After a stroke, individuals with aphasia often recover to a certain extent over time. This recovery process may be dependent on the health of surviving brain regions. Leukoaraiosis (white matter hyperintensities on MRI reflecting cerebral small vessel disease) is one indication of compromised brain health and is associated with cognitive and motor impairment. Previous studies have suggested that leukoaraiosis may be a clinically relevant predictor of aphasia outcomes and recovery, although findings have been inconsistent. We investigated the relationship between leukoaraiosis and aphasia in the first year after stroke. We recruited 267 patients with acute left hemispheric stroke and coincident fluid attenuated inversion recovery MRI. Patients were evaluated for aphasia within 5 days of stroke, and 174 patients presented with aphasia acutely. Of these, 84 patients were evaluated at ∼3 months post-stroke or later to assess longer-term speech and language outcomes. Multivariable regression models were fit to the data to identify any relationships between leukoaraiosis and initial aphasia severity, extent of recovery, or longer-term aphasia severity. We found that leukoaraiosis was present to varying degrees in 90% of patients. However, leukoaraiosis did not predict initial aphasia severity, aphasia recovery, or longer-term aphasia severity. The lack of any relationship between leukoaraiosis severity and aphasia recovery may reflect the anatomical distribution of cerebral small vessel disease, which is largely medial to the white matter pathways that are critical for speech and language function.
Imaging studies of language processing in clinical populations can be complicated to interpret for several reasons, one being the difficulty of matching the effortfulness of processing across individuals or tasks. To better understand how effortful linguistic processing is reflected in functional activity, we investigated the neural correlates of task difficulty in linguistic and non-linguistic contexts in the auditory modality and then compared our findings to a recent analogous experiment in the visual modality in a different cohort. Nineteen neurologically normal individuals were scanned with fMRI as they performed a linguistic task (semantic matching) and a non-linguistic task (melodic matching), each with two levels of difficulty. We found that left hemisphere frontal and temporal language regions, as well as the right inferior frontal gyrus, were modulated by linguistic demand and not by non-linguistic demand. This was broadly similar to what was previously observed in the visual modality. In contrast, the multiple demand (MD) network, a set of brain regions thought to support cognitive flexibility in many contexts, was modulated neither by linguistic demand nor by non-linguistic demand in the auditory modality. This finding was in striking contradistinction to what was previously observed in the visual modality, where the MD network was robustly modulated by both linguistic and non-linguistic demand. Our findings suggest that while the language network is modulated by linguistic demand irrespective of modality, modulation of the MD network by linguistic demand is not inherent to linguistic processing, but rather depends on specific task factors.