首页 > 最新文献

IET Cybersystems and Robotics最新文献

英文 中文
Global path guided vehicle obstacle avoidance path planning with artificial potential field method 基于人工势场法的全局路径引导车辆避障路径规划
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2023-02-16 DOI: 10.1049/csy2.12082
Yangde Chen, Peiliang Wang, Zichen Lin, Chenhao Sun

An artificial potential field method based on global path guidance (G-APF) is proposed for target unreachability and local minima problems of the conventional artificial potential field (APF) method in complex environments with dynamic obstacles. First, for the target unreachability problem, the global path attraction is added to the APF; second, an obstacle detection optimisation method is proposed and the optimal virtual target point is selected by setting the evaluation function to improve the local minima problem; finally, based on the obstacle detection optimisation method, the gravitational and repulsive processes are improved so that the path can pass through the narrow channel smoothly and remain collision-free. Experiments show that the method optimises 40.8% of the total path corners, reduces 81.8% of the number of path oscillations, and shortens 4.3% of the path length in Map 1. It can be applied to the vehicle obstacle avoidance path planning problem in complex environments with dynamic obstacles.

针对传统人工势场法在具有动态障碍物的复杂环境中存在的目标不可达性和局部极小问题,提出了一种基于全局路径制导的人工势场法。首先,针对目标不可达性问题,在APF中加入全局路径吸引;其次,提出了一种障碍物检测优化方法,通过设置评价函数选择最优虚拟目标点,改进了局部极小问题;最后,在障碍物检测优化方法的基础上,对引力和斥力过程进行改进,使路径能够顺利通过窄通道并保持无碰撞。实验表明,该方法优化了40.8%的路径角,减少了81.8%的路径振荡次数,缩短了4.3%的路径长度。该方法可应用于具有动态障碍物的复杂环境下的车辆避障路径规划问题。
{"title":"Global path guided vehicle obstacle avoidance path planning with artificial potential field method","authors":"Yangde Chen,&nbsp;Peiliang Wang,&nbsp;Zichen Lin,&nbsp;Chenhao Sun","doi":"10.1049/csy2.12082","DOIUrl":"10.1049/csy2.12082","url":null,"abstract":"<p>An artificial potential field method based on global path guidance (G-APF) is proposed for target unreachability and local minima problems of the conventional artificial potential field (APF) method in complex environments with dynamic obstacles. First, for the target unreachability problem, the global path attraction is added to the APF; second, an obstacle detection optimisation method is proposed and the optimal virtual target point is selected by setting the evaluation function to improve the local minima problem; finally, based on the obstacle detection optimisation method, the gravitational and repulsive processes are improved so that the path can pass through the narrow channel smoothly and remain collision-free. Experiments show that the method optimises 40.8% of the total path corners, reduces 81.8% of the number of path oscillations, and shortens 4.3% of the path length in Map 1. It can be applied to the vehicle obstacle avoidance path planning problem in complex environments with dynamic obstacles.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49177863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A robust RGB-D visual odometry with moving object detection in dynamic indoor scenes 一种在动态室内场景中具有运动物体检测的鲁棒RGB‐D视觉里程计
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2023-02-16 DOI: 10.1049/csy2.12079
Xianglong Zhang, Haiyang Yu, Yan Zhuang

Simultaneous localisation and mapping (SLAM) are the basis for many robotic applications. As the front end of SLAM, visual odometry is mainly used to estimate camera pose. In dynamic scenes, classical methods are deteriorated by dynamic objects and cannot achieve satisfactory results. In order to improve the robustness of visual odometry in dynamic scenes, this paper proposed a dynamic region detection method based on RGB-D images. Firstly, all feature points on the RGB image are classified as dynamic and static using a triangle constraint and the epipolar geometric constraint successively. Meanwhile, the depth image is clustered using the K-Means method. The classified feature points are mapped to the clustered depth image, and a dynamic or static label is assigned to each cluster according to the number of dynamic feature points. Subsequently, a dynamic region mask for the RGB image is generated based on the dynamic clusters in the depth image, and the feature points covered by the mask are all removed. The remaining static feature points are applied to estimate the camera pose. Finally, some experimental results are provided to demonstrate the feasibility and performance.

同时定位和绘图(SLAM)是许多机器人应用的基础。视觉里程计作为SLAM的前端,主要用于估计相机姿态。在动态场景中,经典的方法会受到动态对象的影响,无法得到满意的结果。为了提高视觉里程计在动态场景中的鲁棒性,本文提出了一种基于RGB-D图像的动态区域检测方法。首先,利用三角形约束和极线几何约束对RGB图像上的所有特征点进行动态和静态分类;同时,采用K-Means方法对深度图像进行聚类。将分类后的特征点映射到聚类深度图像上,并根据动态特征点的数量为每个聚类分配动态或静态标签。随后,基于深度图像中的动态聚类生成RGB图像的动态区域掩码,并将掩码覆盖的特征点全部去除。剩余的静态特征点用于估计相机姿态。最后,给出了一些实验结果来验证该方法的可行性和性能。
{"title":"A robust RGB-D visual odometry with moving object detection in dynamic indoor scenes","authors":"Xianglong Zhang,&nbsp;Haiyang Yu,&nbsp;Yan Zhuang","doi":"10.1049/csy2.12079","DOIUrl":"10.1049/csy2.12079","url":null,"abstract":"<p>Simultaneous localisation and mapping (SLAM) are the basis for many robotic applications. As the front end of SLAM, visual odometry is mainly used to estimate camera pose. In dynamic scenes, classical methods are deteriorated by dynamic objects and cannot achieve satisfactory results. In order to improve the robustness of visual odometry in dynamic scenes, this paper proposed a dynamic region detection method based on RGB-D images. Firstly, all feature points on the RGB image are classified as dynamic and static using a triangle constraint and the epipolar geometric constraint successively. Meanwhile, the depth image is clustered using the K-Means method. The classified feature points are mapped to the clustered depth image, and a dynamic or static label is assigned to each cluster according to the number of dynamic feature points. Subsequently, a dynamic region mask for the RGB image is generated based on the dynamic clusters in the depth image, and the feature points covered by the mask are all removed. The remaining static feature points are applied to estimate the camera pose. Finally, some experimental results are provided to demonstrate the feasibility and performance.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12079","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45576563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Sampling visual SLAM with a wide-angle camera for legged mobile robots 用广角相机对有腿移动机器人进行视觉SLAM采样
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2023-01-04 DOI: 10.1049/csy2.12074
Guangyu Fan, Jiaxin Huang, Dingyu Yang, Lei Rao

Precise localisation and navigation are the two most important tasks for mobile robots. Visual simultaneous localisation and mapping (VSLAM) is useful in localisation systems of mobile robots. The wide-angle camera has a broad field of vision and more abundant information on images, so it is widely used in mobile robots, including legged robots. However, wide-angle cameras are more complicated than ordinary cameras in the design of visual localisation systems, and higher requirements and challenges are put forward for VSLAM technologies based on wide-angle cameras. In order to resolve the problem of distortion in wide-angle images and improve the accuracy of localisation, a sampling VSLAM based on a wide-angle camera model for legged mobile robots is proposed. For the predictability of the periodic motion of a legged robot, in the method, the images are sampled periodically, image blocks with clear texture are selected and the image details are enhanced to extract the feature points on the image. Then, the feature points of the blocks are extracted and by using the feature points of the blocks in the images, the feature points on the images are extracted. Finally, the points on the incident light through the normalised plane are selected as the template points; the relationship between the template points and the images is established through the wide-angle camera model, and the pixel coordinates of the template points in the images and the descriptors are calculated. Moreover, many experiments are conducted on the TUM datasets with a quadruped robot . The experimental results show that the trajectory error and translation error measured by the proposed method are reduced compared with the VINS-MONO, ORB-SLAM3 and Periodic SLAM systems.

精确定位和导航是移动机器人最重要的两项任务。视觉同步定位与映射(VSLAM)是移动机器人定位系统的重要组成部分。广角摄像头视野开阔,图像信息更加丰富,因此被广泛应用于移动机器人,包括有腿机器人。然而,广角相机在视觉定位系统的设计上比普通相机更为复杂,对基于广角相机的VSLAM技术提出了更高的要求和挑战。为了解决广角图像失真问题,提高定位精度,提出了一种基于广角相机模型的足式移动机器人采样VSLAM方法。为了提高机器人周期运动的可预测性,该方法对图像进行周期性采样,选取纹理清晰的图像块,对图像细节进行增强,提取图像上的特征点。然后,提取块的特征点,利用图像中块的特征点,提取图像上的特征点。最后,选取经过归一化平面的入射光上的点作为模板点;通过广角相机模型建立模板点与图像的关系,计算模板点在图像和描述符中的像素坐标。此外,利用四足机器人在TUM数据集上进行了大量实验。实验结果表明,与VINS-MONO、ORB-SLAM3和周期SLAM系统相比,该方法测量的轨迹误差和平移误差都有所降低。
{"title":"Sampling visual SLAM with a wide-angle camera for legged mobile robots","authors":"Guangyu Fan,&nbsp;Jiaxin Huang,&nbsp;Dingyu Yang,&nbsp;Lei Rao","doi":"10.1049/csy2.12074","DOIUrl":"10.1049/csy2.12074","url":null,"abstract":"<p>Precise localisation and navigation are the two most important tasks for mobile robots. Visual simultaneous localisation and mapping (VSLAM) is useful in localisation systems of mobile robots. The wide-angle camera has a broad field of vision and more abundant information on images, so it is widely used in mobile robots, including legged robots. However, wide-angle cameras are more complicated than ordinary cameras in the design of visual localisation systems, and higher requirements and challenges are put forward for VSLAM technologies based on wide-angle cameras. In order to resolve the problem of distortion in wide-angle images and improve the accuracy of localisation, a sampling VSLAM based on a wide-angle camera model for legged mobile robots is proposed. For the predictability of the periodic motion of a legged robot, in the method, the images are sampled periodically, image blocks with clear texture are selected and the image details are enhanced to extract the feature points on the image. Then, the feature points of the blocks are extracted and by using the feature points of the blocks in the images, the feature points on the images are extracted. Finally, the points on the incident light through the normalised plane are selected as the template points; the relationship between the template points and the images is established through the wide-angle camera model, and the pixel coordinates of the template points in the images and the descriptors are calculated. Moreover, many experiments are conducted on the TUM datasets with a quadruped robot . The experimental results show that the trajectory error and translation error measured by the proposed method are reduced compared with the VINS-MONO, ORB-SLAM3 and Periodic SLAM systems.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"4 4","pages":"356-375"},"PeriodicalIF":0.0,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12074","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47705183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in legged robots control, perception and learning 腿式机器人控制、感知和学习研究进展
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2022-12-30 DOI: 10.1049/csy2.12075
Qiuguo Zhu, Rui Song, Jun Wu, Yamakita Masaki, Zhangguo Yu
<p>This is the Institution of Engineering and Technology (IET) Cyber-systems and Robotics Special Issue of Advances in Legged Robots: Control, Perception and Learning.</p><p>Legged mammals are found everywhere in nature. These legged animals can reach anywhere on Earth, adapt to uneven, discontinuous and obstructed environment. Their locomotion patterns are flexible and diverse to better adapt to the living environment. Imitating these real animals, legged robots have potential advantages over wheeled or tracked vehicles in regard to the traversal of rough and unstructured terrain. However, there are still many challenges for legged systems in solving the technical problems of the real world.</p><p>Control, perception and learning are the key technologies in the field of legged robots. Control is the basis of the stable and flexible locomotion of the legged robot. The combination of control and mechatronics machines will show excellent passing ability in continuous stairs, discrete terrain and vertical obstacle environments. The control methods of legged robots mainly include model-based control and learning-based control. After decades of development, research results have made robots more flexible and stable. The latter is a new method combining artificial intelligence, exploring how robots can acquire new motor skills in the process of interacting with the environment and achieve expected motor abilities. Perception allows the robot to understand the world. Autonomous navigation, behavioural decision-making and task operation, all require environmental awareness and understanding. This ability is an unattainable component of the legged robot. For example, different road surfaces require different gait modes, which is the most direct perceptual demand for legged robots.</p><p>Paper 1 by Haochen Xu, paper 2 by Qiuyue Luo and paper 3 by Wenhan Cai investigated the control problems of biped robots, paper 4 by Linqi Ye studied the leg–arm and wheel reconfiguration design and control strategy problems and paper 5 by Jinmian Hou extended the multi-leg hexapod robot problems. The design, control and strategy of the legged robot are discussed.</p><p>In paper 1, Haochen Xu et al. studied the disturbance rejection for biped robots during walking and running using CMG. They used the CMG as an auxiliary stabilisation device for fully actuated biped robots and integrated the CMG into the balance control framework. This method can effectively help the robot resist disturbance and remain stable over time.</p><p>In paper 2, Qiuyue Luo et al. exploited a self-stabilised walking gait for humanoid robots based on the essential model with internal states. They extended an essential dynamic model to the full dynamic model of humanoid robots based on the zero dynamics concept. By adjusting the step timing and landing position of the swing foot automatically and following the intrinsic dynamic characteristics, the humanoid robot can achieve robust walking.</p><p>In p
这是工程与技术学会(IET)的网络系统与机器人技术特刊:腿式机器人的进展:控制、感知和学习。有腿的哺乳动物在自然界中随处可见。这些有腿的动物可以到达地球上的任何地方,适应不平坦、不连续和受阻的环境。它们的运动方式灵活多样,以更好地适应生活环境。模仿这些真实的动物,腿机器人在穿越粗糙和非结构化地形方面比轮式或履带式车辆具有潜在的优势。然而,在解决现实世界的技术问题时,腿式系统仍然面临许多挑战。控制、感知和学习是腿式机器人领域的关键技术。控制是腿式机器人稳定灵活运动的基础。控制与机电一体化相结合的机器将在连续楼梯、离散地形和垂直障碍环境中表现出优异的通过能力。腿式机器人的控制方法主要包括基于模型的控制和基于学习的控制。经过几十年的发展,研究成果使机器人更加灵活和稳定。后者是一种结合人工智能的新方法,探索机器人如何在与环境相互作用的过程中获得新的运动技能,达到预期的运动能力。感知能力使机器人能够理解世界。自主导航,行为决策和任务操作,都需要环境意识和理解。这种能力是有腿机器人无法实现的。例如,不同的路面需要不同的步态模式,这是对有腿机器人最直接的感知需求。论文1徐皓晨、论文2罗秋月、论文3蔡文汉研究了双足机器人的控制问题,论文4叶林琪研究了腿臂和车轮重构设计与控制策略问题,论文5侯金勉对多腿六足机器人问题进行了扩展。讨论了腿式机器人的设计、控制和策略。论文1中,Haochen Xu等人利用CMG研究了双足机器人在行走和奔跑过程中的扰动抑制。他们使用CMG作为全驱动双足机器人的辅助稳定装置,并将CMG集成到平衡控制框架中。这种方法可以有效地帮助机器人抵抗干扰并保持稳定。在论文2中,罗秋月等人基于具有内部状态的本质模型,开发了一种仿人机器人的自稳定行走步态。他们基于零动力学的概念,将一个基本的动力学模型扩展到仿人机器人的全动力学模型。仿人机器人通过自动调节摆动脚的步进时间和落地位置,并遵循其固有的动力学特性,实现鲁棒行走。在论文3中,Wenhan Cai等人提出了一种采用RKP和全身控制的双足机器人深蹲运动。RKP方法考虑即将到来的参考运动轨迹,并将其与基于二次规划(QP)的全身控制(WBC)相结合。与基于WBC的模型预测控制相比,该方法大大降低了计算量,对粗糙规划的适应性强,计算时间短。在paper 4中,叶林琦等人设计了一个具有腿、轮子和可重构臂的机器人系统,利用了轮子和腿的优势。该机器人系统采用腿臂重构设计,使机器人能够行走,降低了机器人的总重量,并针对复杂环境提出了基于变构型的多任务控制策略。在paper 5中,Jinmian Hou等人提出了一种新的启发式全身运动控制框架,用于重载六足机器人穿越复杂地形。他们设计了一个全身运动规划和全身扭矩控制器,并基于单刚体动力学,利用虚拟模型控制优化地面反作用力以跟踪预先规划的运动。王志诚等人的Paper 6研究了深度强化学习(deep reinforcement learning, DRL)问题,而Chaoyue Xu等人的Paper 7研究了神经网络控制问题。两者都是学习控制的重要方面。DRL方法可以帮助更有效地学习鲁棒性和多样性步态,并具有更好的地形适应性。神经网络可以改善非线性执行器的动态性能。在paper 6中,王志成等人提出了利用预训练的神经网络进行鲁棒四足动物边界的高效学习。在他们的方法中,他们设计了一个奖励函数来加强步态的对称性和周期性,以提高边界性能,并通过仿真学习反馈控制器,他们可以建立各种环境进行仿真学习。该方法已在实际四足机器人上得到应用。
{"title":"Advances in legged robots control, perception and learning","authors":"Qiuguo Zhu,&nbsp;Rui Song,&nbsp;Jun Wu,&nbsp;Yamakita Masaki,&nbsp;Zhangguo Yu","doi":"10.1049/csy2.12075","DOIUrl":"10.1049/csy2.12075","url":null,"abstract":"&lt;p&gt;This is the Institution of Engineering and Technology (IET) Cyber-systems and Robotics Special Issue of Advances in Legged Robots: Control, Perception and Learning.&lt;/p&gt;&lt;p&gt;Legged mammals are found everywhere in nature. These legged animals can reach anywhere on Earth, adapt to uneven, discontinuous and obstructed environment. Their locomotion patterns are flexible and diverse to better adapt to the living environment. Imitating these real animals, legged robots have potential advantages over wheeled or tracked vehicles in regard to the traversal of rough and unstructured terrain. However, there are still many challenges for legged systems in solving the technical problems of the real world.&lt;/p&gt;&lt;p&gt;Control, perception and learning are the key technologies in the field of legged robots. Control is the basis of the stable and flexible locomotion of the legged robot. The combination of control and mechatronics machines will show excellent passing ability in continuous stairs, discrete terrain and vertical obstacle environments. The control methods of legged robots mainly include model-based control and learning-based control. After decades of development, research results have made robots more flexible and stable. The latter is a new method combining artificial intelligence, exploring how robots can acquire new motor skills in the process of interacting with the environment and achieve expected motor abilities. Perception allows the robot to understand the world. Autonomous navigation, behavioural decision-making and task operation, all require environmental awareness and understanding. This ability is an unattainable component of the legged robot. For example, different road surfaces require different gait modes, which is the most direct perceptual demand for legged robots.&lt;/p&gt;&lt;p&gt;Paper 1 by Haochen Xu, paper 2 by Qiuyue Luo and paper 3 by Wenhan Cai investigated the control problems of biped robots, paper 4 by Linqi Ye studied the leg–arm and wheel reconfiguration design and control strategy problems and paper 5 by Jinmian Hou extended the multi-leg hexapod robot problems. The design, control and strategy of the legged robot are discussed.&lt;/p&gt;&lt;p&gt;In paper 1, Haochen Xu et al. studied the disturbance rejection for biped robots during walking and running using CMG. They used the CMG as an auxiliary stabilisation device for fully actuated biped robots and integrated the CMG into the balance control framework. This method can effectively help the robot resist disturbance and remain stable over time.&lt;/p&gt;&lt;p&gt;In paper 2, Qiuyue Luo et al. exploited a self-stabilised walking gait for humanoid robots based on the essential model with internal states. They extended an essential dynamic model to the full dynamic model of humanoid robots based on the zero dynamics concept. By adjusting the step timing and landing position of the swing foot automatically and following the intrinsic dynamic characteristics, the humanoid robot can achieve robust walking.&lt;/p&gt;&lt;p&gt;In p","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"4 4","pages":"265-267"},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12075","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41244441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Squat motion of a bipedal robot using real-time kinematic prediction and whole-body control 基于实时运动学预测和全身控制的两足机器人深蹲运动
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2022-12-20 DOI: 10.1049/csy2.12073
Wenhan Cai, Qingkai Li, Songrui Huang, Hongjin Zhu, Yong Yang, Mingguo Zhao

Squatting is a basic movement of bipedal robots, which is essential in robotic actions like jumping or picking up objects. Due to the intrinsic complex dynamics of bipedal robots, perfect squatting motion requires high-performance motion planning and control algorithms. The standard academic solution combines model predictive control (MPC) with whole-body control (WBC), which is usually computationally expensive and difficult to implement on practical robots with limited computing resources. The real-time kinematic prediction (RKP) method is proposed, which considers upcoming reference motion trajectories and combines it with quadratic programming (QP)-based WBC. Since the WBC handles the full robot dynamics and various constraints, the RKP only needs to adopt the linear kinematics in the robot's task space and to softly constrain the desired accelerations. Then, the computational cost of derived closed-form RKP is greatly reduced. The RKP method is verified in simulation on a heavy-loaded bipedal robot. The robot makes rapid and large-amplitude squatting motions, which require close-to-limit torque outputs. Compared with the conventional QP-based WBC method, the proposed method exhibits high adaptability to rough planning, which implies much less user interference in the robot's motion planning. Furthermore, like the MPC, the proposed method can prepare for upcoming motions in advance but requires much less computation time.

下蹲是双足机器人的基本动作,在跳跃或拾取物体等机器人动作中至关重要。由于两足机器人固有的复杂动力学特性,完美的下蹲运动需要高性能的运动规划和控制算法。标准的学术解决方案将模型预测控制(MPC)与全身控制(WBC)相结合,这通常是计算成本高且难以在计算资源有限的实际机器人上实现的。提出了一种考虑即将到来的参考运动轨迹并将其与基于二次规划(QP)的WBC相结合的实时运动预测方法。由于WBC处理机器人的完整动力学和各种约束,因此RKP只需要在机器人的任务空间中采用线性运动学并对期望的加速度进行软约束。从而大大降低了导出的闭式RKP的计算成本。在一个重载双足机器人上对该方法进行了仿真验证。机器人进行快速和大幅度的蹲下运动,这需要接近极限的扭矩输出。与传统的基于qp的WBC方法相比,该方法具有较强的粗规划适应性,大大减少了用户对机器人运动规划的干扰。此外,与MPC一样,该方法可以提前准备即将到来的运动,但所需的计算时间要少得多。
{"title":"Squat motion of a bipedal robot using real-time kinematic prediction and whole-body control","authors":"Wenhan Cai,&nbsp;Qingkai Li,&nbsp;Songrui Huang,&nbsp;Hongjin Zhu,&nbsp;Yong Yang,&nbsp;Mingguo Zhao","doi":"10.1049/csy2.12073","DOIUrl":"10.1049/csy2.12073","url":null,"abstract":"<p>Squatting is a basic movement of bipedal robots, which is essential in robotic actions like jumping or picking up objects. Due to the intrinsic complex dynamics of bipedal robots, perfect squatting motion requires high-performance motion planning and control algorithms. The standard academic solution combines model predictive control (MPC) with whole-body control (WBC), which is usually computationally expensive and difficult to implement on practical robots with limited computing resources. The real-time kinematic prediction (RKP) method is proposed, which considers upcoming reference motion trajectories and combines it with quadratic programming (QP)-based WBC. Since the WBC handles the full robot dynamics and various constraints, the RKP only needs to adopt the linear kinematics in the robot's task space and to softly constrain the desired accelerations. Then, the computational cost of derived closed-form RKP is greatly reduced. The RKP method is verified in simulation on a heavy-loaded bipedal robot. The robot makes rapid and large-amplitude squatting motions, which require close-to-limit torque outputs. Compared with the conventional QP-based WBC method, the proposed method exhibits high adaptability to rough planning, which implies much less user interference in the robot's motion planning. Furthermore, like the MPC, the proposed method can prepare for upcoming motions in advance but requires much less computation time.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"4 4","pages":"298-312"},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12073","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42465699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and control of a robotic system with legs, wheels, and a reconfigurable arm 具有腿、轮和可重构臂的机器人系统的设计与控制
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2022-12-14 DOI: 10.1049/csy2.12072
Linqi Ye, Houde Liu, Xueqian Wang, Bin Liang, Bo Yuan

Unmanned robotic systems are expected to liberate people from heavy, monotonous, and dangerous work. However, it is still difficult for robots to work in complicated environments and handle diverse tasks. To this end, a robotic system with four legs, four wheels, and a reconfigurable arm is designed. Special attention has been given to making the robot compact, agile, and versatile. Firstly, by using separate wheels and legs, it removes the coupling in the traditional wheeled–legged system and guarantees highly efficient locomotion in both the wheeled and legged modes. Secondly, a leg–arm reconfiguration design is adopted to extend the manipulation capability of the system, which not only reduces the total weight but also allows for dexterous manipulation and multi-limb cooperation. Thirdly, a multi-task control strategy based on variable configurations is proposed for the system, which greatly enhances the adaptability of the robot to complicated environments. Experimental results are given, which validate the effectiveness of the system in mobility and operation capability.

无人机器人系统有望将人们从繁重、单调和危险的工作中解放出来。然而,机器人在复杂的环境中工作和处理不同的任务仍然很困难。为此,设计了一个具有四条腿、四个轮子和一个可重构臂的机器人系统。特别注意的是使机器人紧凑、敏捷和多用途。首先,采用独立的轮腿,消除了传统轮腿系统的耦合,保证了轮腿两种模式下的高效运动。其次,采用腿臂重构设计,扩展了系统的操作能力,既减轻了总重量,又实现了灵巧操作和多肢协作;第三,提出了基于变构型的多任务控制策略,大大提高了机器人对复杂环境的适应能力。实验结果验证了该系统在机动性和作战能力方面的有效性。
{"title":"Design and control of a robotic system with legs, wheels, and a reconfigurable arm","authors":"Linqi Ye,&nbsp;Houde Liu,&nbsp;Xueqian Wang,&nbsp;Bin Liang,&nbsp;Bo Yuan","doi":"10.1049/csy2.12072","DOIUrl":"10.1049/csy2.12072","url":null,"abstract":"<p>Unmanned robotic systems are expected to liberate people from heavy, monotonous, and dangerous work. However, it is still difficult for robots to work in complicated environments and handle diverse tasks. To this end, a robotic system with four legs, four wheels, and a reconfigurable arm is designed. Special attention has been given to making the robot compact, agile, and versatile. Firstly, by using separate wheels and legs, it removes the coupling in the traditional wheeled–legged system and guarantees highly efficient locomotion in both the wheeled and legged modes. Secondly, a leg–arm reconfiguration design is adopted to extend the manipulation capability of the system, which not only reduces the total weight but also allows for dexterous manipulation and multi-limb cooperation. Thirdly, a multi-task control strategy based on variable configurations is proposed for the system, which greatly enhances the adaptability of the robot to complicated environments. Experimental results are given, which validate the effectiveness of the system in mobility and operation capability.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"4 4","pages":"313-321"},"PeriodicalIF":0.0,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47660414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the autonomous system of the quadruped robot with a manipulator to realize leader-following, object recognition, navigation and operation 具有机械手的四足机器人自主系统研究,实现领导者跟随、目标识别、导航和操作
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2022-11-21 DOI: 10.1049/csy2.12069
Jiamin Guo, Hui Chai, Yibin Li, Qin Zhang, Zhiying Wang, Jialin Zhang, Qifan Zhang, Haoning Zhao

A systematic solution is developed to improve the autonomous capability of the quadruped robot with a manipulator, such as navigation, recognition and operation. The developed system adopts novel software, hardware system and system architecture, including a specially designed environment awareness system (EAS). Based on the camera and LiDAR on the EAS, the recognition of multiple common targets, such as the leader, door, window and bag, is achieved. In terms of navigation, a location method is built, that combines the laser odometer and global positioning system. A mapping and path planning module is designed by the Robot-centric Elevation Mapping algorithm and the rapidly exploring rand tree algorithm. For operation, a real-time target grasp detection system is proposed based on the You Only Look Once v5 algorithm to improve the success rate of tasks. The whole system is integrated based on the task relevance scheduling strategy to reduce the computational complexity. The tightly integrated system and the subsystems are evaluated by conducting simulations and physical experiments in robot recognition, navigation and operation. Extensive experiments show that the proposed framework can better achieve the autonomous navigation and operation of the quadruped robot with a manipulator. Notably, the proposed framework is still effective when facing dynamic objects. In addition, the system can be easily extended to other forms of mobile robot.

为提高四足机器人在导航、识别和操作等方面的自主能力,提出了系统的解决方案。所开发的系统采用了新颖的软件、硬件系统和系统架构,其中包括专门设计的环境感知系统(EAS)。基于EAS上的摄像头和激光雷达,实现了对领导、门、窗、包等多个常见目标的识别。在导航方面,建立了激光里程计与全球定位系统相结合的定位方法。采用以机器人为中心的高程映射算法和快速探索兰德树算法设计了映射和路径规划模块。在操作方面,提出了一种基于You Only Look Once v5算法的实时抓靶检测系统,以提高任务的成功率。整个系统基于任务关联调度策略进行集成,以降低计算复杂度。通过机器人识别、导航和操作方面的仿真和物理实验,对紧密集成的系统及其子系统进行了评估。大量实验表明,该框架能较好地实现四足机器人的自主导航和操作。值得注意的是,该框架在面对动态对象时仍然有效。此外,该系统可以很容易地扩展到其他形式的移动机器人。
{"title":"Research on the autonomous system of the quadruped robot with a manipulator to realize leader-following, object recognition, navigation and operation","authors":"Jiamin Guo,&nbsp;Hui Chai,&nbsp;Yibin Li,&nbsp;Qin Zhang,&nbsp;Zhiying Wang,&nbsp;Jialin Zhang,&nbsp;Qifan Zhang,&nbsp;Haoning Zhao","doi":"10.1049/csy2.12069","DOIUrl":"10.1049/csy2.12069","url":null,"abstract":"<p>A systematic solution is developed to improve the autonomous capability of the quadruped robot with a manipulator, such as navigation, recognition and operation. The developed system adopts novel software, hardware system and system architecture, including a specially designed environment awareness system (EAS). Based on the camera and LiDAR on the EAS, the recognition of multiple common targets, such as the leader, door, window and bag, is achieved. In terms of navigation, a location method is built, that combines the laser odometer and global positioning system. A mapping and path planning module is designed by the Robot-centric Elevation Mapping algorithm and the rapidly exploring rand tree algorithm. For operation, a real-time target grasp detection system is proposed based on the You Only Look Once v5 algorithm to improve the success rate of tasks. The whole system is integrated based on the task relevance scheduling strategy to reduce the computational complexity. The tightly integrated system and the subsystems are evaluated by conducting simulations and physical experiments in robot recognition, navigation and operation. Extensive experiments show that the proposed framework can better achieve the autonomous navigation and operation of the quadruped robot with a manipulator. Notably, the proposed framework is still effective when facing dynamic objects. In addition, the system can be easily extended to other forms of mobile robot.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"4 4","pages":"376-388"},"PeriodicalIF":0.0,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49599845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A self-stabilised walking gait for humanoid robots based on the essential model with internal states 基于内部状态本质模型的仿人机器人自稳定步态
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2022-11-13 DOI: 10.1049/csy2.12071
Qiuyue Luo, Christine Chevallereau, Yongsheng Ou, Jianxin Pang, Victor De-León-Gómez, Yannick Aoustin

Walking stability is one of the key issues for humanoid robots. A self-stabilised walking gait for a full dynamic model of humanoid robots is proposed. For simplified models, that is, the linear inverted pendulum model and variable-length inverted pendulum model, self-stabilisation of walking gait can be obtained if virtual constraints are properly defined. This result is extended to the full dynamic model of humanoid robots by using an essential dynamic model, which is developed based on the zero dynamics concept. With the proposed method, a robust stable walking for a humanoid robot is achieved by adjusting the step timing and landing position of the swing foot automatically, following its intrinsic dynamic characteristics. This exempts the robot from the time-consuming high-level control approaches, especially when a full dynamic model is applied. How different walking patterns/features (i.e., the swing foot motion, the vertical centre of mass motion, the switching manifold configuration, etc.) affect the stability of the walking gait is analysed. Simulations are conducted on robots Romeo and TALOS to support the results.

行走稳定性是仿人机器人的关键问题之一。提出了一种仿人机器人全动力学模型的自稳定行走步态。对于简化模型,即线性倒立摆模型和变长倒立摆模型,只要适当地定义虚拟约束,即可实现步行步态的自稳定。利用基于零动力学概念建立的基本动力学模型,将这一结果推广到仿人机器人的全动力学模型。该方法根据仿人机器人固有的动力学特性,自动调整摆足的步进时间和落地位置,实现了机器人的鲁棒稳定行走。这使机器人免于耗时的高级控制方法,特别是当应用全动态模型时。分析了不同的步行方式/特征(即摆动足运动、垂直质心运动、切换流形结构等)对步行步态稳定性的影响。在机器人Romeo和TALOS上进行了仿真验证。
{"title":"A self-stabilised walking gait for humanoid robots based on the essential model with internal states","authors":"Qiuyue Luo,&nbsp;Christine Chevallereau,&nbsp;Yongsheng Ou,&nbsp;Jianxin Pang,&nbsp;Victor De-León-Gómez,&nbsp;Yannick Aoustin","doi":"10.1049/csy2.12071","DOIUrl":"10.1049/csy2.12071","url":null,"abstract":"<p>Walking stability is one of the key issues for humanoid robots. A self-stabilised walking gait for a full dynamic model of humanoid robots is proposed. For simplified models, that is, the linear inverted pendulum model and variable-length inverted pendulum model, self-stabilisation of walking gait can be obtained if virtual constraints are properly defined. This result is extended to the full dynamic model of humanoid robots by using an essential dynamic model, which is developed based on the zero dynamics concept. With the proposed method, a robust stable walking for a humanoid robot is achieved by adjusting the step timing and landing position of the swing foot automatically, following its intrinsic dynamic characteristics. This exempts the robot from the time-consuming high-level control approaches, especially when a full dynamic model is applied. How different walking patterns/features (i.e., the swing foot motion, the vertical centre of mass motion, the switching manifold configuration, etc.) affect the stability of the walking gait is analysed. Simulations are conducted on robots Romeo and TALOS to support the results.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"4 4","pages":"283-297"},"PeriodicalIF":0.0,"publicationDate":"2022-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12071","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45234259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disturbance rejection for biped robots during walking and running using control moment gyroscopes 基于控制力矩陀螺仪的双足机器人行走和奔跑干扰抑制
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2022-11-13 DOI: 10.1049/csy2.12070
Haochen Xu, Zhangguo Yu, Xuechao Chen, Chencheng Dong, Huanzhong Chen, Qiang Huang

Keeping balance in movement is an important premise for biped robots to complete various tasks. Now, the balance control of biped robots mainly depends on the cooperation of various joints of the robot's body. When robots move faster, the adjustment allowance of joints is reduced, and the robot's anti-disturbance ability will inevitably decline. To solve this problem, the control moment gyroscope (CMG) is creatively used as an auxiliary stabilisation device for fully actuated biped robots and the CMG assistance strategy, which can be integrated into the biped's balance control framework, is proposed. This strategy includes model predictive control module, distribution module, and CMG precession controller. Under the command of it, CMGs can effectively assist the robot in resisting impact and returning to initial positions in time. The results of anti-impact simulation on the walking and running biped robot prove that, with the help of CMGs, the robot's ability to resist disturbance and remain stable is significantly improved.

The cover image is based on the Original Article Disturbance rejection for biped robots during walking and running using control moment gyroscopes by Haochen Xu et al., https://doi.org/10.1049/csy2.12070.

在运动中保持平衡是双足机器人完成各种任务的重要前提。目前,双足机器人的平衡控制主要依赖于机器人身体各关节的配合。当机器人运动速度变快时,关节的调节余量减小,机器人的抗干扰能力必然下降。为了解决这一问题,创造性地将控制力矩陀螺仪(CMG)作为全驱动双足机器人的辅助稳定装置,并提出了将控制力矩陀螺仪辅助策略集成到双足机器人的平衡控制框架中。该策略包括模型预测控制模块、分布模块和CMG进动控制器。在它的指挥下,cmg可以有效地辅助机器人抵抗冲击并及时返回到初始位置。对行走和奔跑两足机器人的抗冲击仿真结果证明,在CMGs的帮助下,机器人的抗干扰和保持稳定的能力得到了显著提高。封面图片来源于Haochen Xu et al., https://doi.org/10.1049/csy2.12070的文章《利用控制力矩陀螺仪抑制双足机器人行走和奔跑过程中的扰动》。
{"title":"Disturbance rejection for biped robots during walking and running using control moment gyroscopes","authors":"Haochen Xu,&nbsp;Zhangguo Yu,&nbsp;Xuechao Chen,&nbsp;Chencheng Dong,&nbsp;Huanzhong Chen,&nbsp;Qiang Huang","doi":"10.1049/csy2.12070","DOIUrl":"10.1049/csy2.12070","url":null,"abstract":"<p>Keeping balance in movement is an important premise for biped robots to complete various tasks. Now, the balance control of biped robots mainly depends on the cooperation of various joints of the robot's body. When robots move faster, the adjustment allowance of joints is reduced, and the robot's anti-disturbance ability will inevitably decline. To solve this problem, the control moment gyroscope (CMG) is creatively used as an auxiliary stabilisation device for fully actuated biped robots and the CMG assistance strategy, which can be integrated into the biped's balance control framework, is proposed. This strategy includes model predictive control module, distribution module, and CMG precession controller. Under the command of it, CMGs can effectively assist the robot in resisting impact and returning to initial positions in time. The results of anti-impact simulation on the walking and running biped robot prove that, with the help of CMGs, the robot's ability to resist disturbance and remain stable is significantly improved.</p><p>The cover image is based on the Original Article <i>Disturbance rejection for biped robots during walking and running using control moment gyroscopes</i> by Haochen Xu et al., https://doi.org/10.1049/csy2.12070.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"4 4","pages":"268-282"},"PeriodicalIF":0.0,"publicationDate":"2022-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46888522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Prescribed-time stabilisation control of differential driven automated guided vehicle 差速自动导引车的规定时间稳定控制
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2022-11-09 DOI: 10.1049/csy2.12067
Qiyuan Chen, Pengfei Zhang

The position control problem of differential-driven automated guided vehicles (AGVs) based on the prescribed-time control method is studied. First, an innovative orientation error function is proposed by an auxiliary arcsine function about the orientation angle. Thus, the problem of position control of AGV is transformed into the stabilisation control of the kinematic system. Second, by introducing a reserved time parameter and a smooth switching function, a novel time-varying scaling function is proposed. This novel scaling function avoids the risk of infinite gain in the conventional prescribed-time control method while ensuring the smoothness of control laws. Then, an improved velocity constraint function is proposed using the Gaussian function. Compared with the existing constraint function, the proposed method not only has more smoothness but also solves the balance point errors caused by the large AGV orientation errors. The presented method ensures that the AGV reaches the target position in a prescribed time. Hence, the upper bound of the AGV system state can be determined by adjusting parameters. Matlab simulation results show that the proposed controller can effectively make the AGV system state satisfy the prescribed bound.

研究了基于规定时间控制方法的差速自动导引车的位置控制问题。首先,通过一个关于方位角的辅助反正弦函数,提出了一个创新的方位误差函数。因此,AGV的位置控制问题转化为运动系统的稳定控制问题。其次,通过引入保留的时间参数和平滑切换函数,提出了一种新的时变比例函数。这种新的比例函数在保证控制律平滑的同时,避免了传统规定时间控制方法中增益无穷大的风险。然后,利用高斯函数提出了一种改进的速度约束函数。与现有的约束函数相比,该方法不仅具有更高的平滑性,而且解决了AGV方向误差大引起的平衡点误差。所提出的方法确保AGV在规定的时间内到达目标位置。因此,AGV系统状态的上限可以通过调整参数来确定。Matlab仿真结果表明,该控制器能有效地使AGV系统状态满足规定的界。
{"title":"Prescribed-time stabilisation control of differential driven automated guided vehicle","authors":"Qiyuan Chen,&nbsp;Pengfei Zhang","doi":"10.1049/csy2.12067","DOIUrl":"https://doi.org/10.1049/csy2.12067","url":null,"abstract":"<p>The position control problem of differential-driven automated guided vehicles (AGVs) based on the prescribed-time control method is studied. First, an innovative orientation error function is proposed by an auxiliary arcsine function about the orientation angle. Thus, the problem of position control of AGV is transformed into the stabilisation control of the kinematic system. Second, by introducing a reserved time parameter and a smooth switching function, a novel time-varying scaling function is proposed. This novel scaling function avoids the risk of infinite gain in the conventional prescribed-time control method while ensuring the smoothness of control laws. Then, an improved velocity constraint function is proposed using the Gaussian function. Compared with the existing constraint function, the proposed method not only has more smoothness but also solves the balance point errors caused by the large AGV orientation errors. The presented method ensures that the AGV reaches the target position in a prescribed time. Hence, the upper bound of the AGV system state can be determined by adjusting parameters. Matlab simulation results show that the proposed controller can effectively make the AGV system state satisfy the prescribed bound.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50145046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IET Cybersystems and Robotics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1