首页 > 最新文献

2018 16th International Conference on ICT and Knowledge Engineering (ICT&KE)最新文献

英文 中文
On the Positive Realness of Delayed Systems 关于时滞系统的正实在性
Pub Date : 2018-11-01 DOI: 10.1109/ICTKE.2018.8612318
M. de La Sen, A. Ibeas
This paper extends some background positive realness results of transfer function under the presence of point-delayed delayed dynamics. Positive realness is a very important tool for the achievement of hyperstability and passivity in dynamic systems. The direct input-output interconnection gain is crucial in the performed analysis.
本文推广了点延迟时滞动力学下传递函数的一些背景正真性结果。正真性是实现动态系统超稳定和无源性的重要工具。直接输入输出互连增益在执行分析中是至关重要的。
{"title":"On the Positive Realness of Delayed Systems","authors":"M. de La Sen, A. Ibeas","doi":"10.1109/ICTKE.2018.8612318","DOIUrl":"https://doi.org/10.1109/ICTKE.2018.8612318","url":null,"abstract":"This paper extends some background positive realness results of transfer function under the presence of point-delayed delayed dynamics. Positive realness is a very important tool for the achievement of hyperstability and passivity in dynamic systems. The direct input-output interconnection gain is crucial in the performed analysis.","PeriodicalId":342802,"journal":{"name":"2018 16th International Conference on ICT and Knowledge Engineering (ICT&KE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130863139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leukemia Prediction from Microscopic Images of Human Blood Cell Using HOG Feature Descriptor and Logistic Regression 基于HOG特征描述符和Logistic回归的人血细胞显微图像预测白血病
Pub Date : 2018-09-23 DOI: 10.1109/ICTKE.2018.8612303
H. Abedy, Faysal Ahmed, Md. Nuruddin Qaisar Bhuiyan, Maheen Islam, M. Ali, M. Shamsujjoha
Leukemia originates in bone marrow. It massively affects the production of appropriate blood cells. Hence, its early detection is very crucial for human living. Generally, computational approaches for Leukemia detection use microscopic blood cells images. Then, machine learning based models are trained and tested for accurate measurement. The main challenge here is to achieve an acceptable accuracy with a scalable method. However, data inconsistency, missing values and data incompleteness made the researchers’ job much more difficult. In these consequences, this paper proposes a scalable Leukemia prediction method based on a publicly available ALL_IDB dataset using the HOG feature descriptor and Logistic Regression. Initially, the proposed method used Canny edge detector and noise reduction operators to detect the exact shape of Lymphocytes. Then, Principal Component Analysis (PCA) is applied to the detected image shapes. The PCA reduces the data dimensions without losing any valuable information and thus greatly minimizes the afterward computational cost. Finally, a classifier based model is produced for unforeseen events and it is tested. The results are validated using n-fold cross-validation technique, where n is a positive integer greater than or equal to three. The maximum average accuracy of the proposed model is 96% which is much higher than the state-of-the-art schemes.
白血病起源于骨髓。它会严重影响适当血细胞的产生。因此,早期发现对人类的生存至关重要。一般来说,白血病检测的计算方法使用显微镜下的血细胞图像。然后,对基于机器学习的模型进行训练和测试,以实现准确的测量。这里的主要挑战是用可扩展的方法实现可接受的精度。然而,数据不一致、缺失值和数据不完整使研究人员的工作更加困难。在这些结果中,本文提出了一种可扩展的白血病预测方法,该方法基于公开可用的ALL_IDB数据集,使用HOG特征描述符和逻辑回归。最初,该方法使用Canny边缘检测器和降噪算子来检测淋巴细胞的准确形状。然后,对检测到的图像形状进行主成分分析(PCA)。PCA在不丢失任何有价值信息的情况下减少了数据维数,从而极大地降低了后续的计算成本。最后,提出了一个基于分类器的不可预见事件模型,并对其进行了测试。使用n-fold交叉验证技术验证结果,其中n是大于或等于3的正整数。该模型的最大平均精度为96%,远远高于目前最先进的方案。
{"title":"Leukemia Prediction from Microscopic Images of Human Blood Cell Using HOG Feature Descriptor and Logistic Regression","authors":"H. Abedy, Faysal Ahmed, Md. Nuruddin Qaisar Bhuiyan, Maheen Islam, M. Ali, M. Shamsujjoha","doi":"10.1109/ICTKE.2018.8612303","DOIUrl":"https://doi.org/10.1109/ICTKE.2018.8612303","url":null,"abstract":"Leukemia originates in bone marrow. It massively affects the production of appropriate blood cells. Hence, its early detection is very crucial for human living. Generally, computational approaches for Leukemia detection use microscopic blood cells images. Then, machine learning based models are trained and tested for accurate measurement. The main challenge here is to achieve an acceptable accuracy with a scalable method. However, data inconsistency, missing values and data incompleteness made the researchers’ job much more difficult. In these consequences, this paper proposes a scalable Leukemia prediction method based on a publicly available ALL_IDB dataset using the HOG feature descriptor and Logistic Regression. Initially, the proposed method used Canny edge detector and noise reduction operators to detect the exact shape of Lymphocytes. Then, Principal Component Analysis (PCA) is applied to the detected image shapes. The PCA reduces the data dimensions without losing any valuable information and thus greatly minimizes the afterward computational cost. Finally, a classifier based model is produced for unforeseen events and it is tested. The results are validated using n-fold cross-validation technique, where n is a positive integer greater than or equal to three. The maximum average accuracy of the proposed model is 96% which is much higher than the state-of-the-art schemes.","PeriodicalId":342802,"journal":{"name":"2018 16th International Conference on ICT and Knowledge Engineering (ICT&KE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126648422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
期刊
2018 16th International Conference on ICT and Knowledge Engineering (ICT&KE)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1