotional effect of alkaline and earth-alkaline metals on cobalt and nickel catalysts for ammonia decomposition in a computational screening. We elucidate the strong influence of the recently proposed spin promotion effect on catalytic activity and identify barium as a promising and stable promoter of Co under the relevant reaction conditions. The predictions are validated experimentally through the study of a BaCo catalyst, ultimately yielding a metal-based hydrogen productivity of 12.2 mol gCo-1 h-1 at 500 °C, common for state-of-the-art ruthenium catalysts. This work not only reports the successful development of a novel catalyst but also provides validation for the spin-promotion effect and its substantial influence on catalyst performance.
氨催化分解的效率是将氨用作潜在氢载体和重型应用燃料的核心挑战。在本研究中,我们通过计算筛选探讨了碱性金属和土碱性金属对钴和镍催化剂分解氨的促进作用。我们阐明了最近提出的自旋促进效应对催化活性的强烈影响,并确定钡在相关反应条件下是一种有前途且稳定的 Co 促进剂。通过对钡钴催化剂的研究,我们在实验中验证了上述预测,最终在 500 °C 条件下获得了 12.2 mol gCo-1 h-1 的金属基氢生产率,这在最先进的钌催化剂中是很常见的。这项工作不仅报告了新型催化剂的成功开发,还验证了自旋促进效应及其对催化剂性能的重大影响。
{"title":"Theory-Guided Development of a Barium-Doped Cobalt Catalyst for Ammonia Decomposition","authors":"Alexander Gunnarson, ANG CAO, Olivia Fjord Sloth, Miriam Varón, Ruben Bueno Villoro, Thomas Veile, Christian Danvad Damsgaard, Cathrine Frandsen, Jens Kehlet Norskov, Ib Chorkendorff","doi":"10.1039/d4ee02874k","DOIUrl":"https://doi.org/10.1039/d4ee02874k","url":null,"abstract":"The efficiency of the catalytic decomposition of ammonia is a central challenge for the use of ammonia as a potential hydrogen vector and fuel for heavy-duty applications. In this study, we explore the promotional effect of alkaline and earth-alkaline metals on cobalt and nickel catalysts for ammonia decomposition in a computational screening. We elucidate the strong influence of the recently proposed spin promotion effect on catalytic activity and identify barium as a promising and stable promoter of Co under the relevant reaction conditions. The predictions are validated experimentally through the study of a BaCo catalyst, ultimately yielding a metal-based hydrogen productivity of 12.2 mol gCo-1 h-1 at 500 °C, common for state-of-the-art ruthenium catalysts. This work not only reports the successful development of a novel catalyst but also provides validation for the spin-promotion effect and its substantial influence on catalyst performance.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"21 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-driven Discovery of Electrode Materials for Protonic Ceramic Cells 数据驱动发现质子陶瓷电池电极材料
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-29 DOI: 10.1039/d4ee03762f
Xueyu Hu, Yucun Zhou, Zheyu Luo, Haoyu Li, Nai Shi, Zhijun Liu, Weilin Zhang, Weining Wang, Yong Ding, Meilin Liu
Protonic Ceramic Electrochemical Cells (PCECs) offer an efficient solution for the closed-loop conversion between chemical and electrical energy, supporting zero-emission objectives. The varying and high-humidity conditions on the oxygen electrode side necessitate the development of novel materials with superior electro-catalytic activity and durability. In this study, we circumvent conventional trial-and-error approaches by utilizing high-throughput calculations and a novel data-driven decomposition analysis to predict the key properties important for applications of 4,455 distinct perovskite oxides, including thermodynamic stability and decomposition tendencies. Our analysis results in a small number of highly promising candidates. Among them, PrBaCo1.9Hf0.1O5+δ demonstrates exceptional performance in PCECs, achieving peak power densities of 1.49 W cm-2 at 600 °C and 0.6 W cm-2 at 450 °C in fuel cell mode and extraordinary current density (2.78 A cm-2) at an applied voltage of 1.3 V at 600 °C in electrolysis mode, while maintaining outstanding durability over 500 hours of operation. This study highlights the pivotal role of data-driven high-throughput calculations in accelerating the discovery of novel materials for various clean energy technologies.
质子陶瓷电化学电池(PCEC)为化学能和电能之间的闭环转换提供了一种高效的解决方案,有助于实现零排放目标。由于氧电极一侧的条件多变且湿度高,因此有必要开发具有卓越电催化活性和耐用性的新型材料。在这项研究中,我们利用高通量计算和新颖的数据驱动分解分析,预测了 4455 种不同的过氧化物氧化物在应用中的关键特性,包括热力学稳定性和分解倾向,从而避免了传统的试错方法。通过分析,我们发现了少数极具潜力的候选化合物。其中,PrBaCo1.9Hf0.1O5+δ 在 PCEC 中表现出卓越的性能,在燃料电池模式下,其峰值功率密度在 600 °C 时达到 1.49 W cm-2,在 450 °C 时达到 0.6 W cm-2;在电解模式下,其峰值功率密度在 600 °C 时达到 1.3 V,电流密度达到 2.78 A cm-2,同时在 500 小时的工作时间内保持出色的耐用性。这项研究凸显了数据驱动的高通量计算在加速发现用于各种清洁能源技术的新型材料方面的关键作用。
{"title":"Data-driven Discovery of Electrode Materials for Protonic Ceramic Cells","authors":"Xueyu Hu, Yucun Zhou, Zheyu Luo, Haoyu Li, Nai Shi, Zhijun Liu, Weilin Zhang, Weining Wang, Yong Ding, Meilin Liu","doi":"10.1039/d4ee03762f","DOIUrl":"https://doi.org/10.1039/d4ee03762f","url":null,"abstract":"Protonic Ceramic Electrochemical Cells (PCECs) offer an efficient solution for the closed-loop conversion between chemical and electrical energy, supporting zero-emission objectives. The varying and high-humidity conditions on the oxygen electrode side necessitate the development of novel materials with superior electro-catalytic activity and durability. In this study, we circumvent conventional trial-and-error approaches by utilizing high-throughput calculations and a novel data-driven decomposition analysis to predict the key properties important for applications of 4,455 distinct perovskite oxides, including thermodynamic stability and decomposition tendencies. Our analysis results in a small number of highly promising candidates. Among them, PrBaCo1.9Hf0.1O5+δ demonstrates exceptional performance in PCECs, achieving peak power densities of 1.49 W cm-2 at 600 °C and 0.6 W cm-2 at 450 °C in fuel cell mode and extraordinary current density (2.78 A cm-2) at an applied voltage of 1.3 V at 600 °C in electrolysis mode, while maintaining outstanding durability over 500 hours of operation. This study highlights the pivotal role of data-driven high-throughput calculations in accelerating the discovery of novel materials for various clean energy technologies.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"15 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stabilizing doped Spiro-OMeTAD by organic molten salt for efficient and stable perovskite solar cells 用有机熔盐稳定掺杂的螺-OMeTAD,实现高效稳定的过氧化物太阳能电池
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-29 DOI: 10.1039/d4ee04310c
Tengfei Pan, Zhiwei Li, Biyun Ren, Wan Yang, Xueqin Ran, Yajing Li, Yutian Xu, Yue Wang, Deli Li, Yingdong Xia, Xingyu Gao, Lingfeng Chao, Yonghua Chen
Bis(trifluoromethane)sulfonimide (LiTFSI) and 4-tert-butylpyridine (TBP) have been currently suggested to be irreplaceable in classic doped 2,2′,7,7′-tetrakis (N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (Spiro-OMeTAD) for high-performance perovskite solar cells (PSCs). However, the stability of Spiro-OMeTAD was demonstrated to be seriously limited by the Li+ diffusion of LiTFSI and the volatilization of TBP. Here, we report an organic molten salt, Cyclohexylamine Trifluoroacetic acid (CYTFA), doping strategy to stabilize doped Spiro-OMeTAD for high-performance PSCs. We found the Li+ diffusion and the TBP volatilization were effectively suppressed through strong interaction by the dissociated CY+ and TFA- acting on TBP and Li+. Moreover, the CYTFA doped Spiro-OMeTAD exhibits an order of magnitude increase in hole mobility and matched energy levels with perovskite. As a result, a solar cell with a power-conversion efficiency of 25.80% was achieved with maintaining 96% and 80% of the initial efficiency for 500 hours at 55°C and 55% humidity and for 470 hours at the maximum power point, respectively.
双(三氟甲烷)磺酰亚胺(LiTFSI)和 4-叔丁基吡啶(TBP)目前被认为是经典的掺杂 2,2′,7,7′-四(N,N-二对甲氧基苯胺)-9,9′-螺二芴(Spiro-OMeTAD)高性能包晶体太阳能电池(PSCs)中不可替代的物质。然而,由于 LiTFSI 的 Li+ 扩散和 TBP 的挥发,Spiro-OMeTAD 的稳定性受到严重限制。在此,我们报告了一种有机熔盐--环己胺三氟乙酸(CYTFA)--的掺杂策略,以稳定用于高性能 PSC 的掺杂螺-OMeTAD。我们发现,通过解离的 CY+ 和 TFA- 对 TBP 和 Li+ 的强相互作用,Li+ 的扩散和 TBP 的挥发得到了有效抑制。此外,掺杂 CYTFA 的斯派罗-OMeTAD 的空穴迁移率提高了一个数量级,能级也与过氧化物相匹配。因此,太阳能电池的功率转换效率达到了 25.80%,在 55°C 和 55% 湿度条件下可维持 96% 和 80% 的初始效率 500 小时,在最大功率点条件下可维持 470 小时。
{"title":"Stabilizing doped Spiro-OMeTAD by organic molten salt for efficient and stable perovskite solar cells","authors":"Tengfei Pan, Zhiwei Li, Biyun Ren, Wan Yang, Xueqin Ran, Yajing Li, Yutian Xu, Yue Wang, Deli Li, Yingdong Xia, Xingyu Gao, Lingfeng Chao, Yonghua Chen","doi":"10.1039/d4ee04310c","DOIUrl":"https://doi.org/10.1039/d4ee04310c","url":null,"abstract":"Bis(trifluoromethane)sulfonimide (LiTFSI) and 4-tert-butylpyridine (TBP) have been currently suggested to be irreplaceable in classic doped 2,2′,7,7′-tetrakis (N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (Spiro-OMeTAD) for high-performance perovskite solar cells (PSCs). However, the stability of Spiro-OMeTAD was demonstrated to be seriously limited by the Li+ diffusion of LiTFSI and the volatilization of TBP. Here, we report an organic molten salt, Cyclohexylamine Trifluoroacetic acid (CYTFA), doping strategy to stabilize doped Spiro-OMeTAD for high-performance PSCs. We found the Li+ diffusion and the TBP volatilization were effectively suppressed through strong interaction by the dissociated CY+ and TFA- acting on TBP and Li+. Moreover, the CYTFA doped Spiro-OMeTAD exhibits an order of magnitude increase in hole mobility and matched energy levels with perovskite. As a result, a solar cell with a power-conversion efficiency of 25.80% was achieved with maintaining 96% and 80% of the initial efficiency for 500 hours at 55°C and 55% humidity and for 470 hours at the maximum power point, respectively.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"240 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemical Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1