While early investigations into the physiological effects of spaceflight suggest the body's ability to reversibly adapt, the corresponding effects of long-term spaceflight (>6 months) are much less conclusive. Prolonged exposure to microgravity and radiation yields profound effects on the cardiovascular system, including a massive cephalad fluid translocation and altered arterial pressure, which attenuate blood pressure regulatory mechanisms and increase cardiac output. Also, central venous pressure decreases as a result of the loss of venous compression. The stimulation of baroreceptors by the cephalad shift results in an approximately 10%-15% reduction in plasma volume, with fluid translocating from the vascular lumen to the interstitium. Despite possible increases in cardiac workload, myocyte atrophy and notable, yet unexplained, alterations in hematocrit have been observed. Atrophy is postulated to result from shunting of protein synthesis from the endoplasmic reticulum to the mitochondria via mortalin-mediated action. While data are scarce regarding their causative agents, arrhythmias have been frequently reported, albeit sublethal, during both Russian and American expeditions, with QT interval prolongation observed in long, but not short duration, spaceflight. Exposure of the heart to the proton and heavy ion radiation of deep space has also been shown to result in coronary artery degeneration, aortic stiffness, carotid intima thickening via collagen-mediated action, accelerated atherosclerosis, and induction of a pro-inflammatory state. Upon return, long-term spaceflight frequently results in orthostatic intolerance and altered sympathetic responses, which can prove hazardous should any rapid mobilization or evacuation be required, and indicates that these cardiac risks should be especially monitored for future missions.
A long-term vegetarian diet plays a role in the longevity and maintenance of the healthspan, but the underlying mechanisms for these observations are largely unknown. Particularly, it is not known whether a long-term vegetarian dietary pattern may affect the circulating miRNA expression in such a way as to modulate the healthspan. The Adventist Health Study-2 (AHS-2) cohort includes a large number of older adults who primarily follow vegetarian dietary patterns and reside in Loma Linda, California, one of five "Blue Zones" in the world in which a higher proportion of the population enjoys a longer than average lifespan. We performed miRNA-seq in 96 subjects selected from the AHS-2 cohort with different dietary patterns. We identified several differentially expressed miRNAs between vegetarians and non-vegetarians, which are involved in immune response and cytokine signaling, cell growth and proliferation as well as age-related diseases such as cardiovascular diseases and neurodegenerative diseases. Overall, our study showed that a vegetarian diet modulates aging-associated circulating miRNAs in a sex-dependent manner of differential expression for certain miRNAs, which may be related in a beneficial manner to the healthspan. Further investigation is needed to validate these miRNAs as potential biomarkers for diet-modulated longevity in humans.
Hearing loss is the most common neurosensory deficit. It results from a variety of heritable and acquired causes and is linked to multiple deleterious effects on a child's development that can be ameliorated by prompt identification and individualized therapies. Diagnosing hearing loss in newborns is challenging, especially in mild or progressive cases, and its management requires a multidisciplinary team of healthcare providers comprising audiologists, pediatricians, otolaryngologists, and genetic counselors. While physiologic newborn hearing screening has resulted in earlier diagnosis of hearing loss than ever before, a growing body of knowledge supports the concurrent implementation of genetic and cytomegalovirus testing to offset the limitations inherent to a singular screening modality. In this review, we discuss the contemporary role of screening for hearing loss in newborns as well as future directions in its diagnosis and treatment.
Poly(ADP-ribose) polymerase inhibitors (PARPi) are a new class of agents with unparalleled clinical achievement for driving synthetic lethality in BRCA-deficient cancers. Recent FDA approval of PARPi has motivated clinical trials centered around the optimization of PARPi-associated therapies in a variety of BRCA-deficient cancers. This review highlights recent advancements in understanding the molecular mechanisms of PARP 'trapping' and synthetic lethality. Particular attention is placed on the potential extension of PARPi therapies from BRCA-deficient patients to populations with other homologous recombination-deficient backgrounds, and common characteristics of PARPi and non-homologous end-joining have been elucidated. The synergistic antitumor effect of combining PARPi with various immune checkpoint blockades has been explored to evaluate the potential of combination therapy in attaining greater therapeutic outcome. This has shed light onto the differing classifications of PARPi as well as the factors that result in altered PARPi activity. Lastly, acquired chemoresistance is a crucial issue for clinical application of PARPi. The molecular mechanisms underlying PARPi resistance and potential overcoming strategies are discussed.
The widespread and lingering pandemic of COVID-19 is partly due to disjointed international countermeasures and policies enforced by different countries. We have been witnessing disparity in policies and measures in different countries and regions: some are in much better control than others. To effectively deal with this and future devastating pandemics, we as human beings must work together to coordinate a concerted, cooperative international policy to reduce or possibly avoid unnecessary health crises, and life and economic losses.