Pub Date : 2024-10-18DOI: 10.1016/j.chroma.2024.465457
Wen Zhu , Lei Chen , Wenjing Zhang , Luyun Qiu , Jingtao Fu , Lin Yi , Jianzhou Cui , Yilan Ouyang , Zhenqing Zhang
Heparin is the most widely used anticoagulant in clinical practice, with enoxaparin being one of the most important low molecular weight heparins (LMWHs). In this study, an antithrombin III (ATIII) affinity column was used. Enoxaparin and its oligosaccharides of varying sizes, prepared using preparative size exclusion chromatography (SEC), were fractionated through the ATIII affinity column. The different affinity fractions from each oligosaccharide size were profiled using strong anion exchange (SAX) chromatography. Each peak was automatically transferred to an SEC column for desalting prior to mass spectrometry (MS) analysis, which enabled structural identification using a multiple heart-cut (MHC) 2D LC-MS system (SAX-SEC-MS). The high-affinity fraction from enoxaparin was further analyzed using the MHC 2D LC system (SEC-SAX). SAX profiles of the high-affinity oligosaccharides, prepared by both size and affinity fractionation, were consistent with those obtained by direct SEC-SAX analysis. The possible sequences of several high-affinity hexasaccharides and the domain compositions of high-affinity octa- and decasaccharides in enoxaparin were further elucidated by disaccharide analysis after manual collection of the oligosaccharides. This work advances the understanding of enoxaparin's structural features and offers a potential approach to improve the quality of enoxaparin, as well as to identify key structural motifs in heparin/LMWHs that contribute to protein binding.
{"title":"Comprehensive chromatographic profiling and structural analysis of key anticoagulant components in enoxaparin","authors":"Wen Zhu , Lei Chen , Wenjing Zhang , Luyun Qiu , Jingtao Fu , Lin Yi , Jianzhou Cui , Yilan Ouyang , Zhenqing Zhang","doi":"10.1016/j.chroma.2024.465457","DOIUrl":"10.1016/j.chroma.2024.465457","url":null,"abstract":"<div><div>Heparin is the most widely used anticoagulant in clinical practice, with enoxaparin being one of the most important low molecular weight heparins (LMWHs). In this study, an antithrombin III (ATIII) affinity column was used. Enoxaparin and its oligosaccharides of varying sizes, prepared using preparative size exclusion chromatography (SEC), were fractionated through the ATIII affinity column. The different affinity fractions from each oligosaccharide size were profiled using strong anion exchange (SAX) chromatography. Each peak was automatically transferred to an SEC column for desalting prior to mass spectrometry (MS) analysis, which enabled structural identification using a multiple heart-cut (MHC) 2D LC-MS system (SAX-SEC-MS). The high-affinity fraction from enoxaparin was further analyzed using the MHC 2D LC system (SEC-SAX). SAX profiles of the high-affinity oligosaccharides, prepared by both size and affinity fractionation, were consistent with those obtained by direct SEC-SAX analysis. The possible sequences of several high-affinity hexasaccharides and the domain compositions of high-affinity octa- and decasaccharides in enoxaparin were further elucidated by disaccharide analysis after manual collection of the oligosaccharides. This work advances the understanding of enoxaparin's structural features and offers a potential approach to improve the quality of enoxaparin, as well as to identify key structural motifs in heparin/LMWHs that contribute to protein binding.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1737 ","pages":"Article 465457"},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1016/j.chroma.2024.465443
Filip Andrić , Minami Imamoto , Milica Jankov
A new, efficient, and low-cost approach for monitoring extraction optimization was proposed based on high-performance thin-layer chromatography (HPTLC) coupled with digital image analysis. Since HPTLC produces rich chromatographic signals corresponding to various analytes which may be differently affected by extraction conditions, four multicriteria decision-making (MCDM) techniques were compared for their ability to aggregate multiple chromatographic responses: Derringer's desirability approach, Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE-2), and the Sum of ranking differences (SRD). Ultrasound-assisted extraction (UAE) of green tea leaves with ethanol-water mixtures was used as a model system. The amount of ethanol and extraction time were varied according to the central composite design. Ranking eleven extracts by Derringer's desirability approach, TOPSIS, and PROMETHEE-2 showed the same results. SRD analysis yielded slightly different results from previous methods. Response surface models (RSM) based on the previous three MCDM approaches demonstrated that extraction conditions with moderate amounts of ethanol (73%) and extraction times (46 min) lead to optimal chromatographic profiles. RSM optimization performed on individual peaks, tentatively corresponding to rutin, chlorophyll, and gallic acid, led to different results, which justified the use of MCDM algorithms for aggregation of multiple responses. Aside from natural products, the proposed approach has the potential to be implemented in various extraction optimizations.
{"title":"Implementation of multiobjective decision-making algorithms and image analysis in HPTLC-guided extraction optimization of natural products","authors":"Filip Andrić , Minami Imamoto , Milica Jankov","doi":"10.1016/j.chroma.2024.465443","DOIUrl":"10.1016/j.chroma.2024.465443","url":null,"abstract":"<div><div>A new, efficient, and low-cost approach for monitoring extraction optimization was proposed based on high-performance thin-layer chromatography (HPTLC) coupled with digital image analysis. Since HPTLC produces rich chromatographic signals corresponding to various analytes which may be differently affected by extraction conditions, four multicriteria decision-making (MCDM) techniques were compared for their ability to aggregate multiple chromatographic responses: Derringer's desirability approach, Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE-2), and the Sum of ranking differences (SRD). Ultrasound-assisted extraction (UAE) of green tea leaves with ethanol-water mixtures was used as a model system. The amount of ethanol and extraction time were varied according to the central composite design. Ranking eleven extracts by Derringer's desirability approach, TOPSIS, and PROMETHEE-2 showed the same results. SRD analysis yielded slightly different results from previous methods. Response surface models (RSM) based on the previous three MCDM approaches demonstrated that extraction conditions with moderate amounts of ethanol (73%) and extraction times (46 min) lead to optimal chromatographic profiles. RSM optimization performed on individual peaks, tentatively corresponding to rutin, chlorophyll, and gallic acid, led to different results, which justified the use of MCDM algorithms for aggregation of multiple responses. Aside from natural products, the proposed approach has the potential to be implemented in various extraction optimizations.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1737 ","pages":"Article 465443"},"PeriodicalIF":3.8,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.chroma.2024.465451
Anne Oldeide Hay, Frederik André Hansen
High efficiency in the analytical workflow, including fast sample preparation and LC-MS/MS analysis, is an advantage when analyzing a high number of samples. It can however be a challenge when determining polar analytes in complex, biological samples, and one must expect to make a compromise between a simple sample preparation followed by a long chromatographic separation, or vice versa, to limit matrix effects. In this proof-of-concept work, a one-step 96-well (parallel extraction) electromembrane extraction (EME) method was coupled to flow injection-MS/MS of 0.7 min per sample, allowing a very high-throughput analysis of 12 polar, endogenous metabolites from unprecipitated plasma of limited dilution. The throughput of the EME method matched the subsequent analysis. Recoveries ranged from 6 to 93 %, and repeatability and linearity were 2–15 % and R2 ≥ 0.9949, respectively, for all but two compounds. Matrix effects were approximately 50 % after EME and varied <11 % between 6 plasma donors, which represented a major improvement relative to a simple protein precipitation where signals were entirely suppressed. The work demonstrates a potential for EME coupled to flow injection-MS/MS to serve as a high-throughput platform for bioanalysis, not just of polar analytes, but also hydrophobic drugs both basic and acidic.
{"title":"Exploring electromembrane extraction coupled to fast LC-MS/MS as a high-throughput platform for determination of 12 polar endogenous metabolites in human plasma","authors":"Anne Oldeide Hay, Frederik André Hansen","doi":"10.1016/j.chroma.2024.465451","DOIUrl":"10.1016/j.chroma.2024.465451","url":null,"abstract":"<div><div>High efficiency in the analytical workflow, including fast sample preparation and LC-MS/MS analysis, is an advantage when analyzing a high number of samples. It can however be a challenge when determining polar analytes in complex, biological samples, and one must expect to make a compromise between a simple sample preparation followed by a long chromatographic separation, or vice versa, to limit matrix effects. In this proof-of-concept work, a one-step 96-well (parallel extraction) electromembrane extraction (EME) method was coupled to flow injection-MS/MS of 0.7 min per sample, allowing a very high-throughput analysis of 12 polar, endogenous metabolites from unprecipitated plasma of limited dilution. The throughput of the EME method matched the subsequent analysis. Recoveries ranged from 6 to 93 %, and repeatability and linearity were 2–15 % and R<sup>2</sup> ≥ 0.9949, respectively, for all but two compounds. Matrix effects were approximately 50 % after EME and varied <11 % between 6 plasma donors, which represented a major improvement relative to a simple protein precipitation where signals were entirely suppressed. The work demonstrates a potential for EME coupled to flow injection-MS/MS to serve as a high-throughput platform for bioanalysis, not just of polar analytes, but also hydrophobic drugs both basic and acidic.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1737 ","pages":"Article 465451"},"PeriodicalIF":3.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.chroma.2024.465440
Chiara Nosengo , Desiree Bozza , Giulio Lievore , Sebastian Vogg , Martina Catani , Alberto Cavazzini , Thomas Müller-Späth , Chiara De Luca , Simona Felletti
Therapeutic oligonucleotides represent a recent breakthrough in the pharmaceutical industry due to their ability to regulate gene expression with great specificity. This aspect allows treatment of a wide range of diseases. However, since oligonucleotides are used for therapeutic purposes, the Active Pharmaceutical Ingredient (API) must fulfill strict purity levels which require intensive purification steps. For oligonucleotides, and biomolecules in general, preparative liquid chromatography is the technique of choice to perform large scale purifications, typically in batch mode, i.e. using a single column. Specifically, since ONs are mainly large, hydrophilic and charged molecules, Anion Exchange chromatography (AEX) and Ion Pair Reversed Phase chromatography (IP-RP) are the preferred chromatographic modes for their downstream processing. Nevertheless, these approaches suffer from a purity-yield trade-off, and for this reason, more than one purification step is usually required. The two chromatographic modes can therefore be used consequently to remove different groups of impurities, thanks to their orthogonality.
In this work, a multidimensional and orthogonal approach on a (semi)preparative scale, namely “Integrated Batch process”, was applied for the purification of a single-stranded DNA oligonucleotide. This process combines two chromatographic steps without any hold step, operator intervention or sampling of the first step. The performance parameters of the Integrated Batch were compared to those obtained in the single batch runs under different experimental conditions (chromatographic mode, eluent systems), showing the potential of this integrated approach. This proof-of-concept study illustrates how this technique can considerably reduce overall production time and how it allows to increase the robustness and reproducibility of the method, since the process is highly automated.
治疗性寡核苷酸具有高度特异性的基因表达调控能力,是制药业的最新突破。在这方面,寡核苷酸可以治疗多种疾病。然而,由于寡核苷酸用于治疗目的,活性药物成分(API)必须满足严格的纯度要求,这就需要密集的纯化步骤。对于寡核苷酸和一般生物大分子而言,制备型液相色谱法是进行大规模纯化的首选技术,通常采用批处理模式,即使用单一色谱柱。具体来说,由于 ONs 主要是大分子、亲水性分子和带电分子,因此阴离子交换色谱(AEX)和离子对反相色谱(IP-RP)是其下游处理的首选色谱模式。然而,这些方法在纯度-产量之间存在权衡,因此通常需要一个以上的纯化步骤。在这项工作中,我们采用了一种(半)制备规模的多维正交方法,即 "集成批次工艺",用于纯化单链 DNA 寡核苷酸。该工艺将两个色谱步骤结合在一起,第一步没有任何保持步骤、操作员干预或取样。在不同的实验条件(色谱模式、洗脱液系统)下,集成批次的性能参数与单批次运行的性能参数进行了比较,显示了这种集成方法的潜力。这项概念验证研究说明了该技术如何大大缩短整体生产时间,以及如何通过高度自动化的流程提高方法的稳健性和可重复性。
{"title":"Integrated multidimensional chromatography on preparative scale for oligonucleotides purification","authors":"Chiara Nosengo , Desiree Bozza , Giulio Lievore , Sebastian Vogg , Martina Catani , Alberto Cavazzini , Thomas Müller-Späth , Chiara De Luca , Simona Felletti","doi":"10.1016/j.chroma.2024.465440","DOIUrl":"10.1016/j.chroma.2024.465440","url":null,"abstract":"<div><div>Therapeutic oligonucleotides represent a recent breakthrough in the pharmaceutical industry due to their ability to regulate gene expression with great specificity. This aspect allows treatment of a wide range of diseases. However, since oligonucleotides are used for therapeutic purposes, the Active Pharmaceutical Ingredient (API) must fulfill strict purity levels which require intensive purification steps. For oligonucleotides, and biomolecules in general, preparative liquid chromatography is the technique of choice to perform large scale purifications, typically in batch mode, i.e. using a single column. Specifically, since ONs are mainly large, hydrophilic and charged molecules, Anion Exchange chromatography (AEX) and Ion Pair Reversed Phase chromatography (IP-RP) are the preferred chromatographic modes for their downstream processing. Nevertheless, these approaches suffer from a purity-yield trade-off, and for this reason, more than one purification step is usually required. The two chromatographic modes can therefore be used consequently to remove different groups of impurities, thanks to their orthogonality.</div><div>In this work, a multidimensional and orthogonal approach on a (semi)preparative scale, namely “Integrated Batch process”, was applied for the purification of a single-stranded DNA oligonucleotide. This process combines two chromatographic steps without any hold step, operator intervention or sampling of the first step. The performance parameters of the Integrated Batch were compared to those obtained in the single batch runs under different experimental conditions (chromatographic mode, eluent systems), showing the potential of this integrated approach. This proof-of-concept study illustrates how this technique can considerably reduce overall production time and how it allows to increase the robustness and reproducibility of the method, since the process is highly automated.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1737 ","pages":"Article 465440"},"PeriodicalIF":3.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.chroma.2024.465441
Zhen Li , Zixia Tang , Junxiang Cao , Xingyu Yao , Jia Chen , Kang Xu , Ruixue Sun , Xiaoyi Shao , Mei Lv , Litao Wang
This study successfully prepared different loading levels of cyano-functionalized RCC3 molecular cage silica gel stationary phase (RCC3-CN@SiO2) through aldehyde-amine condensation reaction and subsequent modification strategies. Fourier transform infrared spectroscopy, thermogravimetric analysis, nitrogen adsorption-desorption, and scanning electron microscopy confirmed the successful synthesis of RCC3-CN@SiO2 chromatographic stationary phase. The research demonstrates that due to hydrophobic/hydrophilic interactions, π-π interactions, hydrogen bonding, and size-selective porous structure, the stationary phase effectively separates moderately polar and weakly polar compounds in reversed-phase liquid chromatography (RPLC) mode, exhibiting hydrophobic selectivity comparable to the commercial DaisoC18-RP columns. Additionally, the tertiary amine and cyanogen groups on the molecular cage surface enhance the interaction with polar compounds, successfully separating nucleosides, sulfonamides, amino acids, and sugars in hydrophilic interaction chromatography (HILIC) mode. Further applications in the separation analysis of acidic drugs, alkaline drugs, cinnamic acid natural products, and chiral compounds demonstrate the multifunctional chromatographic capabilities for diverse compound types. Compared to Unitary Diol commercial columns, the prepared stationary phase showed significant advantages in wide polarity range separation performance. Moreover, through nucleoside compound separation mode switching analysis, RCC3-CN@SiO2 stationary phase further validates its favorable performance in both RPLC and HILIC modes, demonstrating extensive potential applications in the field of analytical chemistry. Importantly, the stationary phase exhibits efficient separation of nucleoside compounds in pure water systems, aligning with the principles of green analysis.
{"title":"Cyano-modified molecular cage silica gel stationary phase: Multi-functional chromatographic performance by high-performance liquid chromatography","authors":"Zhen Li , Zixia Tang , Junxiang Cao , Xingyu Yao , Jia Chen , Kang Xu , Ruixue Sun , Xiaoyi Shao , Mei Lv , Litao Wang","doi":"10.1016/j.chroma.2024.465441","DOIUrl":"10.1016/j.chroma.2024.465441","url":null,"abstract":"<div><div>This study successfully prepared different loading levels of cyano-functionalized RCC3 molecular cage silica gel stationary phase (RCC3-CN@SiO<sub>2</sub>) through aldehyde-amine condensation reaction and subsequent modification strategies. Fourier transform infrared spectroscopy, thermogravimetric analysis, nitrogen adsorption-desorption, and scanning electron microscopy confirmed the successful synthesis of RCC3-CN@SiO<sub>2</sub> chromatographic stationary phase. The research demonstrates that due to hydrophobic/hydrophilic interactions, π-π interactions, hydrogen bonding, and size-selective porous structure, the stationary phase effectively separates moderately polar and weakly polar compounds in reversed-phase liquid chromatography (RPLC) mode, exhibiting hydrophobic selectivity comparable to the commercial DaisoC18-RP columns. Additionally, the tertiary amine and cyanogen groups on the molecular cage surface enhance the interaction with polar compounds, successfully separating nucleosides, sulfonamides, amino acids, and sugars in hydrophilic interaction chromatography (HILIC) mode. Further applications in the separation analysis of acidic drugs, alkaline drugs, cinnamic acid natural products, and chiral compounds demonstrate the multifunctional chromatographic capabilities for diverse compound types. Compared to Unitary Diol commercial columns, the prepared stationary phase showed significant advantages in wide polarity range separation performance. Moreover, through nucleoside compound separation mode switching analysis, RCC3-CN@SiO<sub>2</sub> stationary phase further validates its favorable performance in both RPLC and HILIC modes, demonstrating extensive potential applications in the field of analytical chemistry. Importantly, the stationary phase exhibits efficient separation of nucleoside compounds in pure water systems, aligning with the principles of green analysis.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1737 ","pages":"Article 465441"},"PeriodicalIF":3.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12DOI: 10.1016/j.chroma.2024.465436
Mir Ali Farajzadeh , Zahra Hallaji , Sakha Pezhhanfar , Mohammad Reza Afshar Mogaddam
This research used a magnetic AlFu nano-metal-organic framework as an adsorbent for the first time. This approach extracts and preconcentrates eight pesticides from various distillates through a two-step process: magnetic dispersive micro solid phase extraction and dispersive liquid-liquid microextraction. Initially, the nanocomposite is dispersed into a sample solution containing the pesticides and Na2SO4. The target pesticides are then adsorbed onto the nanocomposite, which is subsequently isolated from the aqueous phase using an external magnetic field. Acetonitrile is used to elute the adsorbed analytes pesticides from the nanocomposite surface. The resulting acetonitrile extract, containing the concentrated pesticides, is then mixed with a tiny amount of another solvent and injected into a NaCl solution. Centrifugation allows the organic phase, enriched with the pesticides, to settle down. An aliquot of this organic layer is then analyzed using a gas chromatography-flame ionization detector. Optimization of the procedure led to favorable performance, including good extraction recovery of the pesticides (68–98 %), significant enrichment (enrichment factors of 340–489), a wide range of detectable concentrations (2.90–1400 µg L−1), and low detection (0.15–0.88 µg L−1) and quantification limits. (0.49–2.90 µg L−1)
{"title":"Application of magnetic AlFu MOF nanocomposite for the extraction and preconcentration of some pesticides from different distillates","authors":"Mir Ali Farajzadeh , Zahra Hallaji , Sakha Pezhhanfar , Mohammad Reza Afshar Mogaddam","doi":"10.1016/j.chroma.2024.465436","DOIUrl":"10.1016/j.chroma.2024.465436","url":null,"abstract":"<div><div>This research used a magnetic AlFu nano-metal-organic framework as an adsorbent for the first time. This approach extracts and preconcentrates eight pesticides from various distillates through a two-step process: magnetic dispersive micro solid phase extraction and dispersive liquid-liquid microextraction. Initially, the nanocomposite is dispersed into a sample solution containing the pesticides and Na<sub>2</sub>SO<sub>4</sub>. The target pesticides are then adsorbed onto the nanocomposite, which is subsequently isolated from the aqueous phase using an external magnetic field. Acetonitrile is used to elute the adsorbed analytes pesticides from the nanocomposite surface. The resulting acetonitrile extract, containing the concentrated pesticides, is then mixed with a tiny amount of another solvent and injected into a NaCl solution. Centrifugation allows the organic phase, enriched with the pesticides, to settle down. An aliquot of this organic layer is then analyzed using a gas chromatography-flame ionization detector. Optimization of the procedure led to favorable performance, including good extraction recovery of the pesticides (68–98 %), significant enrichment (enrichment factors of 340–489), a wide range of detectable concentrations (2.90–1400 µg <em>L</em><sup>−1</sup>), and low detection (0.15–0.88 µg <em>L</em><sup>−1</sup>) and quantification limits. (0.49–2.90 µg <em>L</em><sup>−1</sup>)</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1736 ","pages":"Article 465436"},"PeriodicalIF":3.8,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12DOI: 10.1016/j.chroma.2024.465435
Poorna Srinivasan , Estefania Michelle Endara Arguello , Ibrahim Atwah
Saturate and aromatic compounds are essential in the petroleum industry for assessing the thermal maturity of source rocks and oils, which is critical for basin modeling and sweet-spot mapping. These compounds also play a role in environmental applications, such as oil spill fingerprinting and biogeochemistry. However, the analysis of these compounds by gas chromatography-mass spectrometry (GC–MS) requires meticulous and time-consuming separation processes. Traditional methods like normal-phase liquid column chromatography (LCC) involve large volumes of harmful solvents. This study evaluates the effectiveness of five different sorbents using solid-phase extraction (SPE) techniques—neutral Si, SiOH, Ag-ion, neutral Al, and Ag-ion mixed with activated silica—compared to LCC. The goal was to discern differences in peak resolution, concentration, and isomer ratios of saturate and aromatic compounds for thermal maturity and source rock assessments. The results show that SiOH, neutral Si, and neutral Al do not fully separate aromatic compounds from the saturate fraction, sometimes leaving 40–100% of aromatics within the saturate fraction. Ag-ion mixed with activated silica provided the best separation, resulting in up to 23 times higher aromatic concentration than SiOH. This method is more reliable for quantifying both saturate and aromatic compounds, increases the efficiency of hydrocarbon evaluations, and reduces solvent consumption by 63%, offering a more sustainable approach to hydrocarbon analysis.
{"title":"Evaluating the reliability of solid phase extraction techniques for hydrocarbon analysis by GC–MS","authors":"Poorna Srinivasan , Estefania Michelle Endara Arguello , Ibrahim Atwah","doi":"10.1016/j.chroma.2024.465435","DOIUrl":"10.1016/j.chroma.2024.465435","url":null,"abstract":"<div><div>Saturate and aromatic compounds are essential in the petroleum industry for assessing the thermal maturity of source rocks and oils, which is critical for basin modeling and sweet-spot mapping. These compounds also play a role in environmental applications, such as oil spill fingerprinting and biogeochemistry. However, the analysis of these compounds by gas chromatography-mass spectrometry (GC–MS) requires meticulous and time-consuming separation processes. Traditional methods like normal-phase liquid column chromatography (LCC) involve large volumes of harmful solvents. This study evaluates the effectiveness of five different sorbents using solid-phase extraction (SPE) techniques—neutral Si, SiOH, Ag-ion, neutral Al, and Ag-ion mixed with activated silica—compared to LCC. The goal was to discern differences in peak resolution, concentration, and isomer ratios of saturate and aromatic compounds for thermal maturity and source rock assessments. The results show that SiOH, neutral Si, and neutral Al do not fully separate aromatic compounds from the saturate fraction, sometimes leaving 40–100% of aromatics within the saturate fraction. Ag-ion mixed with activated silica provided the best separation, resulting in up to 23 times higher aromatic concentration than SiOH. This method is more reliable for quantifying both saturate and aromatic compounds, increases the efficiency of hydrocarbon evaluations, and reduces solvent consumption by 63%, offering a more sustainable approach to hydrocarbon analysis.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1737 ","pages":"Article 465435"},"PeriodicalIF":3.8,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12DOI: 10.1016/j.chroma.2024.465438
Haixia Liu , Honghong Rao , Jinxin Guo , Baolan Lu , Yuyun Wang , Rongxi Zhu , Xinzhen Du
A layer-by-layer chemical bonding strategy was developed for fast in situ growth of bifunctional mesoporous covalent organic framework submicrospheres (COF SMSs) on the nickel-chromium alloy (Ni-Cr) fiber substrate via the ultrasound-assisted Schiff-base reaction for the first time. COF SMSs showed well-defined morphology, extraordinary high surface area (1211 m2·g−1) and narrow mesopore (2.50 nm) as well as excellent stability. Furthermore, the resulting Ni-Cr fiber presented outstanding adsorption capability and improved selectivity for bisphenols (BPs). Consequently, an attractive SPME-HPLC-UV approach with the Ni-Cr@Ni-Cr LDHs NSs@COF SMSs fiber was proposed for rapid preconcentration and sensitive determination of BPs. By optimizing adsorption parameters, the SPME-HPLC-UV method presented good linearity for five BPs in the ranges of 0.02–200 ng·mL−1 with coefficients of determination (R2) higher than 0.999. Limits of detection and limits of quantitation were obtained from 0.003 ng·mL−1 to 0.006 ng·mL−1 and from 0.010 to 0.019 ng·mL−1, respectively. Moreover, the intra-day and inter-day precision expressed as relative standard deviations (RSDs) was 1.57–3.52 % and 2.65–4.38 % for the proposed method with a single fiber, respectively. RSDs of the proposed method with different duplicate fibers were 3.25–6.72 %. The proposed SPME-HPLC-UV method was available for efficient preconcentration and sensitive detection of five BPs from real water and milk samples. The relative recoveries at three spiking levels of BPs were achieved in the range of 80.00–118.8 % with RSDs below 7.81 %. In addition, the prepared fiber still exhibited satisfactory adsorption performance after 120 adsorption-desorption cycles.
{"title":"Ultrasound-assisted rapid growth of chemically bonded bifunctional mesoporous covalent organic framework submicrospheres on a nickel-chromium alloy support for efficient solid-phase microextraction of bisphenols from water and milk samples","authors":"Haixia Liu , Honghong Rao , Jinxin Guo , Baolan Lu , Yuyun Wang , Rongxi Zhu , Xinzhen Du","doi":"10.1016/j.chroma.2024.465438","DOIUrl":"10.1016/j.chroma.2024.465438","url":null,"abstract":"<div><div>A layer-by-layer chemical bonding strategy was developed for fast <em>in situ</em> growth of bifunctional mesoporous covalent organic framework submicrospheres (COF SMSs) on the nickel-chromium alloy (Ni-Cr) fiber substrate via the ultrasound-assisted Schiff-base reaction for the first time. COF SMSs showed well-defined morphology, extraordinary high surface area (1211 m<sup>2</sup>·<em>g</em><sup>−1</sup>) and narrow mesopore (2.50 nm) as well as excellent stability. Furthermore, the resulting Ni-Cr fiber presented outstanding adsorption capability and improved selectivity for bisphenols (BPs). Consequently, an attractive SPME-HPLC-UV approach with the Ni-Cr@Ni-Cr LDHs NSs@COF SMSs fiber was proposed for rapid preconcentration and sensitive determination of BPs. By optimizing adsorption parameters, the SPME-HPLC-UV method presented good linearity for five BPs in the ranges of 0.02–200 ng·mL<sup>−1</sup> with coefficients of determination (<em>R<sup>2</sup></em>) higher than 0.999. Limits of detection and limits of quantitation were obtained from 0.003 ng·mL<sup>−1</sup> to 0.006 ng·mL<sup>−1</sup> and from 0.010 to 0.019 ng·mL<sup>−1</sup>, respectively. Moreover, the intra-day and inter-day precision expressed as relative standard deviations (RSDs) was 1.57–3.52 % and 2.65–4.38 % for the proposed method with a single fiber, respectively. RSDs of the proposed method with different duplicate fibers were 3.25–6.72 %. The proposed SPME-HPLC-UV method was available for efficient preconcentration and sensitive detection of five BPs from real water and milk samples. The relative recoveries at three spiking levels of BPs were achieved in the range of 80.00–118.8 % with RSDs below 7.81 %. In addition, the prepared fiber still exhibited satisfactory adsorption performance after 120 adsorption-desorption cycles.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1736 ","pages":"Article 465438"},"PeriodicalIF":3.8,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12DOI: 10.1016/j.chroma.2024.465439
Mohamed A. Gizawy , A.M. Shahr El-Din , E.H. Borai , Nader M.A. Mohamed
Terbium-161 (161Tb) is a promising therapeutic radionuclide that has gained significant attention in the field of nuclear medicine in recent years. 161Tb has several favorable characteristics that make it a valuable candidate for targeted radionuclide therapy. The production of No-carrier-added 161Tb was carried out by the neutron activation of natural gadolinium target in the Egyptian Second Research Reactor (ETRR-2) at a thermal neutron flux position of 1.8 × 1014 ncm-2s-1. The radioactivities of 161Tb as well as coproduced Gd radioimpurities were computed theoretically by the MCNPX2.7.0 code and verified by actual measurements, where accepted discrepancies were obtained. The purification of 161Tb from irradiated Gd target was developed by Chelex-100 resin. The elution performance was studied using different eluents, and 0.1 M HNO3 was found to be the best medium to obtain a high separation efficiency of more than 92% in a short time. The eluted 161Tb was of high chemical, radiochemical, and radionuclidic purities, indicating its potential for effective application in radiopharmaceutical preparation.
{"title":"Production and radiochemical separation of Tb-161 as a feasible beta therapeutic radioisotope from reactor irradiated Gd target","authors":"Mohamed A. Gizawy , A.M. Shahr El-Din , E.H. Borai , Nader M.A. Mohamed","doi":"10.1016/j.chroma.2024.465439","DOIUrl":"10.1016/j.chroma.2024.465439","url":null,"abstract":"<div><div>Terbium-161 (<sup>161</sup>Tb) is a promising therapeutic radionuclide that has gained significant attention in the field of nuclear medicine in recent years. <sup>161</sup>Tb has several favorable characteristics that make it a valuable candidate for targeted radionuclide therapy. The production of No-carrier-added <sup>161</sup>Tb was carried out by the neutron activation of natural gadolinium target in the Egyptian Second Research Reactor (ETRR-2) at a thermal neutron flux position of 1.8 × 10<sup>14</sup> ncm<sup>-2</sup>s<sup>-1</sup>. The radioactivities of <sup>161</sup>Tb as well as coproduced Gd radioimpurities were computed theoretically by the MCNPX2.7.0 code and verified by actual measurements, where accepted discrepancies were obtained. The purification of <sup>161</sup>Tb from irradiated Gd target was developed by Chelex-100 resin. The elution performance was studied using different eluents, and 0.1 M HNO<sub>3</sub> was found to be the best medium to obtain a high separation efficiency of more than 92% in a short time. The eluted <sup>161</sup>Tb was of high chemical, radiochemical, and radionuclidic purities, indicating its potential for effective application in radiopharmaceutical preparation.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1737 ","pages":"Article 465439"},"PeriodicalIF":3.8,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12DOI: 10.1016/j.chroma.2024.465437
Ruobin Bai , Qiaoying Chang , Hongyan Zhang , Xiaofang Wang , Hui Chen , Yuting Bai , Guoyu Qiu , Guofang Pang , Kuikui Wang , Mengmeng Zhao , Xiaojing Zhang
In this study, a strong applicable method that could determine a total of 33 pesticides (54 compounds), 11 mycotoxins and functional components (ferulic acid) simultaneously in Angelica sinensis was developed. The compatibility of the sample pretreatment method for pesticides, mycotoxins, and functional components was improved by optimizing the acidity of extraction solvents, the sequence of ice bath and oscillation, the volumetric solution, and so on. The PRiME HLB SPE pretreatment method was chosen as the optimal one when comparing four pretreatment methods. Among the 65 contaminants, 38 of those determined by liquid chromatography and 41 of those by gas chromatography, which showed good linearity (R2 > 0.9801), 97 % of them had a limit of quantitation (LOQ) of lower than 0.02 mg kg-1. The recovery of all compounds were suited between 70 % to 120 % and the RSD were all lower than 20 % at the spiked levels of LOQ, 2 × LOQ, and 10 × LOQ. For ferulic acid, the LOQ was 50 ng/mL, and it showed good linearity (R2=0.9988) within the range of 0.5 to 10 μg/mL. The recovery and RSD were 98.1 %, and 3.2 % (n = 6), respectively. The simultaneous determination of cross-category compounds in a single sample preparation was obtained by the combination of SPE and GC/LC-Q-TOF/MS. Therefore, this study could not only shorten the time for data acquisition and data analysis, but also improve the experimental efficiency.
{"title":"Simultaneous determination of pesticides, mycotoxins and ferulic acid in Angelica sinensis by GC/LC-Q-TOF/MS","authors":"Ruobin Bai , Qiaoying Chang , Hongyan Zhang , Xiaofang Wang , Hui Chen , Yuting Bai , Guoyu Qiu , Guofang Pang , Kuikui Wang , Mengmeng Zhao , Xiaojing Zhang","doi":"10.1016/j.chroma.2024.465437","DOIUrl":"10.1016/j.chroma.2024.465437","url":null,"abstract":"<div><div>In this study, a strong applicable method that could determine a total of 33 pesticides (54 compounds), 11 mycotoxins and functional components (ferulic acid) simultaneously in <em>Angelica sinensis</em> was developed. The compatibility of the sample pretreatment method for pesticides, mycotoxins, and functional components was improved by optimizing the acidity of extraction solvents, the sequence of ice bath and oscillation, the volumetric solution, and so on. The PRiME HLB SPE pretreatment method was chosen as the optimal one when comparing four pretreatment methods. Among the 65 contaminants, 38 of those determined by liquid chromatography and 41 of those by gas chromatography, which showed good linearity (R<sup>2</sup> > 0.9801), 97 % of them had a limit of quantitation (LOQ) of lower than 0.02 mg kg<sup>-1</sup>. The recovery of all compounds were suited between 70 % to 120 % and the RSD were all lower than 20 % at the spiked levels of LOQ, 2 × LOQ, and 10 × LOQ. For ferulic acid, the LOQ was 50 ng/mL, and it showed good linearity (R<sup>2</sup>=0.9988) within the range of 0.5 to 10 μg/mL. The recovery and RSD were 98.1 %, and 3.2 % (<em>n</em> = 6), respectively. The simultaneous determination of cross-category compounds in a single sample preparation was obtained by the combination of SPE and GC/LC-Q-TOF/MS. Therefore, this study could not only shorten the time for data acquisition and data analysis, but also improve the experimental efficiency.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1737 ","pages":"Article 465437"},"PeriodicalIF":3.8,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}