首页 > 最新文献

The Planetary Science Journal最新文献

英文 中文
Uranus’s Influence on Neptune’s Exterior Mean-motion Resonances 天王星对海王星外部均动共振的影响
Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-06-10 DOI: 10.3847/psj/ad4707
Severance Graham, Kathryn Volk
Neptune’s external mean-motion resonances play an important role in sculpting the observed population of trans-Neptunian objects (TNOs). The population of scattering TNOs is known to “stick” to Neptune's resonances while evolving in semimajor axis (a), though simulations show that resonance sticking is less prevalent at a ≳ 200–250 au. Here we present an extensive numerical exploration of the strengths of Neptune's resonances for scattering TNOs with perihelion distances q = 33 au. We show that the drop-off in resonance sticking for the large a scattering TNOs is not a generic feature of scattering dynamics but can instead be attributed to the specific configuration of Neptune and Uranus in our solar system. In simulations with just Uranus removed from the giant planet system, Neptune's resonances are strong in the scattering population out to at least ∼300 au. Uranus and Neptune are near a 2:1 period ratio, and the variations in Neptune's orbit resulting from this near-resonance are responsible for destabilizing Neptune's resonances for high-e TNO orbits beyond the ∼20:1 resonance at a ≈ 220 au. Direct interactions between Uranus and the scattering population are responsible for slightly weakening Neptune's closer-in resonances. In simulations where Neptune and Uranus are placed in their mutual 2:1 resonance, we see almost no stable libration of scattering particles in Neptune's external resonances. Our results have important implications for how the strengths of Neptune's distant resonances varied during the epoch of planet migration when the Neptune–Uranus period ratio was evolving. These strength variations likely affected the distant scattering, resonant, and detached TNO populations.
海王星的外部平均运动共振在形成观测到的跨海王星天体(TNOs)群方面起着重要作用。众所周知,在半长轴(a)的演化过程中,散射的 TNO 物体群会 "粘附 "在海王星的共振上,不过模拟结果表明,共振粘附在 ≳ 200-250 au 时并不那么普遍。在这里,我们对近日点距离 q = 33 au 的散射 TNO 的海王星共振强度进行了广泛的数值探索。我们的研究表明,大a散射TNOs共振粘性的下降并不是散射动力学的一般特征,而是由于海王星和天王星在太阳系中的特殊构造造成的。在只将天王星从巨行星系统中移除的模拟中,海王星的共振在至少 ∼300 au 范围内的散射群体中是很强的。天王星和海王星的周期比接近 2:1,这种近共振导致海王星轨道的变化,从而破坏了海王星在 ≈ 220 au 处的∼20:1 共振之外的高 e TNO 轨道共振的稳定性。天王星和散射群之间的直接相互作用会稍微削弱海王星的近距离共振。在海王星和天王星处于2:1共振的模拟中,我们发现海王星外部共振中几乎没有稳定的散射粒子天平动。我们的研究结果对海王星-天王星周期比演变的行星迁移时代海王星遥远共振的强度如何变化具有重要意义。这些强度变化很可能会影响到遥远的散射、共振和分离的尘埃粒子群。
{"title":"Uranus’s Influence on Neptune’s Exterior Mean-motion Resonances","authors":"Severance Graham, Kathryn Volk","doi":"10.3847/psj/ad4707","DOIUrl":"https://doi.org/10.3847/psj/ad4707","url":null,"abstract":"Neptune’s external mean-motion resonances play an important role in sculpting the observed population of trans-Neptunian objects (TNOs). The population of scattering TNOs is known to “stick” to Neptune's resonances while evolving in semimajor axis (<italic toggle=\"yes\">a</italic>), though simulations show that resonance sticking is less prevalent at <italic toggle=\"yes\">a</italic> ≳ 200–250 au. Here we present an extensive numerical exploration of the strengths of Neptune's resonances for scattering TNOs with perihelion distances <italic toggle=\"yes\">q</italic> = 33 au. We show that the drop-off in resonance sticking for the large <italic toggle=\"yes\">a</italic> scattering TNOs is not a generic feature of scattering dynamics but can instead be attributed to the specific configuration of Neptune and Uranus in our solar system. In simulations with just Uranus removed from the giant planet system, Neptune's resonances are strong in the scattering population out to at least ∼300 au. Uranus and Neptune are near a 2:1 period ratio, and the variations in Neptune's orbit resulting from this near-resonance are responsible for destabilizing Neptune's resonances for high-<italic toggle=\"yes\">e</italic> TNO orbits beyond the ∼20:1 resonance at <italic toggle=\"yes\">a</italic> ≈ 220 au. Direct interactions between Uranus and the scattering population are responsible for slightly weakening Neptune's closer-in resonances. In simulations where Neptune and Uranus are placed in their mutual 2:1 resonance, we see almost no stable libration of scattering particles in Neptune's external resonances. Our results have important implications for how the strengths of Neptune's distant resonances varied during the epoch of planet migration when the Neptune–Uranus period ratio was evolving. These strength variations likely affected the distant scattering, resonant, and detached TNO populations.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Explainable Deep-learning Model of Proton Auroras on Mars 火星质子极光的可解释深度学习模型
Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-06-10 DOI: 10.3847/psj/ad45ff
Dattaraj B. Dhuri, Dimitra Atri, Ahmed AlHantoobi
Proton auroras are widely observed on the dayside of Mars, identified as a significant intensity enhancement in the hydrogen Lyα (121.6 nm) emission at altitudes of ∼110 and 150 km. Solar wind protons penetrating as energetic neutral atoms into Mars’ thermosphere are thought to be primarily responsible for these auroras. Recent observations of spatially localized “patchy” proton auroras suggest a possible direct deposition of protons into Mars’ atmosphere during unstable solar wind conditions. Improving our understanding of proton auroras is therefore important for characterizing the interaction of the solar wind with Mars’ atmosphere. Here, we develop a first purely data-driven model of proton auroras using Mars Atmosphere and Volatile Evolution (MAVEN) in situ observations and limb scans of Lyα emissions between 2014 and 2022. We train an artificial neural network that reproduces individual Lyα intensities and relative Lyα peak intensity enhancements with Pearson correlations of ∼94% and ∼60% respectively for the test data, along with a faithful reconstruction of the shape of the observed altitude profiles of Lyα emission. By performing a Shapley Additive Explanations (SHAP) analysis, we find that solar zenith angle, solar longitude, CO2 atmosphere variability, solar wind speed, and temperature are the most important features for the modeled Lyα peak intensity enhancements. Additionally, we find that the modeled peak intensity enhancements are high for early local-time hours, particularly near polar latitudes, and the induced magnetic fields are weaker. Through SHAP analysis, we also identify the influence of biases in the training data and interdependences between the measurements used for the modeling, and an improvement of those aspects can significantly improve the performance and applicability of the ANN model.
质子极光在火星日侧被广泛观测到,被确定为氢 Lyα(121.6 nm)发射在 110 至 150 千米高度的显著增强。太阳风质子作为高能中性原子穿透火星热层被认为是这些极光的主要原因。最近对空间局部 "斑块状 "质子极光的观测表明,在不稳定的太阳风条件下,质子可能直接沉积到火星大气中。因此,加深对质子极光的了解对于描述太阳风与火星大气的相互作用非常重要。在这里,我们利用火星大气与挥发演化(MAVEN)在2014年至2022年期间的原位观测数据和Lyα发射的边缘扫描数据,首次建立了一个纯数据驱动的质子极光模型。我们训练了一个人工神经网络,该网络可以再现单个 Lyα 强度和相对 Lyα 峰强度增强,与测试数据的皮尔逊相关性分别为 ∼94% 和 ∼60%,并忠实地重建了观测到的 Lyα 辐射高度剖面的形状。通过 Shapley Additive Explanations(SHAP)分析,我们发现太阳天顶角、太阳经度、CO2 大气变率、太阳风速和温度是模拟 Lyα 峰值强度增强的最重要特征。此外,我们还发现,建模的峰值强度增强在当地时间早期较高,尤其是在极地纬度附近,而且诱导磁场较弱。通过 SHAP 分析,我们还发现了训练数据中偏差的影响以及建模所用测量数据之间的相互依赖关系,这些方面的改进可以显著提高 ANN 模型的性能和适用性。
{"title":"An Explainable Deep-learning Model of Proton Auroras on Mars","authors":"Dattaraj B. Dhuri, Dimitra Atri, Ahmed AlHantoobi","doi":"10.3847/psj/ad45ff","DOIUrl":"https://doi.org/10.3847/psj/ad45ff","url":null,"abstract":"Proton auroras are widely observed on the dayside of Mars, identified as a significant intensity enhancement in the hydrogen Ly<italic toggle=\"yes\">α</italic> (121.6 nm) emission at altitudes of ∼110 and 150 km. Solar wind protons penetrating as energetic neutral atoms into Mars’ thermosphere are thought to be primarily responsible for these auroras. Recent observations of spatially localized “patchy” proton auroras suggest a possible direct deposition of protons into Mars’ atmosphere during unstable solar wind conditions. Improving our understanding of proton auroras is therefore important for characterizing the interaction of the solar wind with Mars’ atmosphere. Here, we develop a first purely data-driven model of proton auroras using Mars Atmosphere and Volatile Evolution (MAVEN) in situ observations and limb scans of Ly<italic toggle=\"yes\">α</italic> emissions between 2014 and 2022. We train an artificial neural network that reproduces individual Ly<italic toggle=\"yes\">α</italic> intensities and relative Ly<italic toggle=\"yes\">α</italic> peak intensity enhancements with Pearson correlations of ∼94% and ∼60% respectively for the test data, along with a faithful reconstruction of the shape of the observed altitude profiles of Ly<italic toggle=\"yes\">α</italic> emission. By performing a Shapley Additive Explanations (SHAP) analysis, we find that solar zenith angle, solar longitude, CO<sub>2</sub> atmosphere variability, solar wind speed, and temperature are the most important features for the modeled Ly<italic toggle=\"yes\">α</italic> peak intensity enhancements. Additionally, we find that the modeled peak intensity enhancements are high for early local-time hours, particularly near polar latitudes, and the induced magnetic fields are weaker. Through SHAP analysis, we also identify the influence of biases in the training data and interdependences between the measurements used for the modeling, and an improvement of those aspects can significantly improve the performance and applicability of the ANN model.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"96 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Population of Small Near-Earth Objects: Composition, Source Regions, and Rotational Properties 近地小天体群:成分、源区和旋转特性
Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-06-06 DOI: 10.3847/psj/ad445f
Juan A. Sanchez, Vishnu Reddy, Audrey Thirouin, William F. Bottke, Theodore Kareta, Mario De Florio, Benjamin N. L. Sharkey, Adam Battle, David C. Cantillo, Neil Pearson
The study of small (<300 m) near-Earth objects (NEOs) is important because they are more closely related than larger objects to the precursors of meteorites that fall on Earth. Collisions of these bodies with Earth are also more frequent. Although such collisions cannot produce massive extinction events, they can still produce significant local damage. Here we present the results of a photometric and spectroscopic survey of small NEOs that include near-infrared spectra of 84 objects with a mean diameter of 126 m and photometric data of 59 objects with a mean diameter of 87 m. We found that S-complex asteroids are the most abundant among the NEOs, comprising ∼66% of the sample. Most asteroids in the S-complex were found to have compositions consistent with LL-chondrites. Our study revealed the existence of NEOs with spectral characteristics similar to those in the S-complex but that could be hidden within the C- or X-complex due to their weak absorption bands. We suggest that the presence of metal or shock darkening could be responsible for the attenuation of the absorption bands. These objects have been grouped into a new subclass within the S-complex called Sx-types. The dynamical modeling showed that 83% of the NEOs escaped from the ν6 resonance, 16% from the 3:1, and just 1% from the 5:2 resonance. Lightcurves and rotational periods were derived from the photometric data. No clear trend between the axis ratio and the absolute magnitude or rotational period of the NEOs was found.
对小型(300 米)近地天体(NEOs)的研究非常重要,因为与较大的天体相比,它们与落在地球上的陨石的前身关系更为密切。这些天体与地球的碰撞也更为频繁。虽然这种碰撞不会产生大规模的灭绝事件,但仍会对局部地区造成严重破坏。我们发现 S-复合小行星是近地天体中数量最多的,占样本的 66%。我们发现S-复合体中的大多数小行星的成分与LL-软玉相一致。我们的研究发现,有一些近地天体的光谱特征与 S-复合体中的近地天体相似,但由于其吸收带较弱,可能被隐藏在 C-或 X-复合体中。我们认为,金属或冲击暗化的存在可能是吸收带衰减的原因。这些天体被归入 S-复合体中一个新的亚类,称为 Sx-类型。动力学建模显示,83%的近地天体逃逸于ν6共振,16%逃逸于3:1共振,只有1%逃逸于5:2共振。根据测光数据得出了光曲线和旋转周期。没有发现近地天体的轴比与绝对大小或旋转周期之间有明显的趋势。
{"title":"The Population of Small Near-Earth Objects: Composition, Source Regions, and Rotational Properties","authors":"Juan A. Sanchez, Vishnu Reddy, Audrey Thirouin, William F. Bottke, Theodore Kareta, Mario De Florio, Benjamin N. L. Sharkey, Adam Battle, David C. Cantillo, Neil Pearson","doi":"10.3847/psj/ad445f","DOIUrl":"https://doi.org/10.3847/psj/ad445f","url":null,"abstract":"The study of small (&lt;300 m) near-Earth objects (NEOs) is important because they are more closely related than larger objects to the precursors of meteorites that fall on Earth. Collisions of these bodies with Earth are also more frequent. Although such collisions cannot produce massive extinction events, they can still produce significant local damage. Here we present the results of a photometric and spectroscopic survey of small NEOs that include near-infrared spectra of 84 objects with a mean diameter of 126 m and photometric data of 59 objects with a mean diameter of 87 m. We found that S-complex asteroids are the most abundant among the NEOs, comprising ∼66% of the sample. Most asteroids in the S-complex were found to have compositions consistent with LL-chondrites. Our study revealed the existence of NEOs with spectral characteristics similar to those in the S-complex but that could be hidden within the C- or X-complex due to their weak absorption bands. We suggest that the presence of metal or shock darkening could be responsible for the attenuation of the absorption bands. These objects have been grouped into a new subclass within the S-complex called Sx-types. The dynamical modeling showed that 83% of the NEOs escaped from the <italic toggle=\"yes\">ν</italic>\u0000<sub>6</sub> resonance, 16% from the 3:1, and just 1% from the 5:2 resonance. Lightcurves and rotational periods were derived from the photometric data. No clear trend between the axis ratio and the absolute magnitude or rotational period of the NEOs was found.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of the 2007 Martian Global Dust Storm on Boundary Positions in the Induced Magnetosphere 2007 年火星全球尘暴对诱导磁层边界位置的影响
Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-06-04 DOI: 10.3847/psj/ad4116
Catherine E. Regan, Andrew J. Coates, Mark Lester, Anne Wellbrock, Geraint H. Jones, Beatriz Sánchez-Cano, Philippe Garnier, Richard P. Haythornthwaite, Dikshita Meggi, Rudy A. Frahm and Mats Holmström
Mars's magnetosphere is a sensitive system, varying due to external and internal factors, such as solar wind conditions and crustal magnetic fields. A signature of this influence can be seen in the position of two boundaries; the bow shock and the induced magnetospheric boundary (IMB). The bow shock moves closer to Mars during times of high solar activity, and both the bow shock and IMB bulge away from Mars over crustal magnetic fields in the southern hemisphere. This study investigates whether large-scale atmospheric events at Mars have any signature in these two magnetic boundaries, by investigating the 2007 storm. The 2007 global storm lasted for several months and increased atmospheric temperatures and densities of both water vapor and carbon dioxide in the atmosphere, leading to an increase in atmospheric escape. Using Mars Express, we identified boundary locations before, during, and after the event, and compared these to modeled boundary locations and areographical locations on Mars. We find that, while it is unclear whether the bow shock position is impacted by the storm, the IMB location does change significantly, despite the orbital bias introduced by Mars Express. The terminator distance for the IMB peaks at longitudes 0°–40° and 310°–360°, leaving a depression around 180° longitude, where the boundary usually extends to higher altitudes due to the crustal magnetic fields. We suggest this may be due to the confinement of ionospheric plasma over crustal fields preventing mixing with the dust, creating a dip in ionospheric pressure here.
火星磁层是一个敏感的系统,受太阳风条件和地壳磁场等内外因素的影响而变化。这种影响的特征可以从两个边界的位置看出:弓形冲击和诱导磁层边界(IMB)。在太阳活动频繁时,弓形冲击会靠近火星,而在南半球地壳磁场的作用下,弓形冲击和诱导磁层边界都会远离火星。本研究通过调查 2007 年的风暴,研究火星的大规模大气事件是否在这两个磁场边界上有任何特征。2007 年的全球风暴持续了几个月,大气温度升高,大气中水蒸气和二氧化碳的密度增加,导致大气逃逸增加。我们利用火星快车确定了风暴发生前、发生期间和发生后的边界位置,并将这些位置与火星上的模拟边界位置和地形位置进行了比较。我们发现,虽然目前还不清楚弓形冲击位置是否受到风暴的影响,但尽管火星快车引入了轨道偏差,IMB 的位置确实发生了显著变化。IMB的终结者距离在经度0°-40°和310°-360°处达到峰值,在经度180°附近留下一个凹陷,由于地壳磁场的影响,边界通常延伸到更高的高度。我们认为这可能是由于电离层等离子体在地壳磁场上受到限制,无法与尘埃混合,从而在此处造成电离层压力下降。
{"title":"Effects of the 2007 Martian Global Dust Storm on Boundary Positions in the Induced Magnetosphere","authors":"Catherine E. Regan, Andrew J. Coates, Mark Lester, Anne Wellbrock, Geraint H. Jones, Beatriz Sánchez-Cano, Philippe Garnier, Richard P. Haythornthwaite, Dikshita Meggi, Rudy A. Frahm and Mats Holmström","doi":"10.3847/psj/ad4116","DOIUrl":"https://doi.org/10.3847/psj/ad4116","url":null,"abstract":"Mars's magnetosphere is a sensitive system, varying due to external and internal factors, such as solar wind conditions and crustal magnetic fields. A signature of this influence can be seen in the position of two boundaries; the bow shock and the induced magnetospheric boundary (IMB). The bow shock moves closer to Mars during times of high solar activity, and both the bow shock and IMB bulge away from Mars over crustal magnetic fields in the southern hemisphere. This study investigates whether large-scale atmospheric events at Mars have any signature in these two magnetic boundaries, by investigating the 2007 storm. The 2007 global storm lasted for several months and increased atmospheric temperatures and densities of both water vapor and carbon dioxide in the atmosphere, leading to an increase in atmospheric escape. Using Mars Express, we identified boundary locations before, during, and after the event, and compared these to modeled boundary locations and areographical locations on Mars. We find that, while it is unclear whether the bow shock position is impacted by the storm, the IMB location does change significantly, despite the orbital bias introduced by Mars Express. The terminator distance for the IMB peaks at longitudes 0°–40° and 310°–360°, leaving a depression around 180° longitude, where the boundary usually extends to higher altitudes due to the crustal magnetic fields. We suggest this may be due to the confinement of ionospheric plasma over crustal fields preventing mixing with the dust, creating a dip in ionospheric pressure here.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"95 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141257302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term Monitoring of Didymos with the LCOGT Network and MRO after the DART Impact 利用 LCOGT 网络和 MRO 在 DART 撞击后对 Didymos 进行长期监测
Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-05-30 DOI: 10.3847/psj/ad4345
Tim Lister, Cora Constantinescu, William Ryan, Eileen Ryan, Edward Gomez, Liz Phillips, Agata Rożek, Helen Usher, Brian P. Murphy, Joseph Chatelain and Sarah Greenstreet
The world’s first planetary defense test mission was carried out in late 2022 by NASA’s Double Asteroid Redirection Test (DART) mission. The main DART spacecraft, which was accompanied by the ASI-provided LICIACube cubesat, intentionally impacted Dimorphos, the smaller secondary of the near-Earth object binary system (65803) Didymos, on 2022 September 26. The impact released a large amount of ejecta, which, combined with the spacecraft’s momentum, produced the observed 33 ± 1 minute period change that was subsequently observed from ground-based telescopes. The DART mission, in addition to having successfully changed the orbital period of Dimorphos, also activated the asteroid as a result of the impact but under known conditions, unlike other impacts on asteroids. We have conducted long-term monitoring over 5 months following the impact with the Las Cumbres Observatory Global Telescope (LCOGT) network and Magdalena Ridge Observatory (MRO). This was supplemented by almost 3 months of more sparsely sampled data, primarily from educational users of the LCOGT network during the period from 2022 July 5 to 2022 September 25, prior to the impact date of 2022 September 26. Here we report the observations of the Didymos system and DART impact ejecta with the telescopes of the LCOGT network from T+1.93 days to T+151.3 days after impact, and we study the evolving morphology of the ejecta cloud and evolving tail over the entire length of the data set. In addition, we combined these intensive data sets with the earlier sparse observations over the ∼90 days prior to impact to derive a new disk-integrated phase function model using the H, G1, G2 parameterization.
2022 年底,美国国家航空航天局的双小行星重定向试验(DART)任务执行了世界上首次行星防御试验任务。2022 年 9 月 26 日,DART 主航天器与意大利航天局提供的 LICIACube 立方体卫星一起,有意撞击了近地天体双星系统(65803)Didymos 中较小的副星 Dimorphos。撞击释放出大量的抛射物,再加上航天器的动量,产生了随后从地面望远镜观测到的 33 ± 1 分钟的周期变化。DART 飞行任务除了成功改变了迪莫弗斯的轨道周期外,还在已知条件下激活了这颗小行星,这与其他撞击小行星的情况不同。撞击发生后,我们利用拉斯坎布雷观测站全球望远镜(LCOGT)网络和马格达莱纳岭观测站(MRO)进行了长达 5 个月的长期监测。此外,在 2022 年 9 月 26 日撞击日之前的 2022 年 7 月 5 日至 2022 年 9 月 25 日期间,主要由拉斯坎布雷观测站全球望远镜网络的教育用户提供了近 3 个月的稀少数据。在此,我们报告了利用 LCOGT 网络的望远镜从撞击后 T+1.93 天到 T+151.3 天对 Didymos 系统和 DART 撞击喷出物的观测结果,并研究了整个数据集期间喷出物云和喷出物尾的演变形态。此外,我们还将这些密集数据集与撞击前 90 天的早期稀疏观测数据相结合,利用 H、G1、G2 参数化推导出一个新的磁盘积分相位函数模型。
{"title":"Long-term Monitoring of Didymos with the LCOGT Network and MRO after the DART Impact","authors":"Tim Lister, Cora Constantinescu, William Ryan, Eileen Ryan, Edward Gomez, Liz Phillips, Agata Rożek, Helen Usher, Brian P. Murphy, Joseph Chatelain and Sarah Greenstreet","doi":"10.3847/psj/ad4345","DOIUrl":"https://doi.org/10.3847/psj/ad4345","url":null,"abstract":"The world’s first planetary defense test mission was carried out in late 2022 by NASA’s Double Asteroid Redirection Test (DART) mission. The main DART spacecraft, which was accompanied by the ASI-provided LICIACube cubesat, intentionally impacted Dimorphos, the smaller secondary of the near-Earth object binary system (65803) Didymos, on 2022 September 26. The impact released a large amount of ejecta, which, combined with the spacecraft’s momentum, produced the observed 33 ± 1 minute period change that was subsequently observed from ground-based telescopes. The DART mission, in addition to having successfully changed the orbital period of Dimorphos, also activated the asteroid as a result of the impact but under known conditions, unlike other impacts on asteroids. We have conducted long-term monitoring over 5 months following the impact with the Las Cumbres Observatory Global Telescope (LCOGT) network and Magdalena Ridge Observatory (MRO). This was supplemented by almost 3 months of more sparsely sampled data, primarily from educational users of the LCOGT network during the period from 2022 July 5 to 2022 September 25, prior to the impact date of 2022 September 26. Here we report the observations of the Didymos system and DART impact ejecta with the telescopes of the LCOGT network from T+1.93 days to T+151.3 days after impact, and we study the evolving morphology of the ejecta cloud and evolving tail over the entire length of the data set. In addition, we combined these intensive data sets with the earlier sparse observations over the ∼90 days prior to impact to derive a new disk-integrated phase function model using the H, G1, G2 parameterization.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141197576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact Disruption of Bjurböle Porous Chondritic Projectile 比尤伯勒多孔软玉射弹的撞击破坏
Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-05-30 DOI: 10.3847/psj/ad4266
Tomas Kohout, Maurizio Pajola, Assi-Johanna Soini, Alice Lucchetti, Arto Luttinen, Alexia Duchêne, Naomi Murdoch, Robert Luther, Nancy L. Chabot, Sabina D. Raducan, Paul Sánchez, Olivier S. Barnouin and Andrew S. Rivkin
The ∼200 m s−1 impact of a single 400 kg Bjurböle L/LL ordinary chondrite meteorite onto sea ice resulted in the catastrophic disruption of the projectile. This resulted in a significant fraction of decimeter-sized fragments that exhibit power-law cumulative size and mass distributions. This size range is underrepresented in impact experiments and asteroid boulder studies. The Bjurböle projectile fragments share similarities in shape (sphericity and roughness at small and large scales) with asteroid boulders. However, the mean aspect ratio (3D measurement) and apparent aspect ratio (2D measurement) of the Bjurböle fragments is 0.83 and 0.77, respectively, indicating that Bjurböle fragments are more equidimensional compared to both fragments produced in smaller-scale impact experiments and asteroid boulders. These differences may be attributed either to the fragment source (projectile versus target), to the high porosity and low strength of Bjurböle, to the lower impact velocity compared with typical asteroid collision velocities, or potentially to fragment erosion during sea sediment penetration or cleaning.
一颗重达 400 千克的比尤博勒 L/LL 普通软玉陨石以 ∼200 m s-1 的速度撞击海冰,导致弹丸发生灾难性的破坏。其结果是产生了很大一部分十厘米大小的碎片,这些碎片的大小和质量呈幂律累积分布。这一尺寸范围在撞击实验和小行星巨石研究中代表性不足。比尤伯勒抛射体碎片的形状(球形度和大小尺度的粗糙度)与小行星巨石相似。不过,比尤伯勒碎片的平均长宽比(三维测量)和表观长宽比(二维测量)分别为 0.83 和 0.77,表明比尤伯勒碎片与较小尺度撞击实验产生的碎片和小行星巨石相比更加等维。这些差异可能归因于碎片来源(射弹与目标)、比尤伯勒的高孔隙率和低强度、与典型的小行星碰撞速度相比较低的撞击速度,或者可能归因于碎片在海洋沉积物穿透或清理过程中的侵蚀。
{"title":"Impact Disruption of Bjurböle Porous Chondritic Projectile","authors":"Tomas Kohout, Maurizio Pajola, Assi-Johanna Soini, Alice Lucchetti, Arto Luttinen, Alexia Duchêne, Naomi Murdoch, Robert Luther, Nancy L. Chabot, Sabina D. Raducan, Paul Sánchez, Olivier S. Barnouin and Andrew S. Rivkin","doi":"10.3847/psj/ad4266","DOIUrl":"https://doi.org/10.3847/psj/ad4266","url":null,"abstract":"The ∼200 m s−1 impact of a single 400 kg Bjurböle L/LL ordinary chondrite meteorite onto sea ice resulted in the catastrophic disruption of the projectile. This resulted in a significant fraction of decimeter-sized fragments that exhibit power-law cumulative size and mass distributions. This size range is underrepresented in impact experiments and asteroid boulder studies. The Bjurböle projectile fragments share similarities in shape (sphericity and roughness at small and large scales) with asteroid boulders. However, the mean aspect ratio (3D measurement) and apparent aspect ratio (2D measurement) of the Bjurböle fragments is 0.83 and 0.77, respectively, indicating that Bjurböle fragments are more equidimensional compared to both fragments produced in smaller-scale impact experiments and asteroid boulders. These differences may be attributed either to the fragment source (projectile versus target), to the high porosity and low strength of Bjurböle, to the lower impact velocity compared with typical asteroid collision velocities, or potentially to fragment erosion during sea sediment penetration or cleaning.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Spectral Method to Compute the Tides of Laterally Heterogeneous Bodies 计算侧向异质体潮汐的频谱法
Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-05-30 DOI: 10.3847/psj/ad381f
Marc Rovira-Navarro, Isamu Matsuyama and Alexander Berne
Body tides reveal information about planetary interiors and affect their evolution. Most models to compute body tides rely on the assumption of a spherically symmetric interior. However, several processes can lead to lateral variations of interior properties. We present a new spectral method to compute the tidal response of laterally heterogeneous bodies. Compared to previous spectral methods, our approach is not limited to small-amplitude lateral variations; compared to finite element codes, this approach is more computationally efficient. While the tidal response of a spherically symmetric body has the same wavelength as the tidal force; lateral heterogeneities produce an additional tidal response with a spectra that depends on the spatial pattern of such variations. For Mercury, the Moon, and Io, the amplitude of this signal is as high as 1%–10% of the main tidal response for long-wavelength shear modulus variations higher than ∼10% of the mean shear modulus. For Europa, Ganymede, and Enceladus, shell-thickness variations of 50% of the mean shell thickness can cause an additional signal of ∼1% and ∼10% for the Jovian moons and Encelaudus, respectively. Future missions, such as BepiColombo and JUICE, might measure these signals. Lateral variations of viscosity affect the distribution of tidal heating. This can drive the thermal evolution of tidally active bodies and affect the distribution of active regions.
星体潮汐揭示了行星内部的信息,并影响着行星的演化。大多数计算体潮的模型都依赖于球面对称内部的假设。然而,有几个过程会导致内部特性的横向变化。我们提出了一种新的光谱方法来计算横向异质天体的潮汐响应。与以前的光谱方法相比,我们的方法不局限于小振幅横向变化;与有限元代码相比,这种方法的计算效率更高。球面对称天体的潮汐响应波长与潮汐力波长相同,而横向异质性会产生额外的潮汐响应,其频谱取决于这种变化的空间模式。对于水星、月球和木卫二,当长波剪切模量变化高于平均剪切模量的 10%时,这一信号的振幅高达主要潮汐响应的 1%-10%。对于木卫二、木卫三和土卫二来说,平均壳厚的 50%的壳厚变化会导致额外的信号,对于木卫二和土卫二来说,分别为 1%和 10%。未来的飞行任务,如 BepiColombo 和 JUICE,可能会测量这些信号。粘度的横向变化会影响潮汐加热的分布。这可以推动潮汐活动天体的热演化,并影响活动区的分布。
{"title":"A Spectral Method to Compute the Tides of Laterally Heterogeneous Bodies","authors":"Marc Rovira-Navarro, Isamu Matsuyama and Alexander Berne","doi":"10.3847/psj/ad381f","DOIUrl":"https://doi.org/10.3847/psj/ad381f","url":null,"abstract":"Body tides reveal information about planetary interiors and affect their evolution. Most models to compute body tides rely on the assumption of a spherically symmetric interior. However, several processes can lead to lateral variations of interior properties. We present a new spectral method to compute the tidal response of laterally heterogeneous bodies. Compared to previous spectral methods, our approach is not limited to small-amplitude lateral variations; compared to finite element codes, this approach is more computationally efficient. While the tidal response of a spherically symmetric body has the same wavelength as the tidal force; lateral heterogeneities produce an additional tidal response with a spectra that depends on the spatial pattern of such variations. For Mercury, the Moon, and Io, the amplitude of this signal is as high as 1%–10% of the main tidal response for long-wavelength shear modulus variations higher than ∼10% of the mean shear modulus. For Europa, Ganymede, and Enceladus, shell-thickness variations of 50% of the mean shell thickness can cause an additional signal of ∼1% and ∼10% for the Jovian moons and Encelaudus, respectively. Future missions, such as BepiColombo and JUICE, might measure these signals. Lateral variations of viscosity affect the distribution of tidal heating. This can drive the thermal evolution of tidally active bodies and affect the distribution of active regions.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141197795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lunar North Polar Cold Traps Based on Diurnally and Seasonally Varying Temperatures 基于昼夜和季节性温度变化的月球北极冷阱
Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-05-30 DOI: 10.3847/psj/ad49a8
Norbert Schörghofer, Jean-Pierre Williams and Erwan Mazarico
Lunar cold traps are defined by extremely low sublimation rates, such that water ice could have accumulated in them. Here time-averaged sublimation rates are calculated for the north polar region of the Moon based on over 14 years of Diviner surface temperature measurements. Data for each spatial pixel are binned according to subsolar (diurnal) and ecliptic (seasonal) longitude. The cold trap area poleward of 80°N is about 32% larger when defined by a time-average sublimation rate instead of by peak temperature. Apparently sunlit cold traps are identified, e.g., in Lenard Crater, where modeling of direct illumination reveals that the Sun briefly rises above the horizon each Draconic year. The true cold trap area is smaller than what can be determined from Diviner data. Also presented are north polar maps for the potential sublimation rate of relic buried ice and for subsurface cold trapping.
月球冷阱的定义是极低的升华率,因此水冰可能在其中积聚。这里根据 14 年多的占卜者表面温度测量数据,计算了月球北极地区的时间平均升华率。每个空间像素的数据根据副太阳经度(昼夜经度)和黄道经度(季节经度)进行分类。如果用时间平均升华率而不是峰值温度来定义,北纬 80° 以北的冷阱面积要大 32%。在莱纳德陨石坑等地发现了明显的太阳光冷阱,那里的直接光照模型显示,每一个德拉克里克年太阳都会短暂地升到地平线以上。真正的冷阱面积比占卜者数据所能确定的要小。此外,还介绍了埋藏在地下的残冰的潜在升华率和地表下冷阱的北极地图。
{"title":"Lunar North Polar Cold Traps Based on Diurnally and Seasonally Varying Temperatures","authors":"Norbert Schörghofer, Jean-Pierre Williams and Erwan Mazarico","doi":"10.3847/psj/ad49a8","DOIUrl":"https://doi.org/10.3847/psj/ad49a8","url":null,"abstract":"Lunar cold traps are defined by extremely low sublimation rates, such that water ice could have accumulated in them. Here time-averaged sublimation rates are calculated for the north polar region of the Moon based on over 14 years of Diviner surface temperature measurements. Data for each spatial pixel are binned according to subsolar (diurnal) and ecliptic (seasonal) longitude. The cold trap area poleward of 80°N is about 32% larger when defined by a time-average sublimation rate instead of by peak temperature. Apparently sunlit cold traps are identified, e.g., in Lenard Crater, where modeling of direct illumination reveals that the Sun briefly rises above the horizon each Draconic year. The true cold trap area is smaller than what can be determined from Diviner data. Also presented are north polar maps for the potential sublimation rate of relic buried ice and for subsurface cold trapping.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observations of Titan’s Stratosphere during Northern Summer: Temperatures, CH3CN and CH3D Abundances 土卫六平流层北部夏季观测:温度、CH3CN 和 CH3D 丰度
Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-05-29 DOI: 10.3847/psj/ad47bd
Alexander E. Thelen, Conor A. Nixon, Martin A. Cordiner, Emmanuel Lellouch, Sandrine Vinatier, Nicholas A. Teanby, Bryan Butler, Steven B. Charnley, Richard G. Cosentino, Katherine de Kleer, Patrick G. J. Irwin, Mark A. Gurwell, Zbigniew Kisiel and Raphael Moreno
Titan’s atmospheric composition and dynamical state have previously been studied over numerous epochs by both ground- and space-based facilities. However, stratospheric measurements remain sparse during Titan’s northern summer and fall. The lack of seasonal symmetry in observations of Titan’s temperature field and chemical abundances raises questions about the nature of the middle atmosphere’s meridional circulation and evolution over Titan’s 29 yr seasonal cycle that can only be answered through long-term monitoring campaigns. Here, we present maps of Titan’s stratospheric temperature, acetonitrile (or methyl cyanide; CH3CN) abundance, and monodeuterated methane (CH3D) abundance following Titan’s northern summer solstice obtained with Band 9 (∼0.43 mm) Atacama Large Millimeter/submillimeter Array observations. We find that increasing temperatures toward high southern latitudes, currently in winter, resemble those observed during Titan’s northern winter by the Cassini mission. Acetonitrile abundances have changed significantly since previous (sub)millimeter observations, and we find that the species is now highly concentrated at high southern latitudes. The stratospheric CH3D content is found to range between 4 and 8 ppm in these observations, and we infer the CH4 abundance to vary between ∼0.9% and 1.6% through conversion with previously measured D/H values. A global value of CH4 = 1.15% was retrieved, lending further evidence to the temporal and spatial variability of Titan’s stratospheric methane when compared with previous measurements. Additional observations are required to determine the cause and magnitude of stratospheric enhancements in methane during these poorly understood seasons on Titan.
土卫六的大气成分和动力学状态以前曾由地面和空间设施进行过多次研究。然而,在土卫六北部的夏季和秋季,对平流层的测量仍然很少。对土卫六温度场和化学丰度的观测缺乏季节对称性,这就对土卫六29年季节周期中层大气经向环流和演化的性质提出了疑问,而这些问题只能通过长期的监测活动来解答。在这里,我们展示了利用阿塔卡马大毫米波/亚毫米波阵列第9波段(∼0.43毫米)观测所获得的土卫六北夏至日之后的土卫六平流层温度、乙腈(或甲基氰化物;CH3CN)丰度和单氘化甲烷(CH3D)丰度图。我们发现南方高纬度地区的温度不断升高,目前正值冬季,这与卡西尼飞行任务在土卫六北部冬季观测到的温度相似。与之前的(亚)毫米观测结果相比,乙腈的丰度发生了显著变化,我们发现该物质现在高度集中在南部高纬度地区。在这些观测中发现平流层中的 CH3D 含量在 4 到 8 ppm 之间,通过与之前测量的 D/H 值进行换算,我们推断 CH4 丰度在 0.9% 到 1.6% 之间变化。与之前的测量结果相比,我们得到了一个CH4 = 1.15%的全球值,进一步证明了土卫六平流层甲烷的时空变异性。还需要进行更多的观测,以确定土卫六上这些鲜为人知的季节平流层甲烷增加的原因和幅度。
{"title":"Observations of Titan’s Stratosphere during Northern Summer: Temperatures, CH3CN and CH3D Abundances","authors":"Alexander E. Thelen, Conor A. Nixon, Martin A. Cordiner, Emmanuel Lellouch, Sandrine Vinatier, Nicholas A. Teanby, Bryan Butler, Steven B. Charnley, Richard G. Cosentino, Katherine de Kleer, Patrick G. J. Irwin, Mark A. Gurwell, Zbigniew Kisiel and Raphael Moreno","doi":"10.3847/psj/ad47bd","DOIUrl":"https://doi.org/10.3847/psj/ad47bd","url":null,"abstract":"Titan’s atmospheric composition and dynamical state have previously been studied over numerous epochs by both ground- and space-based facilities. However, stratospheric measurements remain sparse during Titan’s northern summer and fall. The lack of seasonal symmetry in observations of Titan’s temperature field and chemical abundances raises questions about the nature of the middle atmosphere’s meridional circulation and evolution over Titan’s 29 yr seasonal cycle that can only be answered through long-term monitoring campaigns. Here, we present maps of Titan’s stratospheric temperature, acetonitrile (or methyl cyanide; CH3CN) abundance, and monodeuterated methane (CH3D) abundance following Titan’s northern summer solstice obtained with Band 9 (∼0.43 mm) Atacama Large Millimeter/submillimeter Array observations. We find that increasing temperatures toward high southern latitudes, currently in winter, resemble those observed during Titan’s northern winter by the Cassini mission. Acetonitrile abundances have changed significantly since previous (sub)millimeter observations, and we find that the species is now highly concentrated at high southern latitudes. The stratospheric CH3D content is found to range between 4 and 8 ppm in these observations, and we infer the CH4 abundance to vary between ∼0.9% and 1.6% through conversion with previously measured D/H values. A global value of CH4 = 1.15% was retrieved, lending further evidence to the temporal and spatial variability of Titan’s stratospheric methane when compared with previous measurements. Additional observations are required to determine the cause and magnitude of stratospheric enhancements in methane during these poorly understood seasons on Titan.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"74 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near-infrared Photometry of the Moon's Surface with Passive Radiometry from the Lunar Orbiter Laser Altimeter (LOLA) 利用月球轨道激光高度计(LOLA)的被动辐射测量法对月球表面进行近红外光度测量
Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-05-27 DOI: 10.3847/psj/ad4467
Ryan T. Walker, Michael K. Barker, Erwan Mazarico, Xiaoli Sun, Gregory A. Neumann, David E. Smith, James W. Head and Maria T. Zuber
Examining the reflectance of the Moon's surface across a broad range of viewing geometries through photometric analysis can reveal physical and geological properties of its regolith. Since 2013 December, the Lunar Orbiter Laser Altimeter (LOLA) on board the Lunar Reconnaissance Orbiter (LRO) has been operating as a near-infrared (1064 nm) passive radiometer when its laser is turned off. We present a new analysis of this data set spanning roughly 8 yr and covering the surface up to high latitudes in both hemispheres. We apply semiempirical phase functions to find a lower photometric slope and a narrower opposition effect for the highlands than the maria, consistent with theoretical expectations given the higher albedo of the highlands. Examining various geological properties at global scales shows that, in the highlands, iron abundance (FeO) and optical maturity (OMAT) are the dominant factors affecting the phase function, with a smaller influence from surface slope. In the maria, FeO is the dominant factor, with smaller influences from OMAT, surface slope, and TiO2. Submicroscopic iron abundance (SMFe) has a similar effect to OMAT in both highlands and maria. Analysis at specific sites, including the Reiner Gamma swirl and several silicic anomalies, indicates that the phase functions are consistent with the global data for similar FeO and OMAT. Thermophysical properties inferred from surface temperature observations by the Diviner Lunar Radiometer Experiment on board LRO do not affect the 1064 nm phase function, possibly due to a difference between their depth scale and LOLA's sensing depth.
通过光度分析,在广泛的观察几何范围内检查月球表面的反射率,可以揭示月球碎屑的物理和地质特性。自2013年12月以来,月球勘测轨道飞行器(LRO)上的月球轨道激光高度计(LOLA)在激光关闭时一直作为近红外(1064 nm)被动辐射计运行。我们对这一数据集进行了新的分析,时间跨度约为 8 年,覆盖地表直至两个半球的高纬度地区。我们运用半经验相位函数,发现高原的光度斜率比海洋低,对立效应比海洋窄,这与理论预期一致,因为高原的反照率更高。对全球尺度上各种地质属性的研究表明,在高地,铁丰度(FeO)和光学成熟度(OMAT)是影响相位函数的主要因素,地表斜率的影响较小。在海洋,FeO 是主要因素,而 OMAT、表面坡度和 TiO2 的影响较小。在高原和海洋,亚微观铁丰度(SMFe)的影响与 OMAT 相似。对特定地点(包括雷纳伽马漩涡和几个硅异常点)的分析表明,相函数与类似氧化铁和 OMAT 的全球数据一致。从 LRO 上的 Diviner 月球辐射计实验的表面温度观测中推断出的热物理特性并不影响 1064 nm 的相位函数,这可能是由于其深度尺度与 LOLA 的感应深度之间存在差异。
{"title":"Near-infrared Photometry of the Moon's Surface with Passive Radiometry from the Lunar Orbiter Laser Altimeter (LOLA)","authors":"Ryan T. Walker, Michael K. Barker, Erwan Mazarico, Xiaoli Sun, Gregory A. Neumann, David E. Smith, James W. Head and Maria T. Zuber","doi":"10.3847/psj/ad4467","DOIUrl":"https://doi.org/10.3847/psj/ad4467","url":null,"abstract":"Examining the reflectance of the Moon's surface across a broad range of viewing geometries through photometric analysis can reveal physical and geological properties of its regolith. Since 2013 December, the Lunar Orbiter Laser Altimeter (LOLA) on board the Lunar Reconnaissance Orbiter (LRO) has been operating as a near-infrared (1064 nm) passive radiometer when its laser is turned off. We present a new analysis of this data set spanning roughly 8 yr and covering the surface up to high latitudes in both hemispheres. We apply semiempirical phase functions to find a lower photometric slope and a narrower opposition effect for the highlands than the maria, consistent with theoretical expectations given the higher albedo of the highlands. Examining various geological properties at global scales shows that, in the highlands, iron abundance (FeO) and optical maturity (OMAT) are the dominant factors affecting the phase function, with a smaller influence from surface slope. In the maria, FeO is the dominant factor, with smaller influences from OMAT, surface slope, and TiO2. Submicroscopic iron abundance (SMFe) has a similar effect to OMAT in both highlands and maria. Analysis at specific sites, including the Reiner Gamma swirl and several silicic anomalies, indicates that the phase functions are consistent with the global data for similar FeO and OMAT. Thermophysical properties inferred from surface temperature observations by the Diviner Lunar Radiometer Experiment on board LRO do not affect the 1064 nm phase function, possibly due to a difference between their depth scale and LOLA's sensing depth.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141165507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The Planetary Science Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1