首页 > 最新文献

Chemistry of Materials最新文献

英文 中文
Correction to “Crystalline Antimony Selenide Thin Films for Optoelectronics through Photonic Curing”
IF 8.6 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-29 DOI: 10.1021/acs.chemmater.4c02495
Udari Wijesinghe, William D. Tetlow, Pietro Maiello, Nicole Fleck, Graeme O’Dowd, Neil S. Beattie, Giulia Longo, Oliver S. Hutter
In the original article of Chem. Mater. 2024, 36, 12, 6027–6037, an oversight occurred whereby an important reference (reference 13 in the original text) was cited but not properly discussed. The authors offer their apologies for this oversight. The reference provides important and valuable methodological information using photonic curing, and it was therefore taken as inspiration. In fact, the article Chem.Mater. 2024, 36, 12, 6027–6037 follows a similar methodology to the one reported in reference 13, even if applied to a different material system. On page 6027, after the sentence citing reference 13, the above reference should be cited again with an additional sentence reading “The current work follows a methodology similar to the work from Xu et al.13” On page 6031 after the sentence “Furthermore, a shorter discharge of the lamp delivers a higher current density in the UV range, which explains why overconverted films are easily obtained (i.e., the Xe lamp spectrum depends on the current density)”, the following sentence should be added: “Longer pulse lengths also work better on perovskites.13 which suggests that long pulse lengths could be beneficial for other light-absorbing photovoltaic materials.” Impact of the Addition: This addition does not affect the conclusions of the original article in any way. This article has not yet been cited by other publications.
{"title":"Correction to “Crystalline Antimony Selenide Thin Films for Optoelectronics through Photonic Curing”","authors":"Udari Wijesinghe, William D. Tetlow, Pietro Maiello, Nicole Fleck, Graeme O’Dowd, Neil S. Beattie, Giulia Longo, Oliver S. Hutter","doi":"10.1021/acs.chemmater.4c02495","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02495","url":null,"abstract":"In the original article of <cite><i>Chem. Mater.</i></cite> <span>2024</span>, <em>36</em>, <i>12</i>, 6027–6037, an oversight occurred whereby an important reference (reference 13 in the original text) was cited but not properly discussed. The authors offer their apologies for this oversight. The reference provides important and valuable methodological information using photonic curing, and it was therefore taken as inspiration. In fact, the article <cite><i>Chem.\u0000Mater.</i></cite> <span>2024</span>, <em>36</em>, <i>12</i>, 6027–6037 follows a similar methodology to the one reported in reference 13, even if applied to a different material system. On page 6027, after the sentence citing reference 13, the above reference should be cited again with an additional sentence reading “The current work follows a methodology similar to the work from Xu et al.<sup>13</sup>” On page 6031 after the sentence “Furthermore, a shorter discharge of the lamp delivers a higher current density in the UV range, which explains why overconverted films are easily obtained (i.e., the Xe lamp spectrum depends on the current density)”, the following sentence should be added: “Longer pulse lengths also work better on perovskites.<sup>13</sup> which suggests that long pulse lengths could be beneficial for other light-absorbing photovoltaic materials.” <b>Impact of the Addition</b>: This addition does not affect the conclusions of the original article in any way. This article has not yet been cited by other publications.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"259 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Lithium Ion Conduction in LLZO-Based Solid Electrolytes through Anion Doping for Advanced Energy Storage: Insights from Molecular Dynamics Simulations
IF 8.6 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-29 DOI: 10.1021/acs.chemmater.4c02506
Cristina Lopez-Puga, Jincheng Du
Solid-state electrolytes (SSEs) have emerged as promising alternatives to traditional liquid electrolytes due to their enhanced safety, higher stability and energy density in energy storage applications. Among SSEs, cubic Li7La3Zr2O12 (LLZO) is considered particularly promising, offering high lithium ion conductivity, high chemical stability to metal anode and a wide electrochemical stability window. Nevertheless, the cubic phase converts to a less conductive tetragonal phase during cooling in pure LLZO. Doping is one of most effective methods to stabilize the cubic LLZO at lower temperatures and improve the ion conductivity. While there is extensive research on cation site substitutions, studies on anion doping are very limited. We have investigated the effects of fluorine doping on the phase stability and ion conductivity of LLZO, exploring fluorine concentrations ranging from 1 to 10% across a wide temperature range of 300–1400 K using molecular dynamics (MD) simulations based on polarizable shell model potentials. Our results indicate that 3% fluorine doping achieves the highest diffusion coefficient (3.69 × 10–7 cm2 s–1) at room temperature, while the lowest activation energy (∼0.22 eV) also occurs at around 3% doping, which is in good agreement with experimental observations. Doping at 1% was found to be insufficient to stabilize the cubic phase, while high fluorine concentrations (>4%) inhibited ion migration pathways due to stronger electrostatic interactions between point defects VLi and FO. Defect formation energies were also calculated to study defect formation and interactions and their effect on lithium ion conduction. Lithium ion diffusion pathways and mechanisms are also explored by using trajectories from MD simulations. This study provides insights into the optimization of fluorine-doped LLZO, suggesting that moderate doping levels (around 3%) offer a balance between phase stability and ionic conductivity.
{"title":"Enhancing Lithium Ion Conduction in LLZO-Based Solid Electrolytes through Anion Doping for Advanced Energy Storage: Insights from Molecular Dynamics Simulations","authors":"Cristina Lopez-Puga, Jincheng Du","doi":"10.1021/acs.chemmater.4c02506","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02506","url":null,"abstract":"Solid-state electrolytes (SSEs) have emerged as promising alternatives to traditional liquid electrolytes due to their enhanced safety, higher stability and energy density in energy storage applications. Among SSEs, cubic Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) is considered particularly promising, offering high lithium ion conductivity, high chemical stability to metal anode and a wide electrochemical stability window. Nevertheless, the cubic phase converts to a less conductive tetragonal phase during cooling in pure LLZO. Doping is one of most effective methods to stabilize the cubic LLZO at lower temperatures and improve the ion conductivity. While there is extensive research on cation site substitutions, studies on anion doping are very limited. We have investigated the effects of fluorine doping on the phase stability and ion conductivity of LLZO, exploring fluorine concentrations ranging from 1 to 10% across a wide temperature range of 300–1400 K using molecular dynamics (MD) simulations based on polarizable shell model potentials. Our results indicate that 3% fluorine doping achieves the highest diffusion coefficient (3.69 × 10<sup>–7</sup> cm<sup>2</sup> s<sup>–1</sup>) at room temperature, while the lowest activation energy (∼0.22 eV) also occurs at around 3% doping, which is in good agreement with experimental observations. Doping at 1% was found to be insufficient to stabilize the cubic phase, while high fluorine concentrations (&gt;4%) inhibited ion migration pathways due to stronger electrostatic interactions between point defects <i>V</i><sub>Li</sub><sup>′</sup> and <i>F</i><sub>O</sub><sup>•</sup>. Defect formation energies were also calculated to study defect formation and interactions and their effect on lithium ion conduction. Lithium ion diffusion pathways and mechanisms are also explored by using trajectories from MD simulations. This study provides insights into the optimization of fluorine-doped LLZO, suggesting that moderate doping levels (around 3%) offer a balance between phase stability and ionic conductivity.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"69 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Lithium Ion Conduction in LLZO-Based Solid Electrolytes through Anion Doping for Advanced Energy Storage: Insights from Molecular Dynamics Simulations
IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-29 DOI: 10.1021/acs.chemmater.4c0250610.1021/acs.chemmater.4c02506
Cristina Lopez-Puga,  and , Jincheng Du*, 

Solid-state electrolytes (SSEs) have emerged as promising alternatives to traditional liquid electrolytes due to their enhanced safety, higher stability and energy density in energy storage applications. Among SSEs, cubic Li7La3Zr2O12 (LLZO) is considered particularly promising, offering high lithium ion conductivity, high chemical stability to metal anode and a wide electrochemical stability window. Nevertheless, the cubic phase converts to a less conductive tetragonal phase during cooling in pure LLZO. Doping is one of most effective methods to stabilize the cubic LLZO at lower temperatures and improve the ion conductivity. While there is extensive research on cation site substitutions, studies on anion doping are very limited. We have investigated the effects of fluorine doping on the phase stability and ion conductivity of LLZO, exploring fluorine concentrations ranging from 1 to 10% across a wide temperature range of 300–1400 K using molecular dynamics (MD) simulations based on polarizable shell model potentials. Our results indicate that 3% fluorine doping achieves the highest diffusion coefficient (3.69 × 10–7 cm2 s–1) at room temperature, while the lowest activation energy (∼0.22 eV) also occurs at around 3% doping, which is in good agreement with experimental observations. Doping at 1% was found to be insufficient to stabilize the cubic phase, while high fluorine concentrations (>4%) inhibited ion migration pathways due to stronger electrostatic interactions between point defects VLi and FO. Defect formation energies were also calculated to study defect formation and interactions and their effect on lithium ion conduction. Lithium ion diffusion pathways and mechanisms are also explored by using trajectories from MD simulations. This study provides insights into the optimization of fluorine-doped LLZO, suggesting that moderate doping levels (around 3%) offer a balance between phase stability and ionic conductivity.

{"title":"Enhancing Lithium Ion Conduction in LLZO-Based Solid Electrolytes through Anion Doping for Advanced Energy Storage: Insights from Molecular Dynamics Simulations","authors":"Cristina Lopez-Puga,&nbsp; and ,&nbsp;Jincheng Du*,&nbsp;","doi":"10.1021/acs.chemmater.4c0250610.1021/acs.chemmater.4c02506","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02506https://doi.org/10.1021/acs.chemmater.4c02506","url":null,"abstract":"<p >Solid-state electrolytes (SSEs) have emerged as promising alternatives to traditional liquid electrolytes due to their enhanced safety, higher stability and energy density in energy storage applications. Among SSEs, cubic Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) is considered particularly promising, offering high lithium ion conductivity, high chemical stability to metal anode and a wide electrochemical stability window. Nevertheless, the cubic phase converts to a less conductive tetragonal phase during cooling in pure LLZO. Doping is one of most effective methods to stabilize the cubic LLZO at lower temperatures and improve the ion conductivity. While there is extensive research on cation site substitutions, studies on anion doping are very limited. We have investigated the effects of fluorine doping on the phase stability and ion conductivity of LLZO, exploring fluorine concentrations ranging from 1 to 10% across a wide temperature range of 300–1400 K using molecular dynamics (MD) simulations based on polarizable shell model potentials. Our results indicate that 3% fluorine doping achieves the highest diffusion coefficient (3.69 × 10<sup>–7</sup> cm<sup>2</sup> s<sup>–1</sup>) at room temperature, while the lowest activation energy (∼0.22 eV) also occurs at around 3% doping, which is in good agreement with experimental observations. Doping at 1% was found to be insufficient to stabilize the cubic phase, while high fluorine concentrations (&gt;4%) inhibited ion migration pathways due to stronger electrostatic interactions between point defects <i>V</i><sub>Li</sub><sup>′</sup> and <i>F</i><sub>O</sub><sup>•</sup>. Defect formation energies were also calculated to study defect formation and interactions and their effect on lithium ion conduction. Lithium ion diffusion pathways and mechanisms are also explored by using trajectories from MD simulations. This study provides insights into the optimization of fluorine-doped LLZO, suggesting that moderate doping levels (around 3%) offer a balance between phase stability and ionic conductivity.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"36 23","pages":"11570–11582 11570–11582"},"PeriodicalIF":7.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142850760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Crystalline Antimony Selenide Thin Films for Optoelectronics through Photonic Curing”
IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-29 DOI: 10.1021/acs.chemmater.4c0249510.1021/acs.chemmater.4c02495
Udari Wijesinghe, William D. Tetlow, Pietro Maiello, Nicole Fleck, Graeme O’Dowd, Neil S. Beattie, Giulia Longo* and Oliver S. Hutter*, 
{"title":"Correction to “Crystalline Antimony Selenide Thin Films for Optoelectronics through Photonic Curing”","authors":"Udari Wijesinghe,&nbsp;William D. Tetlow,&nbsp;Pietro Maiello,&nbsp;Nicole Fleck,&nbsp;Graeme O’Dowd,&nbsp;Neil S. Beattie,&nbsp;Giulia Longo* and Oliver S. Hutter*,&nbsp;","doi":"10.1021/acs.chemmater.4c0249510.1021/acs.chemmater.4c02495","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02495https://doi.org/10.1021/acs.chemmater.4c02495","url":null,"abstract":"","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"36 23","pages":"11717 11717"},"PeriodicalIF":7.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemmater.4c02495","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142850772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tetracyanoanthracenediacenaphthalimides as n-Type Organic Semiconductors: Control of Molecular Orientation
IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-29 DOI: 10.1021/acs.chemmater.4c0265310.1021/acs.chemmater.4c02653
Ying-Hsuan Liu, Pegah Ghamari, Meng Wei, Cory Ruchlin, Daling Cui, Federico Rosei and Dmytro F. Perepichka*, 

We investigated tetracyanoanthracenediacenaphthalimides (TCDADIs) as n-type organic semiconductors (OSCs) and assessed their molecular self-assembly in forming monolayers and thin films using optical absorption spectroscopy, scanning tunneling microscopy (STM), atomic force microscopy (AFM), and grazing incidence wide-angle X-ray scattering (GIWAXS). The absorption spectra, along with quantitative GIWAXS analysis, reveal the influence of molecular structure (alkyl chain length) and film processing conditions (annealing temperature and spin-coating speed) on the orientation of TCDADI molecules in films. Our findings indicate that increasing the spin-coating speed and annealing temperatures causes a transition from a mixed phase to a predominantly edge-on molecular orientation. This transition significantly enhances the electron mobility, from 0.01 to 0.05 cm2 V–1 s–1 for TCDADI-C16 and from 0.13 to 0.20 cm2 V–1 s–1 for TCDADI-C24. In addition, we highlight the potential of TCDADIs for photodetector applications, showing a photoresponse gain of over 2000 under white light.

{"title":"Tetracyanoanthracenediacenaphthalimides as n-Type Organic Semiconductors: Control of Molecular Orientation","authors":"Ying-Hsuan Liu,&nbsp;Pegah Ghamari,&nbsp;Meng Wei,&nbsp;Cory Ruchlin,&nbsp;Daling Cui,&nbsp;Federico Rosei and Dmytro F. Perepichka*,&nbsp;","doi":"10.1021/acs.chemmater.4c0265310.1021/acs.chemmater.4c02653","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02653https://doi.org/10.1021/acs.chemmater.4c02653","url":null,"abstract":"<p >We investigated tetracyanoanthracenediacenaphthalimides (TCDADIs) as n-type organic semiconductors (OSCs) and assessed their molecular self-assembly in forming monolayers and thin films using optical absorption spectroscopy, scanning tunneling microscopy (STM), atomic force microscopy (AFM), and grazing incidence wide-angle X-ray scattering (GIWAXS). The absorption spectra, along with quantitative GIWAXS analysis, reveal the influence of molecular structure (alkyl chain length) and film processing conditions (annealing temperature and spin-coating speed) on the orientation of TCDADI molecules in films. Our findings indicate that increasing the spin-coating speed and annealing temperatures causes a transition from a mixed phase to a predominantly edge-on molecular orientation. This transition significantly enhances the electron mobility, from 0.01 to 0.05 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> for TCDADI-C16 and from 0.13 to 0.20 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> for TCDADI-C24. In addition, we highlight the potential of TCDADIs for photodetector applications, showing a photoresponse gain of over 2000 under white light.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"36 23","pages":"11618–11627 11618–11627"},"PeriodicalIF":7.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Links between Structural Distortions, Orbital Ordering, and Multipolar Magnetic Ordering in Double Perovskites Containing Re(VI) and Os(VII)
IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-28 DOI: 10.1021/acs.chemmater.4c0213510.1021/acs.chemmater.4c02135
Victor da Cruz Pinha Barbosa, Dalini D. Maharaj, Zachery W. Cronkright, Ye Wang, Rong Cong, Erick Garcia, Arneil P. Reyes, Jiaqiang Yan, Clemens Ritter, Vesna F. Mitrović, Bruce D. Gaulin, John E. Greedan and Patrick M. Woodward*, 

A combination of high-resolution powder diffraction techniques and solid-state NMR has been employed to explore the links between crystal structure, orbital ordering, and magnetism in three isostructural double perovskites containing transition metal ions with a 5d1 configuration. In Ba2ZnReO6, both neutron and synchrotron X-ray powder diffraction data reveal a cubic-to-tetragonal transition at 23 K that breaks the degeneracy of the t2g orbitals and leads to a pattern of orbital ordering that stabilizes magnetic ordering when the sample is cooled below 16 K. Similar behavior is observed in Ba2MgReO6, with an orbital ordering temperature of 33 K and a magnetic ordering temperature of 18 K. Prior theoretical works suggest that the pattern of orbital order seen in the P42/mnm space group is needed to stabilize the heavily canted antiferromagnetism of these compounds. Unfortunately, powder diffraction data is not sensitive enough to differentiate between the I4/mmm and P42/mnm structural models, as the distortions are too subtle to be unambiguously identified from either neutron or synchrotron X-ray powder diffraction methods. In contrast, both diffraction and 7Li NMR data indicate that Ba2LiOsO6 retains the cubic structure down to 1.7 K. The antiferromagnetic ground state and lack of any sign of orbital ordering in Ba2LiOsO6 provide compelling evidence that the electronically driven tetragonal distortion seen in Ba2ZnReO6, and Ba2MgReO6 is intimately linked to the magnetic ordering seen in those compounds. The absence of magnetic reflections in high intensity neutron powder diffraction data collected on Ba2MgReO6 strongly suggests ordering of multipolar moments on Re(VI), likely ferro-octupolar ordering.

{"title":"Exploring the Links between Structural Distortions, Orbital Ordering, and Multipolar Magnetic Ordering in Double Perovskites Containing Re(VI) and Os(VII)","authors":"Victor da Cruz Pinha Barbosa,&nbsp;Dalini D. Maharaj,&nbsp;Zachery W. Cronkright,&nbsp;Ye Wang,&nbsp;Rong Cong,&nbsp;Erick Garcia,&nbsp;Arneil P. Reyes,&nbsp;Jiaqiang Yan,&nbsp;Clemens Ritter,&nbsp;Vesna F. Mitrović,&nbsp;Bruce D. Gaulin,&nbsp;John E. Greedan and Patrick M. Woodward*,&nbsp;","doi":"10.1021/acs.chemmater.4c0213510.1021/acs.chemmater.4c02135","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02135https://doi.org/10.1021/acs.chemmater.4c02135","url":null,"abstract":"<p >A combination of high-resolution powder diffraction techniques and solid-state NMR has been employed to explore the links between crystal structure, orbital ordering, and magnetism in three isostructural double perovskites containing transition metal ions with a 5d<sup>1</sup> configuration. In Ba<sub>2</sub>ZnReO<sub>6</sub>, both neutron and synchrotron X-ray powder diffraction data reveal a cubic-to-tetragonal transition at 23 K that breaks the degeneracy of the t<sub>2g</sub> orbitals and leads to a pattern of orbital ordering that stabilizes magnetic ordering when the sample is cooled below 16 K. Similar behavior is observed in Ba<sub>2</sub>MgReO<sub>6</sub>, with an orbital ordering temperature of 33 K and a magnetic ordering temperature of 18 K. Prior theoretical works suggest that the pattern of orbital order seen in the <i>P</i>4<sub>2</sub>/<i>mnm</i> space group is needed to stabilize the heavily canted antiferromagnetism of these compounds. Unfortunately, powder diffraction data is not sensitive enough to differentiate between the <i>I</i>4/<i>mmm</i> and <i>P</i>4<sub>2</sub>/<i>mnm</i> structural models, as the distortions are too subtle to be unambiguously identified from either neutron or synchrotron X-ray powder diffraction methods. In contrast, both diffraction and <sup>7</sup>Li NMR data indicate that Ba<sub>2</sub>LiOsO<sub>6</sub> retains the cubic structure down to 1.7 K. The antiferromagnetic ground state and lack of any sign of orbital ordering in Ba<sub>2</sub>LiOsO<sub>6</sub> provide compelling evidence that the electronically driven tetragonal distortion seen in Ba<sub>2</sub>ZnReO<sub>6</sub>, and Ba<sub>2</sub>MgReO<sub>6</sub> is intimately linked to the magnetic ordering seen in those compounds. The absence of magnetic reflections in high intensity neutron powder diffraction data collected on Ba<sub>2</sub>MgReO<sub>6</sub> strongly suggests ordering of multipolar moments on Re(VI), likely ferro-octupolar ordering.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"36 23","pages":"11478–11489 11478–11489"},"PeriodicalIF":7.2,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142843627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solution-Phase Synthesis of Platinum-Decorated Hydrogen Tungsten Bronzes for Hydrogen Atom Transfer from Oxides to Molecules
IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-28 DOI: 10.1021/acs.chemmater.4c0281410.1021/acs.chemmater.4c02814
Noah P. Holzapfel, Matthew Chagnot, Payman Sharifi Abdar, Jay R. Paudel, Ethan J. Crumlin, James R. McKone and Veronica Augustyn*, 

Hydrogen bronzes can be used as hydrogen donors for the broad class of reactions involving proton-coupled electron transfer (PCET). Here, we describe a method to prepare platinum-decorated hydrogen tungsten bronzes, Pt@HxWO3·nH2O with n = 0, 1, and 2, by reacting the pristine oxides at modest temperatures with a mild reducing agent, H3PO2, and H2PtCl6 in an aqueous solution. We explored the tunability and kinetics of this reaction and compared it with that of archetypal gas–solid hydrogen spillover. We demonstrate that the identity of the noble metal affects the extent of bronze reduction. This suggests that the mechanism proceeds via the adsorption of a hydrogen-atom species on the noble metal. Finally, we explored the ability of the Pt-decorated hydrogen tungsten bronzes to hydrogenate a model H+/e acceptor, 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO). The bronze phases return to their fully oxidized states along with the subsequent reduction of TEMPO to TEMPOH. Overall, this work demonstrates a solution-phase method to obtain hydrogen bronzes, which can then be used to perform hydrogen transfer reactions, providing a pathway for the use of extended transition metal oxides as stoichiometric reagents for broad classes of hydrogenation reactions.

{"title":"Solution-Phase Synthesis of Platinum-Decorated Hydrogen Tungsten Bronzes for Hydrogen Atom Transfer from Oxides to Molecules","authors":"Noah P. Holzapfel,&nbsp;Matthew Chagnot,&nbsp;Payman Sharifi Abdar,&nbsp;Jay R. Paudel,&nbsp;Ethan J. Crumlin,&nbsp;James R. McKone and Veronica Augustyn*,&nbsp;","doi":"10.1021/acs.chemmater.4c0281410.1021/acs.chemmater.4c02814","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02814https://doi.org/10.1021/acs.chemmater.4c02814","url":null,"abstract":"<p >Hydrogen bronzes can be used as hydrogen donors for the broad class of reactions involving proton-coupled electron transfer (PCET). Here, we describe a method to prepare platinum-decorated hydrogen tungsten bronzes, Pt@H<sub><i>x</i></sub>WO<sub>3</sub>·<i>n</i>H<sub>2</sub>O with <i>n</i> = 0, 1, and 2, by reacting the pristine oxides at modest temperatures with a mild reducing agent, H<sub>3</sub>PO<sub>2</sub>, and H<sub>2</sub>PtCl<sub>6</sub> in an aqueous solution. We explored the tunability and kinetics of this reaction and compared it with that of archetypal gas–solid hydrogen spillover. We demonstrate that the identity of the noble metal affects the extent of bronze reduction. This suggests that the mechanism proceeds via the adsorption of a hydrogen-atom species on the noble metal. Finally, we explored the ability of the Pt-decorated hydrogen tungsten bronzes to hydrogenate a model H<sup>+</sup>/e<sup>–</sup> acceptor, 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO). The bronze phases return to their fully oxidized states along with the subsequent reduction of TEMPO to TEMPOH. Overall, this work demonstrates a solution-phase method to obtain hydrogen bronzes, which can then be used to perform hydrogen transfer reactions, providing a pathway for the use of extended transition metal oxides as stoichiometric reagents for broad classes of hydrogenation reactions.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"36 23","pages":"11684–11696 11684–11696"},"PeriodicalIF":7.2,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142843850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rotator Phases in Chemically Recyclable Oligocyclobutanes
IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-28 DOI: 10.1021/acs.chemmater.4c0257610.1021/acs.chemmater.4c02576
Hang Zhang, Shawn M. Maguire, Cherish Nie, Rodney D. Priestley, Paul J. Chirik, Richard A. Register, Emily C. Davidson and Michael A. Webb*, 

Rotator phases are rotationally disordered yet crystalline stable states found in many materials. The presence of a rotator phase leads to unique properties that influence processing methods and offer potential applications in areas such as thermal energy storage, lubrication, and sensing. Recently, a novel family of chemically recyclable oligomers, (1,n′-divinyl)oligocyclobutane (DVOCB(n)), has shown evidence of rotator phases. This study combines experimental characterization and molecular dynamics simulations to confirm and elucidate the rotator phases in DVOCB(n). Compared with well-studied n-alkanes, DVOCB(n) exhibits distinct structural, thermodynamic, and dynamical characteristics. The crystal-to-rotator phase transition of DVOCB(n) involves a shift from stretched to isotropic hexagonal lamellar packing, captured by a rotational order parameter tracking local chain orientations orthogonal to the chain axis. Unlike n-alkanes, where rotational relaxation times are constant and long in the crystal phase before dropping dramatically during the crystal-to-rotator phase transition, relaxation times decrease more gradually upon heating in DVOCB(n), including continuously throughout the transition. This behavior is attributed to its unique enchained-ring architecture, which allows for semi-independent rotation of chain segments that promotes overall rotational disorder. This work provides a fundamental understanding of rotator phases in DVOCB(n) and highlights differences from those of conventional materials. The analyses and insights herein will inform future studies and applications of DVOCB(n) as well as other materials with rotator phases.

{"title":"Rotator Phases in Chemically Recyclable Oligocyclobutanes","authors":"Hang Zhang,&nbsp;Shawn M. Maguire,&nbsp;Cherish Nie,&nbsp;Rodney D. Priestley,&nbsp;Paul J. Chirik,&nbsp;Richard A. Register,&nbsp;Emily C. Davidson and Michael A. Webb*,&nbsp;","doi":"10.1021/acs.chemmater.4c0257610.1021/acs.chemmater.4c02576","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02576https://doi.org/10.1021/acs.chemmater.4c02576","url":null,"abstract":"<p >Rotator phases are rotationally disordered yet crystalline stable states found in many materials. The presence of a rotator phase leads to unique properties that influence processing methods and offer potential applications in areas such as thermal energy storage, lubrication, and sensing. Recently, a novel family of chemically recyclable oligomers, (1,<i>n</i>′-divinyl)oligocyclobutane (DVOCB(<i>n</i>)), has shown evidence of rotator phases. This study combines experimental characterization and molecular dynamics simulations to confirm and elucidate the rotator phases in DVOCB(<i>n</i>). Compared with well-studied <i>n</i>-alkanes, DVOCB(<i>n</i>) exhibits distinct structural, thermodynamic, and dynamical characteristics. The crystal-to-rotator phase transition of DVOCB(<i>n</i>) involves a shift from stretched to isotropic hexagonal lamellar packing, captured by a rotational order parameter tracking local chain orientations orthogonal to the chain axis. Unlike <i>n</i>-alkanes, where rotational relaxation times are constant and long in the crystal phase before dropping dramatically during the crystal-to-rotator phase transition, relaxation times decrease more gradually upon heating in DVOCB(<i>n</i>), including continuously throughout the transition. This behavior is attributed to its unique enchained-ring architecture, which allows for semi-independent rotation of chain segments that promotes overall rotational disorder. This work provides a fundamental understanding of rotator phases in DVOCB(<i>n</i>) and highlights differences from those of conventional materials. The analyses and insights herein will inform future studies and applications of DVOCB(<i>n</i>) as well as other materials with rotator phases.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"36 23","pages":"11596–11605 11596–11605"},"PeriodicalIF":7.2,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142843848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Links between Structural Distortions, Orbital Ordering, and Multipolar Magnetic Ordering in Double Perovskites Containing Re(VI) and Os(VII)
IF 8.6 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-28 DOI: 10.1021/acs.chemmater.4c02135
Victor da Cruz Pinha Barbosa, Dalini D. Maharaj, Zachery W. Cronkright, Ye Wang, Rong Cong, Erick Garcia, Arneil P. Reyes, Jiaqiang Yan, Clemens Ritter, Vesna F. Mitrović, Bruce D. Gaulin, John E. Greedan, Patrick M. Woodward
A combination of high-resolution powder diffraction techniques and solid-state NMR has been employed to explore the links between crystal structure, orbital ordering, and magnetism in three isostructural double perovskites containing transition metal ions with a 5d1 configuration. In Ba2ZnReO6, both neutron and synchrotron X-ray powder diffraction data reveal a cubic-to-tetragonal transition at 23 K that breaks the degeneracy of the t2g orbitals and leads to a pattern of orbital ordering that stabilizes magnetic ordering when the sample is cooled below 16 K. Similar behavior is observed in Ba2MgReO6, with an orbital ordering temperature of 33 K and a magnetic ordering temperature of 18 K. Prior theoretical works suggest that the pattern of orbital order seen in the P42/mnm space group is needed to stabilize the heavily canted antiferromagnetism of these compounds. Unfortunately, powder diffraction data is not sensitive enough to differentiate between the I4/mmm and P42/mnm structural models, as the distortions are too subtle to be unambiguously identified from either neutron or synchrotron X-ray powder diffraction methods. In contrast, both diffraction and 7Li NMR data indicate that Ba2LiOsO6 retains the cubic structure down to 1.7 K. The antiferromagnetic ground state and lack of any sign of orbital ordering in Ba2LiOsO6 provide compelling evidence that the electronically driven tetragonal distortion seen in Ba2ZnReO6, and Ba2MgReO6 is intimately linked to the magnetic ordering seen in those compounds. The absence of magnetic reflections in high intensity neutron powder diffraction data collected on Ba2MgReO6 strongly suggests ordering of multipolar moments on Re(VI), likely ferro-octupolar ordering.
{"title":"Exploring the Links between Structural Distortions, Orbital Ordering, and Multipolar Magnetic Ordering in Double Perovskites Containing Re(VI) and Os(VII)","authors":"Victor da Cruz Pinha Barbosa, Dalini D. Maharaj, Zachery W. Cronkright, Ye Wang, Rong Cong, Erick Garcia, Arneil P. Reyes, Jiaqiang Yan, Clemens Ritter, Vesna F. Mitrović, Bruce D. Gaulin, John E. Greedan, Patrick M. Woodward","doi":"10.1021/acs.chemmater.4c02135","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02135","url":null,"abstract":"A combination of high-resolution powder diffraction techniques and solid-state NMR has been employed to explore the links between crystal structure, orbital ordering, and magnetism in three isostructural double perovskites containing transition metal ions with a 5d<sup>1</sup> configuration. In Ba<sub>2</sub>ZnReO<sub>6</sub>, both neutron and synchrotron X-ray powder diffraction data reveal a cubic-to-tetragonal transition at 23 K that breaks the degeneracy of the t<sub>2g</sub> orbitals and leads to a pattern of orbital ordering that stabilizes magnetic ordering when the sample is cooled below 16 K. Similar behavior is observed in Ba<sub>2</sub>MgReO<sub>6</sub>, with an orbital ordering temperature of 33 K and a magnetic ordering temperature of 18 K. Prior theoretical works suggest that the pattern of orbital order seen in the <i>P</i>4<sub>2</sub>/<i>mnm</i> space group is needed to stabilize the heavily canted antiferromagnetism of these compounds. Unfortunately, powder diffraction data is not sensitive enough to differentiate between the <i>I</i>4/<i>mmm</i> and <i>P</i>4<sub>2</sub>/<i>mnm</i> structural models, as the distortions are too subtle to be unambiguously identified from either neutron or synchrotron X-ray powder diffraction methods. In contrast, both diffraction and <sup>7</sup>Li NMR data indicate that Ba<sub>2</sub>LiOsO<sub>6</sub> retains the cubic structure down to 1.7 K. The antiferromagnetic ground state and lack of any sign of orbital ordering in Ba<sub>2</sub>LiOsO<sub>6</sub> provide compelling evidence that the electronically driven tetragonal distortion seen in Ba<sub>2</sub>ZnReO<sub>6</sub>, and Ba<sub>2</sub>MgReO<sub>6</sub> is intimately linked to the magnetic ordering seen in those compounds. The absence of magnetic reflections in high intensity neutron powder diffraction data collected on Ba<sub>2</sub>MgReO<sub>6</sub> strongly suggests ordering of multipolar moments on Re(VI), likely ferro-octupolar ordering.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"15 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rotator Phases in Chemically Recyclable Oligocyclobutanes
IF 8.6 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-28 DOI: 10.1021/acs.chemmater.4c02576
Hang Zhang, Shawn M. Maguire, Cherish Nie, Rodney D. Priestley, Paul J. Chirik, Richard A. Register, Emily C. Davidson, Michael A. Webb
Rotator phases are rotationally disordered yet crystalline stable states found in many materials. The presence of a rotator phase leads to unique properties that influence processing methods and offer potential applications in areas such as thermal energy storage, lubrication, and sensing. Recently, a novel family of chemically recyclable oligomers, (1,n′-divinyl)oligocyclobutane (DVOCB(n)), has shown evidence of rotator phases. This study combines experimental characterization and molecular dynamics simulations to confirm and elucidate the rotator phases in DVOCB(n). Compared with well-studied n-alkanes, DVOCB(n) exhibits distinct structural, thermodynamic, and dynamical characteristics. The crystal-to-rotator phase transition of DVOCB(n) involves a shift from stretched to isotropic hexagonal lamellar packing, captured by a rotational order parameter tracking local chain orientations orthogonal to the chain axis. Unlike n-alkanes, where rotational relaxation times are constant and long in the crystal phase before dropping dramatically during the crystal-to-rotator phase transition, relaxation times decrease more gradually upon heating in DVOCB(n), including continuously throughout the transition. This behavior is attributed to its unique enchained-ring architecture, which allows for semi-independent rotation of chain segments that promotes overall rotational disorder. This work provides a fundamental understanding of rotator phases in DVOCB(n) and highlights differences from those of conventional materials. The analyses and insights herein will inform future studies and applications of DVOCB(n) as well as other materials with rotator phases.
{"title":"Rotator Phases in Chemically Recyclable Oligocyclobutanes","authors":"Hang Zhang, Shawn M. Maguire, Cherish Nie, Rodney D. Priestley, Paul J. Chirik, Richard A. Register, Emily C. Davidson, Michael A. Webb","doi":"10.1021/acs.chemmater.4c02576","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02576","url":null,"abstract":"Rotator phases are rotationally disordered yet crystalline stable states found in many materials. The presence of a rotator phase leads to unique properties that influence processing methods and offer potential applications in areas such as thermal energy storage, lubrication, and sensing. Recently, a novel family of chemically recyclable oligomers, (1,<i>n</i>′-divinyl)oligocyclobutane (DVOCB(<i>n</i>)), has shown evidence of rotator phases. This study combines experimental characterization and molecular dynamics simulations to confirm and elucidate the rotator phases in DVOCB(<i>n</i>). Compared with well-studied <i>n</i>-alkanes, DVOCB(<i>n</i>) exhibits distinct structural, thermodynamic, and dynamical characteristics. The crystal-to-rotator phase transition of DVOCB(<i>n</i>) involves a shift from stretched to isotropic hexagonal lamellar packing, captured by a rotational order parameter tracking local chain orientations orthogonal to the chain axis. Unlike <i>n</i>-alkanes, where rotational relaxation times are constant and long in the crystal phase before dropping dramatically during the crystal-to-rotator phase transition, relaxation times decrease more gradually upon heating in DVOCB(<i>n</i>), including continuously throughout the transition. This behavior is attributed to its unique enchained-ring architecture, which allows for semi-independent rotation of chain segments that promotes overall rotational disorder. This work provides a fundamental understanding of rotator phases in DVOCB(<i>n</i>) and highlights differences from those of conventional materials. The analyses and insights herein will inform future studies and applications of DVOCB(<i>n</i>) as well as other materials with rotator phases.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"1 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemistry of Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1