首页 > 最新文献

IET Cybersystems and Robotics最新文献

英文 中文
Recursive attention collaboration network for single image de-raining 用于单一图像去粒度的递归注意力协作网络
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-04-17 DOI: 10.1049/csy2.12115
Zhitong Li, Xiaodong Li, Zhaozhe Gong, Zhensheng Yu

Single-image rain removal is an important problem in the field of computer vision aimed at recovering clean images from rainy images. In recent years, data-driven convolutional neural network (CNN)-based rain removal methods have achieved significant results, but most of them cannot fully focus on the contextual information in rain-containing images, which leads to the failure of recovering some of the background details of the images that have been corrupted due to the aggregation of rain streaks. With the success of Transformer-based models in the field of computer vision, global features can be easily acquired to better help recover details in the background of an image. However, Transformer-based models often require a large number of parameters during the training process, which makes the training process very difficult and makes it difficult to apply them to specific devices for execution in reality. The authors propose a Recursive Attention Collaboration Network, which consists of a recursive Swin-transformer block (STB) and a CNN-based feature fusion block. The authors designed the Recursively Integrate Transformer Block (RITB), which consists of several STBs recursively connected, that can effectively reduce the number of parameters of the model. The final part of the module can integrate the local information from the STBs. The authors also design the Feature Enhancement Block, which can better recover the details of the background information corrupted by rain streaks of different density shapes through the features passed from the RITB. Experiments show that the proposed network has an effective rain removal effect on both synthetic and real datasets and has fewer model parameters than other mainstream methods.

单图像雨点去除是计算机视觉领域的一个重要问题,旨在从雨点图像中恢复干净图像。近年来,基于数据驱动的卷积神经网络(CNN)的雨点去除方法取得了显著成效,但大多数方法不能完全关注含雨图像中的上下文信息,导致无法恢复因雨点条纹聚集而损坏的图像的部分背景细节。随着基于变换器的模型在计算机视觉领域取得成功,全局特征可以很容易地获取,从而更好地帮助恢复图像背景中的细节。然而,基于变换器的模型在训练过程中往往需要大量的参数,这给训练过程带来了很大的困难,也很难将其应用到特定的设备上在现实中执行。作者提出了一种递归注意力协作网络,它由一个递归斯温变换器模块(STB)和一个基于 CNN 的特征融合模块组成。作者设计的递归整合变换器模块(RITB)由多个递归连接的 STB 组成,可以有效减少模型的参数数量。模块的最后一部分可以整合来自 STB 的本地信息。作者还设计了特征增强块,通过 RITB 传递的特征,可以更好地恢复被不同密度形状的雨条纹破坏的背景信息细节。实验表明,所提出的网络在合成数据集和真实数据集上都具有有效的雨水去除效果,而且与其他主流方法相比,其模型参数更少。
{"title":"Recursive attention collaboration network for single image de-raining","authors":"Zhitong Li,&nbsp;Xiaodong Li,&nbsp;Zhaozhe Gong,&nbsp;Zhensheng Yu","doi":"10.1049/csy2.12115","DOIUrl":"https://doi.org/10.1049/csy2.12115","url":null,"abstract":"<p>Single-image rain removal is an important problem in the field of computer vision aimed at recovering clean images from rainy images. In recent years, data-driven convolutional neural network (CNN)-based rain removal methods have achieved significant results, but most of them cannot fully focus on the contextual information in rain-containing images, which leads to the failure of recovering some of the background details of the images that have been corrupted due to the aggregation of rain streaks. With the success of Transformer-based models in the field of computer vision, global features can be easily acquired to better help recover details in the background of an image. However, Transformer-based models often require a large number of parameters during the training process, which makes the training process very difficult and makes it difficult to apply them to specific devices for execution in reality. The authors propose a Recursive Attention Collaboration Network, which consists of a recursive Swin-transformer block (STB) and a CNN-based feature fusion block. The authors designed the Recursively Integrate Transformer Block (RITB), which consists of several STBs recursively connected, that can effectively reduce the number of parameters of the model. The final part of the module can integrate the local information from the STBs. The authors also design the Feature Enhancement Block, which can better recover the details of the background information corrupted by rain streaks of different density shapes through the features passed from the RITB. Experiments show that the proposed network has an effective rain removal effect on both synthetic and real datasets and has fewer model parameters than other mainstream methods.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"6 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12115","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140606256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning to bag with a simulation-free reinforcement learning framework for robots 用机器人的无模拟强化学习框架学会装袋
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-04-11 DOI: 10.1049/csy2.12113
Francisco Munguia-Galeano, Jihong Zhu, Juan David Hernández, Ze Ji

Bagging is an essential skill that humans perform in their daily activities. However, deformable objects, such as bags, are complex for robots to manipulate. A learning-based framework that enables robots to learn bagging is presented. The novelty of this framework is its ability to learn and perform bagging without relying on simulations. The learning process is accomplished through a reinforcement learning (RL) algorithm introduced and designed to find the best grasping points of the bag based on a set of compact state representations. The framework utilises a set of primitive actions and represents the task in five states. In our experiments, the framework reached 60% and 80% success rates after around 3 h of training in the real world when starting the bagging task from folded and unfolded states, respectively. Finally, the authors test the trained RL model with eight more bags of different sizes to evaluate its generalisability.

装袋是人类日常活动中的一项基本技能。然而,对于机器人来说,装袋等可变形物体的操作十分复杂。本文介绍了一种基于学习的框架,可让机器人学习装袋。该框架的新颖之处在于它能够在不依赖模拟的情况下学习和执行装袋操作。学习过程是通过引入的强化学习(RL)算法完成的,该算法旨在根据一组紧凑的状态表示找到袋子的最佳抓取点。该框架利用一组原始动作,用五个状态来表示任务。在我们的实验中,当从折叠状态和展开状态开始抓包任务时,该框架在现实世界中经过约 3 小时的训练后,成功率分别达到了 60% 和 80%。最后,作者用另外八个不同大小的袋对训练好的 RL 模型进行了测试,以评估其通用性。
{"title":"Learning to bag with a simulation-free reinforcement learning framework for robots","authors":"Francisco Munguia-Galeano,&nbsp;Jihong Zhu,&nbsp;Juan David Hernández,&nbsp;Ze Ji","doi":"10.1049/csy2.12113","DOIUrl":"https://doi.org/10.1049/csy2.12113","url":null,"abstract":"<p>Bagging is an essential skill that humans perform in their daily activities. However, deformable objects, such as bags, are complex for robots to manipulate. A learning-based framework that enables robots to learn bagging is presented. The novelty of this framework is its ability to learn and perform bagging without relying on simulations. The learning process is accomplished through a reinforcement learning (RL) algorithm introduced and designed to find the best grasping points of the bag based on a set of compact state representations. The framework utilises a set of primitive actions and represents the task in five states. In our experiments, the framework reached 60% and 80% success rates after around 3 h of training in the real world when starting the bagging task from folded and unfolded states, respectively. Finally, the authors test the trained RL model with eight more bags of different sizes to evaluate its generalisability.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"6 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12113","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140546736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distributed field mapping for mobile sensor teams using a derivative-free optimisation algorithm 使用无导数优化算法为移动传感器团队进行分布式实地测绘
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-31 DOI: 10.1049/csy2.12111
Tony X. Lin, Jia Guo, Said Al-Abri, Fumin Zhang

The authors propose a distributed field mapping algorithm that drives a team of robots to explore and learn an unknown scalar field using a Gaussian Process (GP). The authors’ strategy arises by balancing exploration objectives between areas of high error and high variance. As computing high error regions is impossible since the scalar field is unknown, a bio-inspired approach known as Speeding-Up and Slowing-Down is leveraged to track the gradient of the GP error. This approach achieves global field-learning convergence and is shown to be resistant to poor hyperparameter tuning of the GP. This approach is validated in simulations and experiments using 2D wheeled robots and 2D flying miniature autonomous blimps.

作者提出了一种分布式场映射算法,该算法利用高斯过程(GP)驱动一组机器人探索和学习未知标量场。作者的策略是在高误差区域和高方差区域之间平衡探索目标。由于标量场是未知的,计算高误差区域是不可能的,因此利用一种称为 "加速和减速"(Speed-Up and Slowing-Down)的生物启发方法来跟踪 GP 误差的梯度。这种方法实现了全局场学习收敛,并证明可以抵御 GP 超参数调整不当的影响。这种方法在使用二维轮式机器人和二维飞行微型自主飞艇进行的模拟和实验中得到了验证。
{"title":"Distributed field mapping for mobile sensor teams using a derivative-free optimisation algorithm","authors":"Tony X. Lin,&nbsp;Jia Guo,&nbsp;Said Al-Abri,&nbsp;Fumin Zhang","doi":"10.1049/csy2.12111","DOIUrl":"https://doi.org/10.1049/csy2.12111","url":null,"abstract":"<p>The authors propose a distributed field mapping algorithm that drives a team of robots to explore and learn an unknown scalar field using a Gaussian Process (GP). The authors’ strategy arises by balancing exploration objectives between areas of high error and high variance. As computing high error regions is impossible since the scalar field is unknown, a bio-inspired approach known as Speeding-Up and Slowing-Down is leveraged to track the gradient of the GP error. This approach achieves global field-learning convergence and is shown to be resistant to poor hyperparameter tuning of the GP. This approach is validated in simulations and experiments using 2D wheeled robots and 2D flying miniature autonomous blimps.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"6 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140333038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ROSIC: Enhancing secure and accessible robot control through open-source instant messaging platforms ROSIC:通过开源即时通讯平台加强机器人控制的安全性和可及性
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-29 DOI: 10.1049/csy2.12112
Rasoul Sadeghian, Shahrooz Shahin, Sina Sareh

Ensuring secure communication and seamless accessibility remains a primary challenge in controlling robots remotely. The authors propose a novel approach that leverages open-source instant messaging platforms to overcome the complexities and reduce costs associated with implementing a secure and user-centred communication system for remote robot control named Robot Control System using Instant Communication (ROSIC). By leveraging features, such as real-time messaging, group chats, end-to-end encryption and cross-platform support inherent in the majority of instant messenger platforms, we have developed middleware that establishes a secure and efficient communication system over the Internet. By using instant messaging as the communication interface between users and robots, ROSIC caters to non-technical users, making it easier for them to control robots. The architecture of ROSIC enables various scenarios for robot control, including one user controlling multiple robots, multiple users controlling one robot, multiple robots controlled by multiple users, and one user controlling one robot. Furthermore, ROSIC facilitates the interaction of multiple robots, enabling them to interoperate and function collaboratively as a swarm system by providing a unified communication platform that allows for seamless exchange of data and commands. Telegram was specifically chosen as the instant messaging platform by the authors due to its open-source nature, robust encryption, compatibility across multiple platforms and interactive communication capabilities through channels and groups. Notably, the ROSIC is designed to communicate effectively with robot operating system (ROS)-based robots to enhance our ability to control them remotely.

确保安全通信和无缝接入仍然是远程控制机器人的主要挑战。作者提出了一种新颖的方法,利用开源即时通信平台克服复杂性,降低成本,为远程机器人控制实现安全和以用户为中心的通信系统,该系统被命名为 "使用即时通信的机器人控制系统(ROSIC)"。我们利用大多数即时通信平台固有的实时通信、群组聊天、端到端加密和跨平台支持等功能,开发了中间件,通过互联网建立了一个安全高效的通信系统。通过使用即时信息作为用户和机器人之间的通信接口,ROSIC 迎合了非技术用户的需求,使他们更容易控制机器人。ROSIC 的架构可实现多种机器人控制场景,包括一个用户控制多个机器人、多个用户控制一个机器人、多个用户控制多个机器人以及一个用户控制一个机器人。此外,ROSIC 还能促进多个机器人之间的互动,通过提供一个统一的通信平台,实现数据和命令的无缝交换,使它们能够互通有无,以蜂群系统的形式协同运作。作者特别选择 Telegram 作为即时通讯平台,因为它具有开源性、强大的加密功能、跨平台兼容性以及通过频道和群组进行互动交流的能力。值得注意的是,ROSIC 的设计目的是与基于机器人操作系统(ROS)的机器人进行有效通信,以增强我们远程控制它们的能力。
{"title":"ROSIC: Enhancing secure and accessible robot control through open-source instant messaging platforms","authors":"Rasoul Sadeghian,&nbsp;Shahrooz Shahin,&nbsp;Sina Sareh","doi":"10.1049/csy2.12112","DOIUrl":"https://doi.org/10.1049/csy2.12112","url":null,"abstract":"<p>Ensuring secure communication and seamless accessibility remains a primary challenge in controlling robots remotely. The authors propose a novel approach that leverages open-source instant messaging platforms to overcome the complexities and reduce costs associated with implementing a secure and user-centred communication system for remote robot control named Robot Control System using Instant Communication (ROSIC). By leveraging features, such as real-time messaging, group chats, end-to-end encryption and cross-platform support inherent in the majority of instant messenger platforms, we have developed middleware that establishes a secure and efficient communication system over the Internet. By using instant messaging as the communication interface between users and robots, ROSIC caters to non-technical users, making it easier for them to control robots. The architecture of ROSIC enables various scenarios for robot control, including one user controlling multiple robots, multiple users controlling one robot, multiple robots controlled by multiple users, and one user controlling one robot. Furthermore, ROSIC facilitates the interaction of multiple robots, enabling them to interoperate and function collaboratively as a swarm system by providing a unified communication platform that allows for seamless exchange of data and commands. Telegram was specifically chosen as the instant messaging platform by the authors due to its open-source nature, robust encryption, compatibility across multiple platforms and interactive communication capabilities through channels and groups. Notably, the ROSIC is designed to communicate effectively with robot operating system (ROS)-based robots to enhance our ability to control them remotely.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"6 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12112","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140329018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital twin-based multi-objective autonomous vehicle navigation approach as applied in infrastructure construction 应用于基础设施建设的基于数字孪生的多目标自主车辆导航方法
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-20 DOI: 10.1049/csy2.12110
Tingjun Lei, Timothy Sellers, Chaomin Luo, Lei Cao, Zhuming Bi

The widespread adoption of autonomous vehicles has generated considerable interest in their autonomous operation, with path planning emerging as a critical aspect. However, existing road infrastructure confronts challenges due to prolonged use and insufficient maintenance. Previous research on autonomous vehicle navigation has focused on determining the trajectory with the shortest distance, while neglecting road construction information, leading to potential time and energy inefficiencies in real-world scenarios involving infrastructure development. To address this issue, a digital twin-embedded multi-objective autonomous vehicle navigation is proposed under the condition of infrastructure construction. The authors propose an image processing algorithm that leverages captured images of the road construction environment to enable road extraction and modelling of the autonomous vehicle workspace. Additionally, a wavelet neural network is developed to predict real-time traffic flow, considering its inherent characteristics. Moreover, a multi-objective brainstorm optimisation (BSO)-based method for path planning is introduced, which optimises total time-cost and energy consumption objective functions. To ensure optimal trajectory planning during infrastructure construction, the algorithm incorporates a real-time updated digital twin throughout autonomous vehicle operations. The effectiveness and robustness of the proposed model are validated through simulation and comparative studies conducted in diverse scenarios involving road construction. The results highlight the improved performance and reliability of the autonomous vehicle system when equipped with the authors’ approach, demonstrating its potential for enhancing efficiency and minimising disruptions caused by road infrastructure development.

自动驾驶汽车的广泛应用引起了人们对其自主运行的极大兴趣,而路径规划则是其中的一个关键环节。然而,由于长期使用和维护不足,现有的道路基础设施面临着挑战。以往关于自动驾驶车辆导航的研究主要集中在确定距离最短的轨迹上,而忽略了道路建设信息,导致在涉及基础设施建设的实际场景中可能出现时间和能源效率低下的问题。针对这一问题,作者提出了一种在基础设施建设条件下的数字孪生嵌入式多目标自主车辆导航。作者提出了一种图像处理算法,利用捕捉到的道路施工环境图像,实现道路提取和自动驾驶车辆工作空间建模。此外,考虑到交通流量的固有特征,还开发了一种小波神经网络来预测实时交通流量。此外,还引入了一种基于多目标头脑风暴优化(BSO)的路径规划方法,可优化总时间成本和能耗目标函数。为确保在基础设施建设过程中实现最优轨迹规划,该算法在整个自动驾驶车辆运行过程中都采用了实时更新的数字孪生技术。通过在涉及道路施工的各种场景中进行模拟和比较研究,验证了所提模型的有效性和稳健性。研究结果表明,采用作者的方法后,自动驾驶汽车系统的性能和可靠性都得到了提高,这也证明了该方法在提高效率和减少道路基础设施建设造成的干扰方面的潜力。
{"title":"Digital twin-based multi-objective autonomous vehicle navigation approach as applied in infrastructure construction","authors":"Tingjun Lei,&nbsp;Timothy Sellers,&nbsp;Chaomin Luo,&nbsp;Lei Cao,&nbsp;Zhuming Bi","doi":"10.1049/csy2.12110","DOIUrl":"https://doi.org/10.1049/csy2.12110","url":null,"abstract":"<p>The widespread adoption of autonomous vehicles has generated considerable interest in their autonomous operation, with path planning emerging as a critical aspect. However, existing road infrastructure confronts challenges due to prolonged use and insufficient maintenance. Previous research on autonomous vehicle navigation has focused on determining the trajectory with the shortest distance, while neglecting road construction information, leading to potential time and energy inefficiencies in real-world scenarios involving infrastructure development. To address this issue, a digital twin-embedded multi-objective autonomous vehicle navigation is proposed under the condition of infrastructure construction. The authors propose an image processing algorithm that leverages captured images of the road construction environment to enable road extraction and modelling of the autonomous vehicle workspace. Additionally, a wavelet neural network is developed to predict real-time traffic flow, considering its inherent characteristics. Moreover, a multi-objective brainstorm optimisation (BSO)-based method for path planning is introduced, which optimises total time-cost and energy consumption objective functions. To ensure optimal trajectory planning during infrastructure construction, the algorithm incorporates a real-time updated digital twin throughout autonomous vehicle operations. The effectiveness and robustness of the proposed model are validated through simulation and comparative studies conducted in diverse scenarios involving road construction. The results highlight the improved performance and reliability of the autonomous vehicle system when equipped with the authors’ approach, demonstrating its potential for enhancing efficiency and minimising disruptions caused by road infrastructure development.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"6 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12110","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140181594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient and robust system for human following scenario using differential robot 利用差分机器人实现高效稳健的人类追随系统
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-01-25 DOI: 10.1049/csy2.12108
Jiangchao Zhu, Changjia Ma, Chao Xu, Fei Gao

A novel system for human following using a differential robot, including an accurate 3-D human position tracking module and a novel planning strategy that ensures safety and dynamic feasibility, is proposed. The authors utilise a combination of gimbal camera and LiDAR for long-term accurate human detection. Then the planning module takes the target's future trajectory as a reference to generate a coarse path to ensure the following visibility. After that, the trajectory is optimised considering other constraints and following distance. Experiments demonstrate the robustness and efficiency of our system in complex environments, demonstrating its potential in various applications.

本文提出了一种利用差分机器人进行人体跟踪的新型系统,包括一个精确的三维人体位置跟踪模块和一种确保安全性和动态可行性的新型规划策略。作者利用云台相机和激光雷达相结合的方式进行长期精确的人体探测。然后,规划模块以目标的未来轨迹为参考,生成粗略的路径,以确保跟踪的可视性。然后,在考虑其他约束条件和跟踪距离的基础上对轨迹进行优化。实验证明了我们的系统在复杂环境中的鲁棒性和效率,展示了其在各种应用中的潜力。
{"title":"An efficient and robust system for human following scenario using differential robot","authors":"Jiangchao Zhu,&nbsp;Changjia Ma,&nbsp;Chao Xu,&nbsp;Fei Gao","doi":"10.1049/csy2.12108","DOIUrl":"10.1049/csy2.12108","url":null,"abstract":"<p>A novel system for human following using a differential robot, including an accurate 3-D human position tracking module and a novel planning strategy that ensures safety and dynamic feasibility, is proposed. The authors utilise a combination of gimbal camera and LiDAR for long-term accurate human detection. Then the planning module takes the target's future trajectory as a reference to generate a coarse path to ensure the following visibility. After that, the trajectory is optimised considering other constraints and following distance. Experiments demonstrate the robustness and efficiency of our system in complex environments, demonstrating its potential in various applications.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12108","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139596543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An autonomous Unmanned Aerial Vehicle exploration platform with a hierarchical control method for post-disaster infrastructures 采用分层控制方法的灾后基础设施无人飞行器自主探索平台
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-01-24 DOI: 10.1049/csy2.12107
Xin Peng, Gaofeng Su, Raja Sengupta

Catastrophic natural disasters like earthquakes can cause infrastructure damage. Emergency response agencies need to assess damage precisely while repeating this process for infrastructures with different shapes and types. The authors aim for an autonomous Unmanned Aerial Vehicle (UAV) platform equipped with a 3D LiDAR sensor to comprehensively and accurately scan the infrastructure and map it with a predefined resolution r. During the inspection, the UAV needs to decide on the Next Best View (NBV) position to maximize the gathered information while avoiding collision at high speed. The authors propose solving this problem by implementing a hierarchical closed-loop control system consisting of a global planner and a local planner. The global NBV planner decides the general UAV direction based on a history of measurements from the LiDAR sensor, and the local planner considers the UAV dynamics and enables the UAV to fly at high speed with the latest LiDAR measurements. The proposed system is validated through the Regional Scale Autonomous Swarm Damage Assessment simulator, which is built by the authors. Through extensive testing in three unique and highly constrained infrastructure environments, the autonomous UAV inspection system successfully explored and mapped the infrastructures, demonstrating its versatility and applicability across various shapes of infrastructure.

地震等灾难性自然灾害会对基础设施造成破坏。应急机构需要精确评估损坏情况,同时针对不同形状和类型的基础设施重复这一过程。在检查过程中,无人机需要决定下一个最佳视角(NBV)位置,以最大限度地收集信息,同时避免高速碰撞。作者建议通过实施由全局规划器和局部规划器组成的分层闭环控制系统来解决这一问题。全局 NBV 规划器根据激光雷达传感器的历史测量结果决定无人飞行器的总体方向,而局部规划器则考虑无人飞行器的动态,使无人飞行器能够根据最新的激光雷达测量结果高速飞行。作者制作的区域规模自主蜂群损害评估模拟器对所提出的系统进行了验证。通过在三个独特且高度受限的基础设施环境中进行广泛测试,自主无人机检测系统成功探索并绘制了基础设施地图,证明了其在各种形状的基础设施中的多功能性和适用性。
{"title":"An autonomous Unmanned Aerial Vehicle exploration platform with a hierarchical control method for post-disaster infrastructures","authors":"Xin Peng,&nbsp;Gaofeng Su,&nbsp;Raja Sengupta","doi":"10.1049/csy2.12107","DOIUrl":"10.1049/csy2.12107","url":null,"abstract":"<p>Catastrophic natural disasters like earthquakes can cause infrastructure damage. Emergency response agencies need to assess damage precisely while repeating this process for infrastructures with different shapes and types. The authors aim for an autonomous Unmanned Aerial Vehicle (UAV) platform equipped with a 3D LiDAR sensor to comprehensively and accurately scan the infrastructure and map it with a predefined resolution <i>r</i>. During the inspection, the UAV needs to decide on the Next Best View (NBV) position to maximize the gathered information while avoiding collision at high speed. The authors propose solving this problem by implementing a hierarchical closed-loop control system consisting of a global planner and a local planner. The global NBV planner decides the general UAV direction based on a history of measurements from the LiDAR sensor, and the local planner considers the UAV dynamics and enables the UAV to fly at high speed with the latest LiDAR measurements. The proposed system is validated through the Regional Scale Autonomous Swarm Damage Assessment simulator, which is built by the authors. Through extensive testing in three unique and highly constrained infrastructure environments, the autonomous UAV inspection system successfully explored and mapped the infrastructures, demonstrating its versatility and applicability across various shapes of infrastructure.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12107","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139601248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to Chinese personalised text-to-speech synthesis for robot human–machine interaction 用于机器人人机交互的中文个性化文本到语音合成的更正
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-01-11 DOI: 10.1049/csy2.12109

Pang, B., et al.: Chinese personalised text-to-speech synthesis for robot human-machine interaction. IET Cyber-Syst. Robot. e12098 (2023). https://doi.org/10.1049/csy2.12098

Incorrect grant number was used for the funder name “National Key Research and Development Plan of China” in the funding and acknowledgement sections. The correct grant number is 2020AAA0108900.

We apologize for this error.

Pang, B., et al:用于机器人人机交互的中文个性化文本到语音合成。IET Cyber-Syst.e12098 (2023)。在资助和致谢部分,https://doi.org/10.1049/csy2.12098Incorrect 资助编号被用于资助方名称 "中国国家重点研发计划"。正确的资助编号是 2020AAA0108900。我们对此深表歉意。正确的基金号是 2020AAAA0108900。对此错误,我们深表歉意。
{"title":"Correction to Chinese personalised text-to-speech synthesis for robot human–machine interaction","authors":"","doi":"10.1049/csy2.12109","DOIUrl":"https://doi.org/10.1049/csy2.12109","url":null,"abstract":"<p>Pang, B., et al.: Chinese personalised text-to-speech synthesis for robot human-machine interaction. IET Cyber-Syst. Robot. e12098 (2023). https://doi.org/10.1049/csy2.12098</p><p>Incorrect grant number was used for the funder name “National Key Research and Development Plan of China” in the funding and acknowledgement sections. The correct grant number is 2020AAA0108900.</p><p>We apologize for this error.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139419779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An audio-based risky flight detection framework for quadrotors 基于音频的四旋翼飞行器风险飞行检测框架
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-01-11 DOI: 10.1049/csy2.12105
Wansong Liu, Chang Liu, Seyedomid Sajedi, Hao Su, Xiao Liang, Minghui Zheng

Drones have increasingly collaborated with human workers in some workspaces, such as warehouses. The failure of a drone flight may bring potential risks to human beings' life safety during some aerial tasks. One of the most common flight failures is triggered by damaged propellers. To quickly detect physical damage to propellers, recognise risky flights, and provide early warnings to surrounding human workers, a new and comprehensive fault diagnosis framework is presented that uses only the audio caused by propeller rotation without accessing any flight data. The diagnosis framework includes three components: leverage convolutional neural networks, transfer learning, and Bayesian optimisation. Particularly, the audio signal from an actual flight is collected and transferred into time–frequency spectrograms. First, a convolutional neural network-based diagnosis model that utilises these spectrograms is developed to identify whether there is any broken propeller involved in a specific drone flight. Additionally, the authors employ Monte Carlo dropout sampling to obtain the inconsistency of diagnostic results and compute the mean probability score vector's entropy (uncertainty) as another factor to diagnose the drone flight. Next, to reduce data dependence on different drone types, the convolutional neural network-based diagnosis model is further augmented by transfer learning. That is, the knowledge of a well-trained diagnosis model is refined by using a small set of data from a different drone. The modified diagnosis model has the ability to detect the broken propeller of the second drone. Thirdly, to reduce the hyperparameters' tuning efforts and reinforce the robustness of the network, Bayesian optimisation takes advantage of the observed diagnosis model performances to construct a Gaussian process model that allows the acquisition function to choose the optimal network hyperparameters. The proposed diagnosis framework is validated via real experimental flight tests and has a reasonably high diagnosis accuracy.

在仓库等一些工作场所,无人机与人类工人的合作越来越多。在一些空中任务中,无人机飞行故障可能会给人类的生命安全带来潜在风险。螺旋桨损坏是最常见的飞行故障之一。为了快速检测螺旋桨的物理损坏,识别风险飞行,并向周围的人类工作人员发出预警,本文提出了一种全新的综合故障诊断框架,该框架仅使用螺旋桨旋转时产生的音频,而无需访问任何飞行数据。诊断框架包括三个部分:卷积神经网络杠杆、迁移学习和贝叶斯优化。特别是,从实际飞行中收集音频信号并将其转换成时频频谱图。首先,利用这些频谱图开发出基于卷积神经网络的诊断模型,以识别特定无人机飞行中是否存在螺旋桨破损的情况。此外,作者还采用蒙特卡洛丢弃采样(Monte Carlo dropout sampling)来获取诊断结果的不一致性,并计算平均概率分数向量的熵(不确定性),作为诊断无人机飞行的另一个因素。接下来,为了减少对不同无人机类型的数据依赖,基于卷积神经网络的诊断模型通过迁移学习得到了进一步增强。也就是说,通过使用来自不同无人机的少量数据集来完善训练有素的诊断模型的知识。修改后的诊断模型能够检测出第二架无人机螺旋桨的破损情况。第三,为了减少超参数的调整工作并增强网络的鲁棒性,贝叶斯优化法利用观察到的诊断模型性能构建了一个高斯过程模型,该模型允许获取函数选择最优网络超参数。所提出的诊断框架通过实际飞行实验进行了验证,具有相当高的诊断准确性。
{"title":"An audio-based risky flight detection framework for quadrotors","authors":"Wansong Liu,&nbsp;Chang Liu,&nbsp;Seyedomid Sajedi,&nbsp;Hao Su,&nbsp;Xiao Liang,&nbsp;Minghui Zheng","doi":"10.1049/csy2.12105","DOIUrl":"https://doi.org/10.1049/csy2.12105","url":null,"abstract":"<p>Drones have increasingly collaborated with human workers in some workspaces, such as warehouses. The failure of a drone flight may bring potential risks to human beings' life safety during some aerial tasks. One of the most common flight failures is triggered by damaged propellers. To quickly detect physical damage to propellers, recognise risky flights, and provide early warnings to surrounding human workers, a new and comprehensive fault diagnosis framework is presented that uses only the audio caused by propeller rotation without accessing any flight data. The diagnosis framework includes three components: leverage convolutional neural networks, transfer learning, and Bayesian optimisation. Particularly, the audio signal from an actual flight is collected and transferred into time–frequency spectrograms. First, a convolutional neural network-based diagnosis model that utilises these spectrograms is developed to identify whether there is any broken propeller involved in a specific drone flight. Additionally, the authors employ Monte Carlo dropout sampling to obtain the inconsistency of diagnostic results and compute the mean probability score vector's entropy (uncertainty) as another factor to diagnose the drone flight. Next, to reduce data dependence on different drone types, the convolutional neural network-based diagnosis model is further augmented by transfer learning. That is, the knowledge of a well-trained diagnosis model is refined by using a small set of data from a different drone. The modified diagnosis model has the ability to detect the broken propeller of the second drone. Thirdly, to reduce the hyperparameters' tuning efforts and reinforce the robustness of the network, Bayesian optimisation takes advantage of the observed diagnosis model performances to construct a Gaussian process model that allows the acquisition function to choose the optimal network hyperparameters. The proposed diagnosis framework is validated via real experimental flight tests and has a reasonably high diagnosis accuracy.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12105","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139435296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive neural tracking control for upper limb rehabilitation robot with output constraints 具有输出约束的上肢康复机器人的自适应神经跟踪控制
Q3 AUTOMATION & CONTROL SYSTEMS Pub Date : 2023-12-26 DOI: 10.1049/csy2.12104
Zibin Zhang, Pengbo Cui, Aimin An

The authors investigate the trajectory tracking control problem of an upper limb rehabilitation robot system with unknown dynamics. To address the system's uncertainties and improve the tracking accuracy of the rehabilitation robot, an adaptive neural full-state feedback control is proposed. The neural network is utilised to approximate the dynamics that are not fully modelled and adapt to the interaction between the upper limb rehabilitation robot and the patient. By incorporating a high-gain observer, unmeasurable state information is integrated into the output feedback control. Taking into consideration the issue of joint position constraints during the actual rehabilitation training process, an adaptive neural full-state and output feedback control scheme with output constraint is further designed. From the perspective of safety in human–robot interaction during rehabilitation training, log-type barrier Lyapunov function is introduced in the output constraint controller to ensure that the output remains within the predefined constraint region. The stability of the closed-loop system is proved by Lyapunov stability theory. The effectiveness of the proposed control scheme is validated by applying it to an upper limb rehabilitation robot through simulations.

作者研究了具有未知动态的上肢康复机器人系统的轨迹跟踪控制问题。为了解决系统的不确定性并提高康复机器人的跟踪精度,提出了一种自适应神经全状态反馈控制。利用神经网络对未完全建模的动力学进行近似,并适应上肢康复机器人与病人之间的交互。通过加入高增益观测器,不可测量的状态信息被整合到输出反馈控制中。考虑到实际康复训练过程中的关节位置约束问题,进一步设计了带有输出约束的自适应神经全状态和输出反馈控制方案。从康复训练过程中人机交互安全性的角度出发,在输出约束控制器中引入了对数型屏障 Lyapunov 函数,以确保输出保持在预定义的约束区域内。利用 Lyapunov 稳定性理论证明了闭环系统的稳定性。将所提出的控制方案应用于上肢康复机器人,通过仿真验证了该方案的有效性。
{"title":"Adaptive neural tracking control for upper limb rehabilitation robot with output constraints","authors":"Zibin Zhang,&nbsp;Pengbo Cui,&nbsp;Aimin An","doi":"10.1049/csy2.12104","DOIUrl":"https://doi.org/10.1049/csy2.12104","url":null,"abstract":"<p>The authors investigate the trajectory tracking control problem of an upper limb rehabilitation robot system with unknown dynamics. To address the system's uncertainties and improve the tracking accuracy of the rehabilitation robot, an adaptive neural full-state feedback control is proposed. The neural network is utilised to approximate the dynamics that are not fully modelled and adapt to the interaction between the upper limb rehabilitation robot and the patient. By incorporating a high-gain observer, unmeasurable state information is integrated into the output feedback control. Taking into consideration the issue of joint position constraints during the actual rehabilitation training process, an adaptive neural full-state and output feedback control scheme with output constraint is further designed. From the perspective of safety in human–robot interaction during rehabilitation training, log-type barrier Lyapunov function is introduced in the output constraint controller to ensure that the output remains within the predefined constraint region. The stability of the closed-loop system is proved by Lyapunov stability theory. The effectiveness of the proposed control scheme is validated by applying it to an upper limb rehabilitation robot through simulations.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"5 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12104","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139047594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IET Cybersystems and Robotics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1