Pub Date : 2023-08-22DOI: 10.3390/smartcities6050100
Wei Wu, Prasanna Divigalpitiya
The 15 minute Community Life Circle (15 min-CLC) concept is an urban planning approach that aims to provide various daily services for citizens within a short distance. It has been widely adopted in China, especially in large cities. However, there is a lack of research on how to apply the 15 min-CLC concept in second-tier cities, which have high population densities and lower quality of life. This study chose Jinan City as a case study to explore the underdeveloped areas and facilities of 15 min-CLCs in rapidly developing and medium-size cities, called second-tier cities. First, it analyzed the distribution of facilities and residential POIs in old communities, new communities, and the whole city, to find out which types of facilities are missing at the community level. Second, it examined the relationship between facilities and population in each 15 min-CLC by using the Facility to Population Ratio (FPR), to evaluate the sufficiency of facilities to meet the daily needs of residents. Through the analysis of facility distribution and Facility to Population Ratio, our study found that old communities have all the required facility types within each 15 min-CLC, but they do not have enough number of facilities to support the population. At the same time, identified the underdeveloped regions and provided specific development directions for each 15 min-CLC. The FPR methodology developed in this study can be used to evaluate whether the existing facilities can meet the daily needs of residents in a certain region.
{"title":"Availability and Adequacy of Facilities in 15 Minute Community Life Circle Located in Old and New Communities","authors":"Wei Wu, Prasanna Divigalpitiya","doi":"10.3390/smartcities6050100","DOIUrl":"https://doi.org/10.3390/smartcities6050100","url":null,"abstract":"The 15 minute Community Life Circle (15 min-CLC) concept is an urban planning approach that aims to provide various daily services for citizens within a short distance. It has been widely adopted in China, especially in large cities. However, there is a lack of research on how to apply the 15 min-CLC concept in second-tier cities, which have high population densities and lower quality of life. This study chose Jinan City as a case study to explore the underdeveloped areas and facilities of 15 min-CLCs in rapidly developing and medium-size cities, called second-tier cities. First, it analyzed the distribution of facilities and residential POIs in old communities, new communities, and the whole city, to find out which types of facilities are missing at the community level. Second, it examined the relationship between facilities and population in each 15 min-CLC by using the Facility to Population Ratio (FPR), to evaluate the sufficiency of facilities to meet the daily needs of residents. Through the analysis of facility distribution and Facility to Population Ratio, our study found that old communities have all the required facility types within each 15 min-CLC, but they do not have enough number of facilities to support the population. At the same time, identified the underdeveloped regions and provided specific development directions for each 15 min-CLC. The FPR methodology developed in this study can be used to evaluate whether the existing facilities can meet the daily needs of residents in a certain region.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42900920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-22DOI: 10.3390/smartcities6050101
Faiza Qayyum, Harun Jamil, Naeem Iqbal, Do-Hyeun Kim
The Internet of things has revolutionized various domains, such as healthcare and navigation systems, by introducing mission-critical capabilities. However, the untapped potential of IoT in the energy sector is a topic of contention. Shifting from traditional mission-critical electric smart grid systems to IoT-based orchestrated frameworks has become crucial to improve performance by leveraging IoT task orchestration technology. Energy trading cost and ESS power optimization have long been concerns in the scientific community. To address these issues, our proposed architecture consists of two primary modules: (1) a nanogrid energy trading cost and ESS power optimization strategy that utilizes particle swarm optimization (PSO), with two objective functions, and (2) an IoT-enabled task orchestration system designed for improved peer-to-peer nanogrid energy trading, incorporating virtual control through orchestration technology. We employ IoT sensors and Raspberry Pi-based Edge technology to virtually operate the entire nanogrid energy trading architecture, encompassing the aforementioned modules. IoT task orchestration automates the interaction between components for service execution, involving five main steps: task generation, device virtualization, task mapping, task scheduling, and task allocation and deployment. Evaluating the proposed model using a real dataset from nanogrid houses demonstrates the significant role of optimization in minimizing energy trading cost and optimizing ESS power utilization. Furthermore, the IoT orchestration results highlight the potential for virtual operation in significantly enhancing system performance.
{"title":"IoT Orchestration-Based Optimal Energy Cost Decision Mechanism with ESS Power Optimization for Peer-to-Peer Energy Trading in Nanogrid","authors":"Faiza Qayyum, Harun Jamil, Naeem Iqbal, Do-Hyeun Kim","doi":"10.3390/smartcities6050101","DOIUrl":"https://doi.org/10.3390/smartcities6050101","url":null,"abstract":"The Internet of things has revolutionized various domains, such as healthcare and navigation systems, by introducing mission-critical capabilities. However, the untapped potential of IoT in the energy sector is a topic of contention. Shifting from traditional mission-critical electric smart grid systems to IoT-based orchestrated frameworks has become crucial to improve performance by leveraging IoT task orchestration technology. Energy trading cost and ESS power optimization have long been concerns in the scientific community. To address these issues, our proposed architecture consists of two primary modules: (1) a nanogrid energy trading cost and ESS power optimization strategy that utilizes particle swarm optimization (PSO), with two objective functions, and (2) an IoT-enabled task orchestration system designed for improved peer-to-peer nanogrid energy trading, incorporating virtual control through orchestration technology. We employ IoT sensors and Raspberry Pi-based Edge technology to virtually operate the entire nanogrid energy trading architecture, encompassing the aforementioned modules. IoT task orchestration automates the interaction between components for service execution, involving five main steps: task generation, device virtualization, task mapping, task scheduling, and task allocation and deployment. Evaluating the proposed model using a real dataset from nanogrid houses demonstrates the significant role of optimization in minimizing energy trading cost and optimizing ESS power utilization. Furthermore, the IoT orchestration results highlight the potential for virtual operation in significantly enhancing system performance.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48038654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-18DOI: 10.3390/smartcities6040097
Patrick Ruess, R. Lindner
As cities tackle a variety of recent challenges, such as climate change or resilience against natural hazards, the concept of smart cities has increasingly moved into the spotlight to provide technological solutions as appropriate countermeasures. European policymakers chose the systematic funding of smart city initiatives to incentivize and accelerate innovation and sustainability transitions by disseminating knowledge, data, and information. As this undertaking is complex, there is a pressing need to involve and engage capable stakeholders to successfully implement and operate smart city projects. To ensure the diffusion and effectiveness of these initiatives, activities towards replication and standardization as knowledge management instruments have been applied in some of these research projects. However, there is a knowledge gap on how standardization can be combined with replication efforts. As one possible answer, the lighthouse project Smarter Together has actively integrated standardization in its replication activities, resulting in the development of the CEN Workshop Agreement 17381 for describing and assessing smart city solutions. The analysis of these activities resulted in the development of 11 assumptions, which show the role of standardization as a knowledge carrier for replication activities and as a facilitator for stakeholder engagement. These findings reinforce the chosen and future policy decisions.
{"title":"Knowledge Management for Smart Cities—Standardization and Replication as Policy Instruments to Foster the Implementation of Smart City Solutions","authors":"Patrick Ruess, R. Lindner","doi":"10.3390/smartcities6040097","DOIUrl":"https://doi.org/10.3390/smartcities6040097","url":null,"abstract":"As cities tackle a variety of recent challenges, such as climate change or resilience against natural hazards, the concept of smart cities has increasingly moved into the spotlight to provide technological solutions as appropriate countermeasures. European policymakers chose the systematic funding of smart city initiatives to incentivize and accelerate innovation and sustainability transitions by disseminating knowledge, data, and information. As this undertaking is complex, there is a pressing need to involve and engage capable stakeholders to successfully implement and operate smart city projects. To ensure the diffusion and effectiveness of these initiatives, activities towards replication and standardization as knowledge management instruments have been applied in some of these research projects. However, there is a knowledge gap on how standardization can be combined with replication efforts. As one possible answer, the lighthouse project Smarter Together has actively integrated standardization in its replication activities, resulting in the development of the CEN Workshop Agreement 17381 for describing and assessing smart city solutions. The analysis of these activities resulted in the development of 11 assumptions, which show the role of standardization as a knowledge carrier for replication activities and as a facilitator for stakeholder engagement. These findings reinforce the chosen and future policy decisions.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42555713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-18DOI: 10.3390/smartcities6040099
Thajba Aljowder, Mazen Ali, S. Kurnia
The concept of smart cities has gained significant attention due to the potential of smart cities to optimize city services and enhance citizens’ quality of life. Cities are investing in digital transformation to become smarter, sustainable, and resilient. Therefore, there is a need to build a comprehensive and holistic model to assess smart city initiatives. This paper aims to develop a model that can capture the maturity of smart city adoption across various functional domains. These domains are divided into focus areas that capture different dimensions of a smart city and grouped into seven groups: ICT, economy, environment, social, resources, services, and governance. Each focus area has a set of maturity levels that describe the capabilities and outcomes of the city at different stages of development. To develop the model, the focus areas were extracted from the literature based on 16 models that have been reviewed. Assessing these models helped in identifying gaps and building the foundation of the model. Using the information extracted from the literature, a focus area model was designed and developed. The model development included seven main phases, which were: scope, design, populate, test, deploy, and maintain. The current paper validates the proposed model using the Delphi method, which involves the participation of a panel of sixty field experts. The experts evaluated the model’s correctness and completeness based on their experience and provided feedback. This feedback was used to revise and finalize the model. The smart city maturity model provides a framework for benchmarking, planning, and improving smart city initiatives. Cities can use the model to measure their performance and evaluate their weaknesses and strengths. The model is also the most comprehensive in terms of the scope of the focus areas included, and the results show that the model has a high level of accuracy and consistency and can effectively assess smart city adoption.
{"title":"Development of a Maturity Model for Assessing Smart Cities: A Focus Area Maturity Model","authors":"Thajba Aljowder, Mazen Ali, S. Kurnia","doi":"10.3390/smartcities6040099","DOIUrl":"https://doi.org/10.3390/smartcities6040099","url":null,"abstract":"The concept of smart cities has gained significant attention due to the potential of smart cities to optimize city services and enhance citizens’ quality of life. Cities are investing in digital transformation to become smarter, sustainable, and resilient. Therefore, there is a need to build a comprehensive and holistic model to assess smart city initiatives. This paper aims to develop a model that can capture the maturity of smart city adoption across various functional domains. These domains are divided into focus areas that capture different dimensions of a smart city and grouped into seven groups: ICT, economy, environment, social, resources, services, and governance. Each focus area has a set of maturity levels that describe the capabilities and outcomes of the city at different stages of development. To develop the model, the focus areas were extracted from the literature based on 16 models that have been reviewed. Assessing these models helped in identifying gaps and building the foundation of the model. Using the information extracted from the literature, a focus area model was designed and developed. The model development included seven main phases, which were: scope, design, populate, test, deploy, and maintain. The current paper validates the proposed model using the Delphi method, which involves the participation of a panel of sixty field experts. The experts evaluated the model’s correctness and completeness based on their experience and provided feedback. This feedback was used to revise and finalize the model. The smart city maturity model provides a framework for benchmarking, planning, and improving smart city initiatives. Cities can use the model to measure their performance and evaluate their weaknesses and strengths. The model is also the most comprehensive in terms of the scope of the focus areas included, and the results show that the model has a high level of accuracy and consistency and can effectively assess smart city adoption.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43866102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-18DOI: 10.3390/smartcities6040098
Clémentine Schelings, Aurore Defays, C. Elsen
Based on the assumption that citizens can participate in smart city development, this paper aims to capture the diversity of their profiles and their positioning towards smart city dynamics. The article starts with a literature review of some models of citizens to better understand how they could be portrayed in the smart city era. Considering that there is no “general citizen” and that usual typologies remain restrictive, we construct tailor-made personas, i.e., fictitious profiles based on real data. To this end, we present the results of a large-scale survey distributed to highly educated Walloon people in the framework of a general public exhibition. The profiling focuses on three aspects: (1) perception of smart city dimensions, (2) intended behavior regarding smart city solutions, and (3) favorite participatory methods. The collected answers were first analyzed with descriptive and nonparametric statistics, then classified with a k-means cluster analysis. The main results are five personas, which highlight the coexistence of different citizen groups that think and behave in a specific way. This process of profiling citizens’ priorities, behaviors, and participatory preferences can help professional designers and local governments to consider various citizens’ perspectives in the design of future smart solutions and participatory processes.
{"title":"Profiling Citizens in the Smart City: A Quantitative Study in Wallonia","authors":"Clémentine Schelings, Aurore Defays, C. Elsen","doi":"10.3390/smartcities6040098","DOIUrl":"https://doi.org/10.3390/smartcities6040098","url":null,"abstract":"Based on the assumption that citizens can participate in smart city development, this paper aims to capture the diversity of their profiles and their positioning towards smart city dynamics. The article starts with a literature review of some models of citizens to better understand how they could be portrayed in the smart city era. Considering that there is no “general citizen” and that usual typologies remain restrictive, we construct tailor-made personas, i.e., fictitious profiles based on real data. To this end, we present the results of a large-scale survey distributed to highly educated Walloon people in the framework of a general public exhibition. The profiling focuses on three aspects: (1) perception of smart city dimensions, (2) intended behavior regarding smart city solutions, and (3) favorite participatory methods. The collected answers were first analyzed with descriptive and nonparametric statistics, then classified with a k-means cluster analysis. The main results are five personas, which highlight the coexistence of different citizen groups that think and behave in a specific way. This process of profiling citizens’ priorities, behaviors, and participatory preferences can help professional designers and local governments to consider various citizens’ perspectives in the design of future smart solutions and participatory processes.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46434507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The location service is an important part of the smart city. A unified location service for outdoor and indoor/overground and underground activity will assist the construction of smart cities. However, with different coordinate systems and data formats, it is difficult to unify various positioning technologies on the same basis. Global navigation satellite system (GNSS)-based positioning is the only way to provide absolute location under the Earth-centered, Earth-fixed coordinate system (ECEF). Increasing indoor and underground human activity places significant demand on location-based services but no GNSS signals are available there. Fortunately, a type of satellite that is indoors, known as pseudolite, can transmit GNSS-like ranging signals. Users can obtain their position by receiving ranging signals and their resection without adding or switching other sensors when they go from outdoors to indoors. To complete the outreach of the GNSS indoors and underground to support the smart city, how to adapt the pseudolite design and unify coordinate frames for linking to the GNSS remain to be determined. In this regard, we provide an overview of the history of the research and application of pseudolites, the research progress from both the system side and the user side, and the plans for pseudolite-based location services in smart cities.
{"title":"Pseudolites to Support Location Services in Smart Cities: Review and Prospects","authors":"Tong Liu, Jian Liu, J. Wang, Heng Zhang, Bing Zhang, Yongchao Ma, Mengfei Sun, Zhiping Lv, Guochang Xu","doi":"10.3390/smartcities6040096","DOIUrl":"https://doi.org/10.3390/smartcities6040096","url":null,"abstract":"The location service is an important part of the smart city. A unified location service for outdoor and indoor/overground and underground activity will assist the construction of smart cities. However, with different coordinate systems and data formats, it is difficult to unify various positioning technologies on the same basis. Global navigation satellite system (GNSS)-based positioning is the only way to provide absolute location under the Earth-centered, Earth-fixed coordinate system (ECEF). Increasing indoor and underground human activity places significant demand on location-based services but no GNSS signals are available there. Fortunately, a type of satellite that is indoors, known as pseudolite, can transmit GNSS-like ranging signals. Users can obtain their position by receiving ranging signals and their resection without adding or switching other sensors when they go from outdoors to indoors. To complete the outreach of the GNSS indoors and underground to support the smart city, how to adapt the pseudolite design and unify coordinate frames for linking to the GNSS remain to be determined. In this regard, we provide an overview of the history of the research and application of pseudolites, the research progress from both the system side and the user side, and the plans for pseudolite-based location services in smart cities.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49547090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-17DOI: 10.3390/smartcities6040094
Tiago Tamagusko, Matheus Gomes Correia, Luís Rita, Tudor-Codrin Bostan, Miguel Peliteiro, Rodrigo Martins, L. Santos, Adelino Ferreira
Micromobility responds to urban transport challenges by reducing emissions, mitigating traffic, and improving accessibility. Nevertheless, the safety of micromobility users, particularly cyclists, remains a concern in urban environments. This study aims to construct a safety map and a risk-averse routing system for micromobility users in diverse urban environments, as exemplified by a case study in Lisbon. A data-driven methodology uses object detection algorithms and image segmentation techniques to identify potential risk factors on cycling routes from Google Street View images. The ‘Bikeable’ Multilayer Perceptron neural network measures these risks, assigning safety scores to each image. The method analyzed 5321 points across 24 parishes in Lisbon, with an average safety score of 4.5, indicating a generally safe environment for cyclists. Carnide emerged as the safest area, while Alcântara exhibited a higher level of potential risks. Additionally, an equation is proposed to compute route efficiency, enabling comparisons between different routes for identical origin-destination pairs. Preliminary findings suggest that the presented routing solution exhibits higher efficiency than the commercial routing benchmark. Risk-averse routes did not result in a substantial rise in travel distance or time, with increments of 7% on average. The study also contributed to increasing the existing amount of cycle path data in Lisbon by 12%, correcting inaccuracies, and updating the network in OpenStreetMap, providing access to more precise information and, consequently, more routes. The key contributions of this study, such as the safety map and risk-averse router, underscore the potential of data-driven tools for boosting urban micromobility. The solutions proposed demonstrate modularity and adaptability, making them fit for a range of urban scenarios and highlighting their value for cities prioritizing safe, sustainable urban mobility.
{"title":"Data-Driven Approach for Urban Micromobility Enhancement through Safety Mapping and Intelligent Route Planning","authors":"Tiago Tamagusko, Matheus Gomes Correia, Luís Rita, Tudor-Codrin Bostan, Miguel Peliteiro, Rodrigo Martins, L. Santos, Adelino Ferreira","doi":"10.3390/smartcities6040094","DOIUrl":"https://doi.org/10.3390/smartcities6040094","url":null,"abstract":"Micromobility responds to urban transport challenges by reducing emissions, mitigating traffic, and improving accessibility. Nevertheless, the safety of micromobility users, particularly cyclists, remains a concern in urban environments. This study aims to construct a safety map and a risk-averse routing system for micromobility users in diverse urban environments, as exemplified by a case study in Lisbon. A data-driven methodology uses object detection algorithms and image segmentation techniques to identify potential risk factors on cycling routes from Google Street View images. The ‘Bikeable’ Multilayer Perceptron neural network measures these risks, assigning safety scores to each image. The method analyzed 5321 points across 24 parishes in Lisbon, with an average safety score of 4.5, indicating a generally safe environment for cyclists. Carnide emerged as the safest area, while Alcântara exhibited a higher level of potential risks. Additionally, an equation is proposed to compute route efficiency, enabling comparisons between different routes for identical origin-destination pairs. Preliminary findings suggest that the presented routing solution exhibits higher efficiency than the commercial routing benchmark. Risk-averse routes did not result in a substantial rise in travel distance or time, with increments of 7% on average. The study also contributed to increasing the existing amount of cycle path data in Lisbon by 12%, correcting inaccuracies, and updating the network in OpenStreetMap, providing access to more precise information and, consequently, more routes. The key contributions of this study, such as the safety map and risk-averse router, underscore the potential of data-driven tools for boosting urban micromobility. The solutions proposed demonstrate modularity and adaptability, making them fit for a range of urban scenarios and highlighting their value for cities prioritizing safe, sustainable urban mobility.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44615648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-17DOI: 10.3390/smartcities6040095
Anthony Jnr. Bokolo
The transport sector is undergoing disruption due to trends such as tightening environmental targets, digitalization, and servitization, contributing to low-carbon mobility and offering citizen-oriented services. As a response, various initiatives, such as electric mobility (eMobility), have emerged that promote sustainable road transport and active mobility in the last few years. However, irrespective of the potential of eMobility, there are still few studies that examine individuals’ intention and adoption of eMobility-sharing services in smart communities. Accordingly, this study aims to develop a model grounded on the Diffusion of Innovation (DoI) theory to investigate the factors that impact individuals’ adoption of eMobility-sharing service and how to improve the adoption of eMobility-sharing service. A mixed-mode methodology was employed; quantitative data from survey questionnaires were used to gather data, and Statistical Package for Social Science (SPSS) was used to analyze the data. Additionally, qualitative data via interview was collected to demonstrate in ArchiMate modeling language how eMobility-sharing services are practically implemented as a use case study within smart communities. Findings from this study offer a model that focuses on eMobility-sharing adoption from the perspective of smart communities. Additionally, the findings offer a better understanding of how such integrated, multimodal systems fit with the sustainable mobility needs of citizens. More importantly, general recommendations to policymakers and practitioners to increase the uptake of shared eMobility are provided.
由于环境目标收紧、数字化和服务化、促进低碳出行和提供以公民为导向的服务等趋势,交通运输部门正在经历颠覆。作为回应,在过去几年中,出现了各种倡议,例如电动交通(eMobility),以促进可持续的道路运输和主动交通。然而,不管移动出行的潜力如何,仍然很少有研究调查智能社区中个人对移动出行共享服务的意愿和采用情况。因此,本研究旨在建立基于创新扩散(DoI)理论的模型,探讨影响个人对移动性共享服务采用的因素,以及如何提高个人对移动性共享服务的采用。采用混合模式方法;采用调查问卷的定量数据收集数据,采用SPSS (Statistical Package for Social Science)软件对数据进行分析。此外,通过访谈收集了定性数据,以ArchiMate建模语言展示了emmobility共享服务是如何在智能社区中作为用例研究实际实施的。本研究的结果提供了一个从智能社区的角度关注移动出行共享采用的模型。此外,研究结果还有助于更好地理解这种综合的多式联运系统如何满足公民的可持续出行需求。更重要的是,为政策制定者和从业者提供了增加共享电子交通的一般性建议。
{"title":"Examining the Adoption of Sustainable eMobility-Sharing in Smart Communities: Diffusion of Innovation Theory Perspective","authors":"Anthony Jnr. Bokolo","doi":"10.3390/smartcities6040095","DOIUrl":"https://doi.org/10.3390/smartcities6040095","url":null,"abstract":"The transport sector is undergoing disruption due to trends such as tightening environmental targets, digitalization, and servitization, contributing to low-carbon mobility and offering citizen-oriented services. As a response, various initiatives, such as electric mobility (eMobility), have emerged that promote sustainable road transport and active mobility in the last few years. However, irrespective of the potential of eMobility, there are still few studies that examine individuals’ intention and adoption of eMobility-sharing services in smart communities. Accordingly, this study aims to develop a model grounded on the Diffusion of Innovation (DoI) theory to investigate the factors that impact individuals’ adoption of eMobility-sharing service and how to improve the adoption of eMobility-sharing service. A mixed-mode methodology was employed; quantitative data from survey questionnaires were used to gather data, and Statistical Package for Social Science (SPSS) was used to analyze the data. Additionally, qualitative data via interview was collected to demonstrate in ArchiMate modeling language how eMobility-sharing services are practically implemented as a use case study within smart communities. Findings from this study offer a model that focuses on eMobility-sharing adoption from the perspective of smart communities. Additionally, the findings offer a better understanding of how such integrated, multimodal systems fit with the sustainable mobility needs of citizens. More importantly, general recommendations to policymakers and practitioners to increase the uptake of shared eMobility are provided.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43216125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-14DOI: 10.3390/smartcities6040093
Wenda Li, Tan Yigitcanlar, Will Browne, A. Nili
In an era in which technological advancements have a profound impact on our cities and societies, it is crucial to ensure that digital technology is not only driven by technological progress with economic goals but that it can also fulfill moral and social responsibilities. Hence, it is needed to advocate for ‘Responsible Innovation and Technology’ (RIT) to ensure cities and societies can harness the potential of technological progress and prosperity while safeguarding the well-being of individuals and communities. This study conducts a PRISMA review to explore and understand RIT concepts and its characteristics. In this study, we emphasize that RIT should deliver acceptable, accessible, trustworthy, and well governed technological outcomes, while ensuring these outcomes are aligned with societal desirability and human values, and should also be responsibly integrated into our cities and societies. The main contribution of this study is to identify and clarify the key characteristics of RIT, which has not been performed in such detail so far. The study, reported in this paper, also broadens the understanding of responsible research and innovation in the technosphere, particularly from a bottom-up perspective. Furthermore, the paper develops an RIT conceptual framework outlining its possible design procedures, which could be used by governments, companies, practitioners, researchers, and other stakeholders as a tool to address the grand challenges that accompany technological and scientific progress. The framework also informs science, technology, and innovation policy.
{"title":"The Making of Responsible Innovation and Technology: An Overview and Framework","authors":"Wenda Li, Tan Yigitcanlar, Will Browne, A. Nili","doi":"10.3390/smartcities6040093","DOIUrl":"https://doi.org/10.3390/smartcities6040093","url":null,"abstract":"In an era in which technological advancements have a profound impact on our cities and societies, it is crucial to ensure that digital technology is not only driven by technological progress with economic goals but that it can also fulfill moral and social responsibilities. Hence, it is needed to advocate for ‘Responsible Innovation and Technology’ (RIT) to ensure cities and societies can harness the potential of technological progress and prosperity while safeguarding the well-being of individuals and communities. This study conducts a PRISMA review to explore and understand RIT concepts and its characteristics. In this study, we emphasize that RIT should deliver acceptable, accessible, trustworthy, and well governed technological outcomes, while ensuring these outcomes are aligned with societal desirability and human values, and should also be responsibly integrated into our cities and societies. The main contribution of this study is to identify and clarify the key characteristics of RIT, which has not been performed in such detail so far. The study, reported in this paper, also broadens the understanding of responsible research and innovation in the technosphere, particularly from a bottom-up perspective. Furthermore, the paper develops an RIT conceptual framework outlining its possible design procedures, which could be used by governments, companies, practitioners, researchers, and other stakeholders as a tool to address the grand challenges that accompany technological and scientific progress. The framework also informs science, technology, and innovation policy.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49584307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-11DOI: 10.3390/smartcities6040091
A. Aldegheishem
Information and communication technology is changing the manner in which urban policies are designed. Saudi Arabia bases its smart initiative on the use of information and communication technologies in six dimensions, including economy, people, environment, living, mobility, and governance to improve quality of life and sustainable environment. This study draws on four Saudi Arabian cities including Riyadh, Makkah, Jeddah, and Medina, and aims to analyze their progress in the transformation into smart cities. The six identified areas were assessed using 57 indicators based on national and international information and literature. The results show that the four cities are progressing successfully into smart cities, with the highest progress evident for smart economy and the lowest progress for smart mobility in all investigated cities. Study findings show that Riyadh has made the most progress in the six smart city dimensions, concluding that Riyadh has been efficiently executing the smart city initiative with an aim to be a unique model in the world.
{"title":"Assessing the Progress of Smart Cities in Saudi Arabia","authors":"A. Aldegheishem","doi":"10.3390/smartcities6040091","DOIUrl":"https://doi.org/10.3390/smartcities6040091","url":null,"abstract":"Information and communication technology is changing the manner in which urban policies are designed. Saudi Arabia bases its smart initiative on the use of information and communication technologies in six dimensions, including economy, people, environment, living, mobility, and governance to improve quality of life and sustainable environment. This study draws on four Saudi Arabian cities including Riyadh, Makkah, Jeddah, and Medina, and aims to analyze their progress in the transformation into smart cities. The six identified areas were assessed using 57 indicators based on national and international information and literature. The results show that the four cities are progressing successfully into smart cities, with the highest progress evident for smart economy and the lowest progress for smart mobility in all investigated cities. Study findings show that Riyadh has made the most progress in the six smart city dimensions, concluding that Riyadh has been efficiently executing the smart city initiative with an aim to be a unique model in the world.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48478490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}