A. Donaldson, C. Snodgrass, R. Kokotanekova and A. Rożek
The Legacy Survey of Space and Time (LSST) at Vera C. Rubin Observatory will deliver high-quality, temporally sparse observations of millions of solar system objects on an unprecedented scale. Such data sets will likely enable the precise estimation of small-body properties on a population-wide basis. In this work, we consider the possible applications of photometric data points from LSST to the characterization of Jupiter-family comet (JFC) nuclei. We simulate sparse-in-time lightcurve points with an LSST-like cadence for the orbit of a JFC between 2024 and 2033. Convex lightcurve inversion is used to assess whether the simulation input parameters can be accurately reproduced for a sample of nucleus rotation periods, pole orientations, activity onsets, shapes, and sizes. We find that the rotation period and pole direction can be reliably constrained across all nucleus variants tested, and that the convex shape models, while limited in their ability to describe complex or bilobed nuclei, are effective for correcting sparse photometry for rotational modulation to improve estimates of nucleus phase functions. Based on this analysis, we anticipate that LSST photometry will significantly enhance our present understanding of the spin state and phase function distributions of JFC nuclei.
{"title":"Predictions for Sparse Photometry of Jupiter-family Comet Nuclei in the LSST Era","authors":"A. Donaldson, C. Snodgrass, R. Kokotanekova and A. Rożek","doi":"10.3847/psj/ad55c6","DOIUrl":"https://doi.org/10.3847/psj/ad55c6","url":null,"abstract":"The Legacy Survey of Space and Time (LSST) at Vera C. Rubin Observatory will deliver high-quality, temporally sparse observations of millions of solar system objects on an unprecedented scale. Such data sets will likely enable the precise estimation of small-body properties on a population-wide basis. In this work, we consider the possible applications of photometric data points from LSST to the characterization of Jupiter-family comet (JFC) nuclei. We simulate sparse-in-time lightcurve points with an LSST-like cadence for the orbit of a JFC between 2024 and 2033. Convex lightcurve inversion is used to assess whether the simulation input parameters can be accurately reproduced for a sample of nucleus rotation periods, pole orientations, activity onsets, shapes, and sizes. We find that the rotation period and pole direction can be reliably constrained across all nucleus variants tested, and that the convex shape models, while limited in their ability to describe complex or bilobed nuclei, are effective for correcting sparse photometry for rotational modulation to improve estimates of nucleus phase functions. Based on this analysis, we anticipate that LSST photometry will significantly enhance our present understanding of the spin state and phase function distributions of JFC nuclei.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141740881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deborah Domingue, John Weirich, Frank Chuang, Samuel Courville, Roger Clark, Amanda Sickafoose, Eric Palmer and Robert Gaskell
The area in the Reiner Gamma swirl studied by Weirich et al. for topographic correlations also displays correlations with the Hapke-model-derived single-scattering albedo, surface roughness, and particle scattering properties with swirl unit. The correlations with single-scattering albedo associate compositional variations in plagioclase and FeO content with swirl unit. The correlations with photometric surface roughness show a rougher surface on-swirl, implying a potentially more porous surface on-swirl compared to off-swirl. This suggests the variations in single-scattering albedo are dominated by the compositional differences and not structural differences, such as compaction. Grain-size differences could still contribute to the albedo variations. Differences in particle scattering properties between on-swirl and off-swirl are counter-indicative of the trend expected from variations in space weathering, unless there is a process to initiate either size sorting or compositional differences. The photometric properties point to a complex interaction of multiple processes to form the swirl units, not a singular dominant process. Variations in weathering, dust mobilization and entrapment, and impact modification may all play a key role.
{"title":"Photometric Properties within the Reiner Gamma Swirl: Constraining Formation Mechanisms","authors":"Deborah Domingue, John Weirich, Frank Chuang, Samuel Courville, Roger Clark, Amanda Sickafoose, Eric Palmer and Robert Gaskell","doi":"10.3847/psj/ad2179","DOIUrl":"https://doi.org/10.3847/psj/ad2179","url":null,"abstract":"The area in the Reiner Gamma swirl studied by Weirich et al. for topographic correlations also displays correlations with the Hapke-model-derived single-scattering albedo, surface roughness, and particle scattering properties with swirl unit. The correlations with single-scattering albedo associate compositional variations in plagioclase and FeO content with swirl unit. The correlations with photometric surface roughness show a rougher surface on-swirl, implying a potentially more porous surface on-swirl compared to off-swirl. This suggests the variations in single-scattering albedo are dominated by the compositional differences and not structural differences, such as compaction. Grain-size differences could still contribute to the albedo variations. Differences in particle scattering properties between on-swirl and off-swirl are counter-indicative of the trend expected from variations in space weathering, unless there is a process to initiate either size sorting or compositional differences. The photometric properties point to a complex interaction of multiple processes to form the swirl units, not a singular dominant process. Variations in weathering, dust mobilization and entrapment, and impact modification may all play a key role.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"95 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The current International Astronomical Union (IAU) definition of “planet” is problematic because it is vague and excludes exoplanets. Here, we describe aspects of quantitative planetary taxonomy and examine the results of unsupervised clustering of solar system bodies to guide the development of possible classification frameworks. Two unsurprising conclusions emerged from the clustering analysis: (1) satellites are distinct from planets and (2) dynamical dominance is a natural organizing principle for planetary taxonomy. To generalize an existing dynamical dominance criterion, we adopt a universal clearing timescale applicable to all central bodies (brown dwarfs, stars, and stellar remnants). Then, we propose two quantitative, unified frameworks to define both planets and exoplanets. The first framework is aligned with both the IAU definition of planet in the solar system and the IAU working definition of an exoplanet. The second framework is a simpler mass-based framework that avoids some of the difficulties ingrained in current IAU recommendations.
{"title":"Quantitative Criteria for Defining Planets","authors":"Jean-Luc Margot, Brett Gladman and Tony Yang","doi":"10.3847/psj/ad55f3","DOIUrl":"https://doi.org/10.3847/psj/ad55f3","url":null,"abstract":"The current International Astronomical Union (IAU) definition of “planet” is problematic because it is vague and excludes exoplanets. Here, we describe aspects of quantitative planetary taxonomy and examine the results of unsupervised clustering of solar system bodies to guide the development of possible classification frameworks. Two unsurprising conclusions emerged from the clustering analysis: (1) satellites are distinct from planets and (2) dynamical dominance is a natural organizing principle for planetary taxonomy. To generalize an existing dynamical dominance criterion, we adopt a universal clearing timescale applicable to all central bodies (brown dwarfs, stars, and stellar remnants). Then, we propose two quantitative, unified frameworks to define both planets and exoplanets. The first framework is aligned with both the IAU definition of planet in the solar system and the IAU working definition of an exoplanet. The second framework is a simpler mass-based framework that avoids some of the difficulties ingrained in current IAU recommendations.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"330 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Diego Carrillo-Sánchez, John M. C. Plane, Diego Janches and Gerónimo L. Villanueva
In this study, a comprehensive model of the meteoric organic cycle on Mars for the current geological period is developed, which characterizes the ablation of exogenous organic matter in the upper atmosphere, the accretion of intact carbon at the surface, and the potential production of methane by UV photolysis from the surface reservoir. The model accounts for both the latitudinal and seasonal variation of the meteoroids’ input from the most relevant populations in the inner solar system. A recent version of the University of Leeds Chemical Ablation Model, which includes a semiempirical model to describe the pyrolysis kinetics of the meteoric organic matter, is then combined with this meteoroid input function and a semiempirical model that quantifies the UV production of methane. The minimum and maximum accretion rates of organics are between 18 and 90 kg sol−1 at aphelion and 45–134 kg sol−1 at the first crossing of the ecliptic plane. The resulting mixing ratios of carbon, in the top 200 μm of the surface layer, range from 0.09–0.43 ppm at 20°N to 4.8–8.9 ppm around the south pole. To be consistent with the methane upper limit of 0.02 ppbv measured by the NOMAD instrument on the ExoMars Trace Gas Orbiter, the UV photolysis yields for methane production need to be around 3% assuming a meteoric carbon content in comets of 25.6 wt% and an atmospheric lifetime of methane of 329 Earth yr. Alternatively, a laboratory estimate of 20% for the methane production yield would require a lifetime of 60 Earth yr.
{"title":"Accretion of Meteoric Organic Matter at the Surface of Mars and Potential Production of Methane by Ultraviolet Radiation","authors":"Juan Diego Carrillo-Sánchez, John M. C. Plane, Diego Janches and Gerónimo L. Villanueva","doi":"10.3847/psj/ad54c9","DOIUrl":"https://doi.org/10.3847/psj/ad54c9","url":null,"abstract":"In this study, a comprehensive model of the meteoric organic cycle on Mars for the current geological period is developed, which characterizes the ablation of exogenous organic matter in the upper atmosphere, the accretion of intact carbon at the surface, and the potential production of methane by UV photolysis from the surface reservoir. The model accounts for both the latitudinal and seasonal variation of the meteoroids’ input from the most relevant populations in the inner solar system. A recent version of the University of Leeds Chemical Ablation Model, which includes a semiempirical model to describe the pyrolysis kinetics of the meteoric organic matter, is then combined with this meteoroid input function and a semiempirical model that quantifies the UV production of methane. The minimum and maximum accretion rates of organics are between 18 and 90 kg sol−1 at aphelion and 45–134 kg sol−1 at the first crossing of the ecliptic plane. The resulting mixing ratios of carbon, in the top 200 μm of the surface layer, range from 0.09–0.43 ppm at 20°N to 4.8–8.9 ppm around the south pole. To be consistent with the methane upper limit of 0.02 ppbv measured by the NOMAD instrument on the ExoMars Trace Gas Orbiter, the UV photolysis yields for methane production need to be around 3% assuming a meteoric carbon content in comets of 25.6 wt% and an atmospheric lifetime of methane of 329 Earth yr. Alternatively, a laboratory estimate of 20% for the methane production yield would require a lifetime of 60 Earth yr.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Zongye, He Zhaoguo, Yan Qi, Ge Yasong, Cao Yong, Chu Yuchuan, Lai Hairong and Cui Jun
The levitation of charged dust, which may cause serious hazards to astronauts and lunar rovers, has been one of the most significant challenges in lunar exploration. Here we simulate lunar sheath potentials in different solar wind conditions and solar zenith angles (SZAs) on the lunar surface by the particle-in-cell method. The simulated potentials exhibit two types of distributions as a function of height, depending on the SZAs. For SZA ∼ 0°–70°, the nonmonotonic distribution with positive surface potential dominates in the photoelectron sheath. For SZA >∼81°, the monotonic distribution with negative surface potential is observed in the plasma sheath. With the calculated potentials and the assumption that the dust radius distribution exponentially decreases, we further investigate spatial distributions of the dust levitated above the surface. It is found that number density of the levitating lunar dust is enhanced at the terminator (SZA ∼ 81°) in the plasma sheath. In the photoelectron sheath it gradually decreases as the SZA increases from 0° to 70°. Further calculations of the potential and the derived electrostatic field suggest that the dust spatial distributions can be influenced by the bulk velocity, number density, and temperature of the solar wind. Those findings deepen our understanding of lunar surface charging and the mechanism of lunar dust levitation, which can provide technical support for lunar explorations.
{"title":"Simulations on Levitation and Spatial Distribution of Charged Dust on the Moon Surface","authors":"Li Zongye, He Zhaoguo, Yan Qi, Ge Yasong, Cao Yong, Chu Yuchuan, Lai Hairong and Cui Jun","doi":"10.3847/psj/ad57bb","DOIUrl":"https://doi.org/10.3847/psj/ad57bb","url":null,"abstract":"The levitation of charged dust, which may cause serious hazards to astronauts and lunar rovers, has been one of the most significant challenges in lunar exploration. Here we simulate lunar sheath potentials in different solar wind conditions and solar zenith angles (SZAs) on the lunar surface by the particle-in-cell method. The simulated potentials exhibit two types of distributions as a function of height, depending on the SZAs. For SZA ∼ 0°–70°, the nonmonotonic distribution with positive surface potential dominates in the photoelectron sheath. For SZA >∼81°, the monotonic distribution with negative surface potential is observed in the plasma sheath. With the calculated potentials and the assumption that the dust radius distribution exponentially decreases, we further investigate spatial distributions of the dust levitated above the surface. It is found that number density of the levitating lunar dust is enhanced at the terminator (SZA ∼ 81°) in the plasma sheath. In the photoelectron sheath it gradually decreases as the SZA increases from 0° to 70°. Further calculations of the potential and the derived electrostatic field suggest that the dust spatial distributions can be influenced by the bulk velocity, number density, and temperature of the solar wind. Those findings deepen our understanding of lunar surface charging and the mechanism of lunar dust levitation, which can provide technical support for lunar explorations.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"2018 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141614221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dayside convection is one of the most important contributors to a tidally locked planet’s climate. Considering the long-standing challenge of simulating convections, we employ a convection-resolving model known as the Model for Prediction across Scales—Atmosphere and perform a series of simulations with spatial resolution ranging from 960 to 10 km. With TRAPPIST-1e, a potentially habitable exoplanet, as the target, we aim to draw a comparative analysis against the results from the TRAPPIST-1 Habitable Atmosphere Intercomparison project. Regarding the overall climate states, our simulations reaffirm the findings of the previous general circulation model (GCM). Both the extensive substellar cloud cluster and the intricate cloud street feature are successfully reproduced. The influence of varying grid resolution exhibits a remarkably marginal impact across our resolution spectrum, albeit with a slightly heightened sensitivity observed at the nightside. Major differences center around the cloud-related variables, including cloud phase (liquid and ice), amount, and height, in both the grid resolution assessments and GCM intercomparison scenarios. Furthermore, we explore the repercussions on the phase curve and transit spectrum.
{"title":"Simulated Climate of TRAPPIST-1e Using MPAS-A and Comparisons with Other GCMs","authors":"Lixiang Gu, Jun Yang, Mingyu Yan","doi":"10.3847/psj/ad5546","DOIUrl":"https://doi.org/10.3847/psj/ad5546","url":null,"abstract":"Dayside convection is one of the most important contributors to a tidally locked planet’s climate. Considering the long-standing challenge of simulating convections, we employ a convection-resolving model known as the Model for Prediction across Scales—Atmosphere and perform a series of simulations with spatial resolution ranging from 960 to 10 km. With TRAPPIST-1e, a potentially habitable exoplanet, as the target, we aim to draw a comparative analysis against the results from the TRAPPIST-1 Habitable Atmosphere Intercomparison project. Regarding the overall climate states, our simulations reaffirm the findings of the previous general circulation model (GCM). Both the extensive substellar cloud cluster and the intricate cloud street feature are successfully reproduced. The influence of varying grid resolution exhibits a remarkably marginal impact across our resolution spectrum, albeit with a slightly heightened sensitivity observed at the nightside. Major differences center around the cloud-related variables, including cloud phase (liquid and ice), amount, and height, in both the grid resolution assessments and GCM intercomparison scenarios. Furthermore, we explore the repercussions on the phase curve and transit spectrum.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"63 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ya Huei Huang, Christian Riedel, Jason M. Soderblom, Stephanie Brown Krein, Csilla Orgel, Jack W. Conrad, Masatoshi Hirabayashi, David A. Minton
The density of craters on a planetary surface directly relates to the age of the surface. As the surface ages, however, craters can be erased by subsequent large impacts via direct overprinting, known as geometric crater obliteration. Such counts become increasingly limited as surfaces become more heavily cratered. Techniques to infer the statistics of the regions obliterated by craters were developed in the past decade. Such techniques, however, have only been used for regional studies. Herein, we present a study of the global density of lunar impact craters ≥20 km in diameter using both traditional crater-counting and buffered nonsparseness correction (BNSC) crater-counting techniques. By comparing the measurements, we quantify the influence of geometric crater obliteration on the visible lunar crater record. Our results reveal that geometric crater obliteration erased up to three-fifths of craters ≥20 km in diameter that formed on the most ancient lunar terrains, whereas younger surfaces, like the Procellarum KREEP Terrane, show little to no evidence of such crater obliteration. The differences in derived crater densities highlight ancient surfaces in which the effects of geometric crater obliteration must be considered to characterize their cratering histories. Furthermore, our results identify the most heavily cratered area on the Moon, a region of the lunar highlands between Smythii basin and the South Pole–Aitken (SPA) basin (Smythii–SPA–Highlands); the number of impacts revealed by the BNSC technique for this region is consistent with estimates derived from the abundance of highly siderophile elements and from modeling crustal porosity.
{"title":"Global Lunar Crater Density Using Buffered Nonsparseness Correction","authors":"Ya Huei Huang, Christian Riedel, Jason M. Soderblom, Stephanie Brown Krein, Csilla Orgel, Jack W. Conrad, Masatoshi Hirabayashi, David A. Minton","doi":"10.3847/psj/ad4ceb","DOIUrl":"https://doi.org/10.3847/psj/ad4ceb","url":null,"abstract":"The density of craters on a planetary surface directly relates to the age of the surface. As the surface ages, however, craters can be erased by subsequent large impacts via direct overprinting, known as geometric crater obliteration. Such counts become increasingly limited as surfaces become more heavily cratered. Techniques to infer the statistics of the regions obliterated by craters were developed in the past decade. Such techniques, however, have only been used for regional studies. Herein, we present a study of the global density of lunar impact craters ≥20 km in diameter using both traditional crater-counting and buffered nonsparseness correction (BNSC) crater-counting techniques. By comparing the measurements, we quantify the influence of geometric crater obliteration on the visible lunar crater record. Our results reveal that geometric crater obliteration erased up to three-fifths of craters ≥20 km in diameter that formed on the most ancient lunar terrains, whereas younger surfaces, like the Procellarum KREEP Terrane, show little to no evidence of such crater obliteration. The differences in derived crater densities highlight ancient surfaces in which the effects of geometric crater obliteration must be considered to characterize their cratering histories. Furthermore, our results identify the most heavily cratered area on the Moon, a region of the lunar highlands between Smythii basin and the South Pole–Aitken (SPA) basin (Smythii–SPA–Highlands); the number of impacts revealed by the BNSC technique for this region is consistent with estimates derived from the abundance of highly siderophile elements and from modeling crustal porosity.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"367 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zachariah Milby, Katherine de Kleer, Carl Schmidt, François Leblanc
Ganymede’s auroras are the product of complex interactions between its intrinsic magnetosphere and the surrounding Jovian plasma environment and can be used to derive both atmospheric composition and density. In this study, we analyzed a time series of Ganymede’s optical auroras taken with Keck I/HIRES during eclipse by Jupiter on 2021 June 8 UTC, one day after the Juno flyby of Ganymede. The data had sufficient signal-to-noise in individual 5 minute observations to allow for the first high-cadence analysis of the spatial distribution of the optical aurora brightness and the ratio between the [O i] 630.0 and 557.7 nm disk-integrated auroral brightnesses—a quantity diagnostic of the relative abundances of O, O2, and H2O in Ganymede’s atmosphere. We found that the hemisphere closer to the centrifugal equator of Jupiter’s magnetosphere (where electron number density is highest) was up to twice as bright as the opposing hemisphere. The dusk (trailing) hemisphere, subjected to the highest flux of charged particles from Jupiter’s magnetosphere, was also consistently almost twice as bright as the dawn (leading) hemisphere. We modeled emission from simulated O2 and H2O atmospheres during eclipse and found that if Ganymede hosts an H2O sublimation atmosphere in sunlight, it must collapse on a faster timescale than expected to explain its absence in our data given our current understanding of Ganymede’s surface properties.
{"title":"Short-timescale Spatial Variability of Ganymede’s Optical Aurora","authors":"Zachariah Milby, Katherine de Kleer, Carl Schmidt, François Leblanc","doi":"10.3847/psj/ad49a2","DOIUrl":"https://doi.org/10.3847/psj/ad49a2","url":null,"abstract":"Ganymede’s auroras are the product of complex interactions between its intrinsic magnetosphere and the surrounding Jovian plasma environment and can be used to derive both atmospheric composition and density. In this study, we analyzed a time series of Ganymede’s optical auroras taken with Keck I/HIRES during eclipse by Jupiter on 2021 June 8 UTC, one day after the Juno flyby of Ganymede. The data had sufficient signal-to-noise in individual 5 minute observations to allow for the first high-cadence analysis of the spatial distribution of the optical aurora brightness and the ratio between the [O <sc>i</sc>] 630.0 and 557.7 nm disk-integrated auroral brightnesses—a quantity diagnostic of the relative abundances of O, O<sub>2</sub>, and H<sub>2</sub>O in Ganymede’s atmosphere. We found that the hemisphere closer to the centrifugal equator of Jupiter’s magnetosphere (where electron number density is highest) was up to twice as bright as the opposing hemisphere. The dusk (trailing) hemisphere, subjected to the highest flux of charged particles from Jupiter’s magnetosphere, was also consistently almost twice as bright as the dawn (leading) hemisphere. We modeled emission from simulated O<sub>2</sub> and H<sub>2</sub>O atmospheres during eclipse and found that if Ganymede hosts an H<sub>2</sub>O sublimation atmosphere in sunlight, it must collapse on a faster timescale than expected to explain its absence in our data given our current understanding of Ganymede’s surface properties.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jack J. Lissauer, Jason F. Rowe, Daniel Jontof-Hutter, Daniel C. Fabrycky, Eric B. Ford, Darin Ragozzine, Jason H. Steffen and Kadri M. Nizam
We present a new catalog of Kepler planet candidates that prioritizes accuracy of planetary dispositions and properties over uniformity. This catalog contains 4376 transiting planet candidates, including 1791 residing within 709 multiplanet systems, and provides the best parameters available for a large sample of Kepler planet candidates. We also provide a second set of stellar and planetary properties for transiting candidates that are uniformly derived for use in occurrence rate studies. Estimates of orbital periods have been improved, but as in previous catalogs, our tabulated values for period uncertainties do not fully account for transit timing variations (TTVs). We show that many planets are likely to have TTVs with long periodicities caused by various processes, including orbital precession, and that such TTVs imply that ephemerides of Kepler planets are not as accurate on multidecadal timescales as predicted by the small formal errors (typically 1 part in 106 and rarely >10−5) in the planets’ measured mean orbital periods during the Kepler epoch. Analysis of normalized transit durations implies that eccentricities of planets are anticorrelated with the number of companion transiting planets. Our primary catalog lists all known Kepler planet candidates that orbit and transit only one star; for completeness, we also provide an abbreviated listing of the properties of the two dozen nontransiting planets that have been identified around stars that host transiting planets discovered by Kepler.
{"title":"Updated Catalog of Kepler Planet Candidates: Focus on Accuracy and Orbital Periods","authors":"Jack J. Lissauer, Jason F. Rowe, Daniel Jontof-Hutter, Daniel C. Fabrycky, Eric B. Ford, Darin Ragozzine, Jason H. Steffen and Kadri M. Nizam","doi":"10.3847/psj/ad0e6e","DOIUrl":"https://doi.org/10.3847/psj/ad0e6e","url":null,"abstract":"We present a new catalog of Kepler planet candidates that prioritizes accuracy of planetary dispositions and properties over uniformity. This catalog contains 4376 transiting planet candidates, including 1791 residing within 709 multiplanet systems, and provides the best parameters available for a large sample of Kepler planet candidates. We also provide a second set of stellar and planetary properties for transiting candidates that are uniformly derived for use in occurrence rate studies. Estimates of orbital periods have been improved, but as in previous catalogs, our tabulated values for period uncertainties do not fully account for transit timing variations (TTVs). We show that many planets are likely to have TTVs with long periodicities caused by various processes, including orbital precession, and that such TTVs imply that ephemerides of Kepler planets are not as accurate on multidecadal timescales as predicted by the small formal errors (typically 1 part in 106 and rarely >10−5) in the planets’ measured mean orbital periods during the Kepler epoch. Analysis of normalized transit durations implies that eccentricities of planets are anticorrelated with the number of companion transiting planets. Our primary catalog lists all known Kepler planet candidates that orbit and transit only one star; for completeness, we also provide an abbreviated listing of the properties of the two dozen nontransiting planets that have been identified around stars that host transiting planets discovered by Kepler.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141528958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew C. Holmes, Wendy K. Caldwell, Joanne L. Budzien and Carl E. Johnson
Hydrodynamic codes (hydrocodes) are common tools for modeling hypervelocity impacts to provide insight into the physical phenomenon. Hydrocodes can simulate impacts from micrometer to kilometer spatial scales and reach impact velocities difficult to achieve in experimental settings. However, numerical models are approximations, and demonstrating that a numerical method is capable of providing physical results for these models is essential. In this work, we employ a hydrocode verification technique that leverages hydrodynamic similarity, a mathematical property of the conservation equations of fluid mechanics that form the basis for hydrocode models. Using the FLAG hydrocode, we simulate aluminum (Al) and basalt projectiles and targets at spatial scales spanning 7 orders of magnitude (hundreds of micrometers to kilometers). These materials were chosen because Al-6061 is a common material in spacecraft and satellites and basalt is a useful approximation of rocky astronomical bodies. Our results show that hydrodynamic similarity holds for each material model used and across spatial scales. We show that under certain conditions hydrodynamic similarity can apply in the presence of gravity and that similarity does not hold in the presence of strength models. We conclude that the FLAG hydrocode preserves important mathematical properties of fluid dynamics in hypervelocity impacts of Al-6061 and basalt.
流体动力学代码(水力代码)是模拟超高速撞击的常用工具,可帮助人们深入了解物理现象。水动力代码可以模拟从微米到千米空间尺度的撞击,并达到在实验环境中难以实现的撞击速度。然而,数值模型只是近似值,因此必须证明数值方法能够为这些模型提供物理结果。在这项工作中,我们利用流体力学相似性这一流体力学守恒方程的数学特性,采用了一种水力代码验证技术,该技术构成了水力代码模型的基础。我们使用 FLAG 水文编码模拟了铝(Al)和玄武岩射弹和目标,其空间尺度跨越 7 个数量级(从数百微米到数千米)。之所以选择这些材料,是因为铝-6061 是航天器和卫星中的常见材料,而玄武岩则是岩石天体的有用近似材料。我们的研究结果表明,流体力学相似性适用于所使用的每种材料模型和不同的空间尺度。我们的结果表明,在某些条件下,流体力学相似性可适用于存在重力的情况,而在存在强度模型的情况下,相似性则不成立。我们的结论是,FLAG 流体动力学代码保留了 Al-6061 和玄武岩超高速撞击中流体动力学的重要数学特性。
{"title":"Using Hydrodynamic Similarity as a Verification Method for Impact Cratering Simulations in the FLAG Hydrocode","authors":"Matthew C. Holmes, Wendy K. Caldwell, Joanne L. Budzien and Carl E. Johnson","doi":"10.3847/psj/ad4bdb","DOIUrl":"https://doi.org/10.3847/psj/ad4bdb","url":null,"abstract":"Hydrodynamic codes (hydrocodes) are common tools for modeling hypervelocity impacts to provide insight into the physical phenomenon. Hydrocodes can simulate impacts from micrometer to kilometer spatial scales and reach impact velocities difficult to achieve in experimental settings. However, numerical models are approximations, and demonstrating that a numerical method is capable of providing physical results for these models is essential. In this work, we employ a hydrocode verification technique that leverages hydrodynamic similarity, a mathematical property of the conservation equations of fluid mechanics that form the basis for hydrocode models. Using the FLAG hydrocode, we simulate aluminum (Al) and basalt projectiles and targets at spatial scales spanning 7 orders of magnitude (hundreds of micrometers to kilometers). These materials were chosen because Al-6061 is a common material in spacecraft and satellites and basalt is a useful approximation of rocky astronomical bodies. Our results show that hydrodynamic similarity holds for each material model used and across spatial scales. We show that under certain conditions hydrodynamic similarity can apply in the presence of gravity and that similarity does not hold in the presence of strength models. We conclude that the FLAG hydrocode preserves important mathematical properties of fluid dynamics in hypervelocity impacts of Al-6061 and basalt.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"142 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}