Objectives: This study examined prescription NSAIDs as one of the leading predictors of incident depression and assessed the direction of the association among older cancer survivors with osteoarthritis.
Methods: This study used a retrospective cohort (N = 14, 992) of older adults with incident cancer (breast, prostate, colorectal cancers, or non-Hodgkin's lymphoma) and osteoarthritis. We used the longitudinal data from the linked Surveillance, Epidemiology, and End Results -Medicare data for the study period from 2006 through 2016, with a 12-month baseline and 12-month follow-up period. Cumulative NSAIDs days was assessed during the baseline period and incident depression was assessed during the follow-up period. An eXtreme Gradient Boosting (XGBoost) model was built with 10-fold repeated stratified cross-validation and hyperparameter tuning using the training dataset. The final model selected from the training data demonstrated high performance (Accuracy: 0.82, Recall: 0.75, Precision: 0.75) when applied to the test data. SHapley Additive exPlanations (SHAP) was used to interpret the output from the XGBoost model.
Results: Over 50% of the study cohort had at least one prescption of NSAIDs. Nearly 13% of the cohort were diagnosed with incident depression, with the rates ranging between 7.4% for prostate cancer and 17.0% for colorectal cancer. The highest incident depression rate of 25% was observed at 90 and 120 cumulative NSAIDs days thresholds. Cumulative NSAIDs days was the sixth leading predictor of incident depression among older adults with OA and cancer. Age, education, care fragmentation, polypharmacy, and zip code level poverty were the top 5 predictors of incident depression.
Conclusion: Overall, 1 in 8 older adults with cancer and OA were diagnosed with incident depression. Cumulative NSAIDs days was the sixth leading predictor with an overall positive association with incident depression. However, the association was complex and varied by the cumulative NSAIDs days.
{"title":"Prescription Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Incidence of Depression Among Older Cancer Survivors With Osteoarthritis: A Machine Learning Analysis.","authors":"Nazneen Fatima Shaikh, Chan Shen, Traci LeMasters, Nilanjana Dwibedi, Amit Ladani, Usha Sambamoorthi","doi":"10.1177/11769351231165161","DOIUrl":"https://doi.org/10.1177/11769351231165161","url":null,"abstract":"<p><strong>Objectives: </strong>This study examined prescription NSAIDs as one of the leading predictors of incident depression and assessed the direction of the association among older cancer survivors with osteoarthritis.</p><p><strong>Methods: </strong>This study used a retrospective cohort (N = 14, 992) of older adults with incident cancer (breast, prostate, colorectal cancers, or non-Hodgkin's lymphoma) and osteoarthritis. We used the longitudinal data from the linked Surveillance, Epidemiology, and End Results -Medicare data for the study period from 2006 through 2016, with a 12-month baseline and 12-month follow-up period. Cumulative NSAIDs days was assessed during the baseline period and incident depression was assessed during the follow-up period. An eXtreme Gradient Boosting (XGBoost) model was built with 10-fold repeated stratified cross-validation and hyperparameter tuning using the training dataset. The final model selected from the training data demonstrated high performance (Accuracy: 0.82, Recall: 0.75, Precision: 0.75) when applied to the test data. SHapley Additive exPlanations (SHAP) was used to interpret the output from the XGBoost model.</p><p><strong>Results: </strong>Over 50% of the study cohort had at least one prescption of NSAIDs. Nearly 13% of the cohort were diagnosed with incident depression, with the rates ranging between 7.4% for prostate cancer and 17.0% for colorectal cancer. The highest incident depression rate of 25% was observed at 90 and 120 cumulative NSAIDs days thresholds. Cumulative NSAIDs days was the sixth leading predictor of incident depression among older adults with OA and cancer. Age, education, care fragmentation, polypharmacy, and zip code level poverty were the top 5 predictors of incident depression.</p><p><strong>Conclusion: </strong>Overall, 1 in 8 older adults with cancer and OA were diagnosed with incident depression. Cumulative NSAIDs days was the sixth leading predictor with an overall positive association with incident depression. However, the association was complex and varied by the cumulative NSAIDs days.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"22 ","pages":"11769351231165161"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/25/bc/10.1177_11769351231165161.PMC10123903.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9356662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/11769351231190477
Yongjun Liu, Heping Zhang, Yuqing Xu, Yao-Zhong Liu, David P Al-Adra, Matthew M Yeh, Zhengjun Zhang
Hepatocellular carcinoma (HCC) is one of the most fatal cancers in the world. There is an urgent need to understand the molecular background of HCC to facilitate the identification of biomarkers and discover effective therapeutic targets. Published transcriptomic studies have reported a large number of genes that are individually significant for HCC. However, reliable biomarkers remain to be determined. In this study, built on max-linear competing risk factor models, we developed a machine learning analytical framework to analyze transcriptomic data to identify the most miniature set of differentially expressed genes (DEGs). By analyzing 9 public whole-transcriptome datasets (containing 1184 HCC samples and 672 nontumor controls), we identified 5 critical differentially expressed genes (DEGs) (ie, CCDC107, CXCL12, GIGYF1, GMNN, and IFFO1) between HCC and control samples. The classifiers built on these 5 DEGs reached nearly perfect performance in identification of HCC. The performance of the 5 DEGs was further validated in a US Caucasian cohort that we collected (containing 17 HCC with paired nontumor tissue). The conceptual advance of our work lies in modeling gene-gene interactions and correcting batch effect in the analytic framework. The classifiers built on the 5 DEGs demonstrated clear signature patterns for HCC. The results are interpretable, robust, and reproducible across diverse cohorts/populations with various disease etiologies, indicating the 5 DEGs are intrinsic variables that can describe the overall features of HCC at the genomic level. The analytical framework applied in this study may pave a new way for improving transcriptome profiling analysis of human cancers.
{"title":"Five Critical Gene-Based Biomarkers With Optimal Performance for Hepatocellular Carcinoma.","authors":"Yongjun Liu, Heping Zhang, Yuqing Xu, Yao-Zhong Liu, David P Al-Adra, Matthew M Yeh, Zhengjun Zhang","doi":"10.1177/11769351231190477","DOIUrl":"https://doi.org/10.1177/11769351231190477","url":null,"abstract":"Hepatocellular carcinoma (HCC) is one of the most fatal cancers in the world. There is an urgent need to understand the molecular background of HCC to facilitate the identification of biomarkers and discover effective therapeutic targets. Published transcriptomic studies have reported a large number of genes that are individually significant for HCC. However, reliable biomarkers remain to be determined. In this study, built on max-linear competing risk factor models, we developed a machine learning analytical framework to analyze transcriptomic data to identify the most miniature set of differentially expressed genes (DEGs). By analyzing 9 public whole-transcriptome datasets (containing 1184 HCC samples and 672 nontumor controls), we identified 5 critical differentially expressed genes (DEGs) (ie, CCDC107, CXCL12, GIGYF1, GMNN, and IFFO1) between HCC and control samples. The classifiers built on these 5 DEGs reached nearly perfect performance in identification of HCC. The performance of the 5 DEGs was further validated in a US Caucasian cohort that we collected (containing 17 HCC with paired nontumor tissue). The conceptual advance of our work lies in modeling gene-gene interactions and correcting batch effect in the analytic framework. The classifiers built on the 5 DEGs demonstrated clear signature patterns for HCC. The results are interpretable, robust, and reproducible across diverse cohorts/populations with various disease etiologies, indicating the 5 DEGs are intrinsic variables that can describe the overall features of HCC at the genomic level. The analytical framework applied in this study may pave a new way for improving transcriptome profiling analysis of human cancers.","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"22 ","pages":"11769351231190477"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/11/97/10.1177_11769351231190477.PMC10413891.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10305114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/11769351221144132
Jianglin Feng, Esteban Astiazaran Symonds, Jason H Karnes
Epidemiologic evidence for the association of cholesterol and breast cancer is inconsistent. Several factors may contribute to this inconsistency, including limited sample sizes, confounding effects of antihyperlipidemic treatment, age, and body mass index, and the assumption that the association follows a simple linear function. Here, we aimed to address these factors by combining visualization and quantification a large-scale contemporary electronic health record database (the All of Us Research Program). We find clear visual and quantitative evidence that breast cancer is strongly, positively, and near-linearly associated with total cholesterol and low-density lipoprotein cholesterol, but not associated with triglycerides. The association of breast cancer with high-density lipoprotein cholesterol was non-linear and age dependent. Standardized odds ratios were 2.12 (95% confidence interval 1.9-2.48), P = 5.6 × 10-31 for total cholesterol; 1.99 (1.75-2.26), P = 2.6 × 10-26 for low-density lipoprotein cholesterol; 1.69 (1.3-2.2), P = 9.0 × 10-5 for high-density lipoprotein cholesterol at age < 56; and 0.65 (0.55-0.78), P = 1.2 × 10-6 for high-density lipoprotein cholesterol at age ⩾ 56. The inclusion of the lipid levels measured after antihyperlipidemic treatment in the analysis results in erroneous associations. We demonstrate that the use of the logistic regression without inspecting risk variable linearity and accounting for confounding effects may lead to inconsistent results.
{"title":"Visualization and Quantification of the Association Between Breast Cancer and Cholesterol in the All of Us Research Program.","authors":"Jianglin Feng, Esteban Astiazaran Symonds, Jason H Karnes","doi":"10.1177/11769351221144132","DOIUrl":"https://doi.org/10.1177/11769351221144132","url":null,"abstract":"<p><p>Epidemiologic evidence for the association of cholesterol and breast cancer is inconsistent. Several factors may contribute to this inconsistency, including limited sample sizes, confounding effects of antihyperlipidemic treatment, age, and body mass index, and the assumption that the association follows a simple linear function. Here, we aimed to address these factors by combining visualization and quantification a large-scale contemporary electronic health record database (the All of Us Research Program). We find clear visual and quantitative evidence that breast cancer is strongly, positively, and near-linearly associated with total cholesterol and low-density lipoprotein cholesterol, but not associated with triglycerides. The association of breast cancer with high-density lipoprotein cholesterol was non-linear and age dependent. Standardized odds ratios were 2.12 (95% confidence interval 1.9-2.48), <i>P</i> = 5.6 × 10<sup>-31</sup> for total cholesterol; 1.99 (1.75-2.26), <i>P</i> = 2.6 × 10<sup>-26</sup> for low-density lipoprotein cholesterol; 1.69 (1.3-2.2), <i>P</i> = 9.0 × 10<sup>-5</sup> for high-density lipoprotein cholesterol at age < 56; and 0.65 (0.55-0.78), <i>P</i> = 1.2 × 10<sup>-6</sup> for high-density lipoprotein cholesterol at age ⩾ 56. The inclusion of the lipid levels measured after antihyperlipidemic treatment in the analysis results in erroneous associations. We demonstrate that the use of the logistic regression without inspecting risk variable linearity and accounting for confounding effects may lead to inconsistent results.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"22 ","pages":"11769351221144132"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8b/89/10.1177_11769351221144132.PMC9841847.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10550794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/11769351221147244
K Chandrashekar, Anagha S Setlur, Adithya Sabhapathi C, Satyam Suresh Raiker, Satyam Singh, Vidya Niranjan
Using a decision support system (DSS) that classifies various cancers provides support to the clinicians/researchers to make better decisions that can aid in early cancer diagnosis, thereby reducing chances of incorrect disease diagnosis. Thus, this work aimed at designing a classification model that can predict accurately for 5 different cancer types comprising of 20 cancer exomes, using the mutations identified from whole exome cancer analysis. Initially, a basic model was designed using supervised machine learning classification algorithms such as K-nearest neighbor (KNN), support vector machine (SVM), decision tree, naïve bayes and random forest (RF), among which decision tree and random forest performed better in terms of preliminary model accuracy. However, output predictions were incorrect due to less training scores. Thus, 16 essential features were then selected for model improvement using 2 approaches. All imbalanced datasets were balanced using SMOTE. In the first approach, all features from 20 cancer exome datasets were trained and models were designed using decision tree and random forest. Balanced datasets for decision tree model showed an accuracy of 77%, while with the RF model, the accuracy improved to 82% where all 5 cancer types were predicted correctly. Area under the curve for RF model was closer to 1, than decision tree model. In the second approach, all 15 datasets were trained, while 5 were tested. However, only 2 cancer types were predicted correctly. To cross validate RF model, Matthew's correlation co-efficient (MCC) test was performed. For method 1, the MCC test and MCC cross validation was found to be 0.7796 and 0.9356 respectively. Likewise, for second approach, MCC was observed to be 0.9365, corroborating the accuracy of the designed model. The model was successfully deployed using Streamlit as a web application for easy use. This study presents insights for allowing easy cancer classifications.
{"title":"Decision Support System and Web-Application Using Supervised Machine Learning Algorithms for Easy Cancer Classifications.","authors":"K Chandrashekar, Anagha S Setlur, Adithya Sabhapathi C, Satyam Suresh Raiker, Satyam Singh, Vidya Niranjan","doi":"10.1177/11769351221147244","DOIUrl":"https://doi.org/10.1177/11769351221147244","url":null,"abstract":"<p><p>Using a decision support system (DSS) that classifies various cancers provides support to the clinicians/researchers to make better decisions that can aid in early cancer diagnosis, thereby reducing chances of incorrect disease diagnosis. Thus, this work aimed at designing a classification model that can predict accurately for 5 different cancer types comprising of 20 cancer exomes, using the mutations identified from whole exome cancer analysis. Initially, a basic model was designed using supervised machine learning classification algorithms such as K-nearest neighbor (KNN), support vector machine (SVM), decision tree, naïve bayes and random forest (RF), among which decision tree and random forest performed better in terms of preliminary model accuracy. However, output predictions were incorrect due to less training scores. Thus, 16 essential features were then selected for model improvement using 2 approaches. All imbalanced datasets were balanced using SMOTE. In the first approach, all features from 20 cancer exome datasets were trained and models were designed using decision tree and random forest. Balanced datasets for decision tree model showed an accuracy of 77%, while with the RF model, the accuracy improved to 82% where all 5 cancer types were predicted correctly. Area under the curve for RF model was closer to 1, than decision tree model. In the second approach, all 15 datasets were trained, while 5 were tested. However, only 2 cancer types were predicted correctly. To cross validate RF model, Matthew's correlation co-efficient (MCC) test was performed. For method 1, the MCC test and MCC cross validation was found to be 0.7796 and 0.9356 respectively. Likewise, for second approach, MCC was observed to be 0.9365, corroborating the accuracy of the designed model. The model was successfully deployed using Streamlit as a web application for easy use. This study presents insights for allowing easy cancer classifications.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"22 ","pages":"11769351221147244"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c2/da/10.1177_11769351221147244.PMC9880585.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10591008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/11769351231189051
[This corrects the article DOI: 10.1177/11769351231177269.].
[这更正了文章DOI: 10.1177/11769351231177269.]。
{"title":"Erratum to \"Chemical Complementarity of Breast Cancer Resident, T-Cell Receptor CDR3 Domains and the Cancer Antigen, ARMC3, is Associated With Higher Levels of Survival and Granzyme Expression\".","authors":"","doi":"10.1177/11769351231189051","DOIUrl":"https://doi.org/10.1177/11769351231189051","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1177/11769351231177269.].</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"22 ","pages":"11769351231189051"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/24/b1/10.1177_11769351231189051.PMC10350781.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9827252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/11769351231177267
Safir Ullah Khan, Zahid Ullah, Hadia Shaukat, Sheeza Unab, Saba Jannat, Waqar Ali, Amir Ali, Muhammad Irfan, Muhammad Fiaz Khan, Rodolfo Daniel Cervantes-Villagrana
The present study was the first comprehensive investigation of genetic mutation and expression levels of the p53 signaling genes in cutaneous melanoma through various genetic databases providing large datasets. The mutational landscape of p53 and its signaling genes was higher than expected, with TP53 followed by CDKN2A being the most mutated gene in cutaneous melanoma. Furthermore, the expression analysis showed that TP53, MDM2, CDKN2A, and TP53BP1 were overexpressed, while MDM4 and CDKN2B were under-expressed in cutaneous melanoma. Overall, TCGA data revealed that among all the other p53 signaling proteins, CDKN2A was significantly higher in both sun and non-sun-exposed healthy tissues than in melanoma. Likewise, MDM4 and TP53BP1 expressions were markedly greater in non-sun-exposed healthy tissues compared to other groups. However, CDKN2B expression was higher in the sun-exposed healthy tissues than in other tissues. In addition, various genes were expressed significantly differently among males and females. In addition, CDKN2A was highly expressed in the SK-MEL-30 skin cancer cell line, whereas, Immune cell type expression analysis revealed that the MDM4 was highly expressed in naïve B-cells. Furthermore, all six genes were significantly overexpressed in extraordinarily overweight or obese tumor tissues compared to healthy tissues. MDM2 expression and tumor stage were closely related. There were differences in gene expression across patient age groups and positive nodal status. TP53 showed a positive correlation with B cells, MDM2 with CD8+T cells, macrophages and neutrophils, and MDM4 with neutrophils. CDKN2A/B had a non-significant correlation with all six types of immune cells. However, TP53BP1 was positively correlated with all five types of immune cells except B cells. Only TP53, MDM2, and CDKN2A had a role in cutaneous melanoma-specific tumor immunity. All TP53 and its regulating genes may be predictive for prognosis. The results of the present study need to be validated through future screening, in vivo, and in vitro studies.
{"title":"TP53 and its Regulatory Genes as Prognosis of Cutaneous Melanoma.","authors":"Safir Ullah Khan, Zahid Ullah, Hadia Shaukat, Sheeza Unab, Saba Jannat, Waqar Ali, Amir Ali, Muhammad Irfan, Muhammad Fiaz Khan, Rodolfo Daniel Cervantes-Villagrana","doi":"10.1177/11769351231177267","DOIUrl":"https://doi.org/10.1177/11769351231177267","url":null,"abstract":"<p><p>The present study was the first comprehensive investigation of genetic mutation and expression levels of the p53 signaling genes in cutaneous melanoma through various genetic databases providing large datasets. The mutational landscape of p53 and its signaling genes was higher than expected, with <i>TP53</i> followed by <i>CDKN2A</i> being the most mutated gene in cutaneous melanoma. Furthermore, the expression analysis showed <i>that TP53</i>, <i>MDM2</i>, <i>CDKN2A</i>, and <i>TP53BP1</i> were overexpressed, while <i>MDM4</i> and <i>CDKN2B</i> were under-expressed in cutaneous melanoma. Overall, TCGA data revealed that among all the other p53 signaling proteins, CDKN2A was significantly higher in both sun and non-sun-exposed healthy tissues than in melanoma. Likewise, MDM4 and TP53BP1 expressions were markedly greater in non-sun-exposed healthy tissues compared to other groups. However, CDKN2B expression was higher in the sun-exposed healthy tissues than in other tissues. In addition, various genes were expressed significantly differently among males and females. In addition, <i>CDKN2A</i> was highly expressed in the SK-MEL-30 skin cancer cell line, whereas, Immune cell type expression analysis revealed that the <i>MDM4</i> was highly expressed in naïve B-cells. Furthermore, all six genes were significantly overexpressed in extraordinarily overweight or obese tumor tissues compared to healthy tissues. <i>MDM2</i> expression and tumor stage were closely related. There were differences in gene expression across patient age groups and positive nodal status. <i>TP53</i> showed a positive correlation with B cells, <i>MDM2</i> with CD8+<i>T</i> cells, macrophages and neutrophils, and <i>MDM4</i> with neutrophils. <i>CDKN2A/B</i> had a non-significant correlation with all six types of immune cells. However, <i>TP53BP1</i> was positively correlated with all five types of immune cells except B cells. Only <i>TP53, MDM2</i>, and <i>CDKN2A</i> had a role in cutaneous melanoma-specific tumor immunity. All TP53 and its regulating genes may be predictive for prognosis. The results of the present study need to be validated through future screening, in vivo, and in vitro studies.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"22 ","pages":"11769351231177267"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c1/e4/10.1177_11769351231177267.PMC10475268.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10283819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: In the era of big data, gene-set pathway analyses derived from multi-omics are exceptionally powerful. When preparing and analyzing high-dimensional multi-omics data, the installation process and programing skills required to use existing tools can be challenging. This is especially the case for those who are not familiar with coding. In addition, implementation with high performance computing solutions is required to run these tools efficiently.
Methods: We introduce an automatic multi-omics pathway workflow, a point and click graphical user interface to Multivariate Single Sample Gene Set Analysis (MOGSA), hosted on the Cancer Genomics Cloud by Seven Bridges Genomics. This workflow leverages the combination of different tools to perform data preparation for each given data types, dimensionality reduction, and MOGSA pathway analysis. The Omics data includes copy number alteration, transcriptomics data, proteomics and phosphoproteomics data. We have also provided an additional workflow to help with downloading data from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium and preprocessing these data to be used for this multi-omics pathway workflow.
Results: The main outputs of this workflow are the distinct pathways for subgroups of interest provided by users, which are displayed in heatmaps if identified. In addition to this, graphs and tables are provided to users for reviewing.
Conclusion: Multi-omics Pathway Workflow requires no coding experience. Users can bring their own data or download and preprocess public datasets from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium using our additional workflow based on the samples of interest. Distinct overactivated or deactivated pathways for groups of interest can be found. This useful information is important in effective therapeutic targeting.
{"title":"Multi-omics Pathways Workflow (MOPAW): An Automated Multi-omics Workflow on the Cancer Genomics Cloud.","authors":"Trinh Nguyen, Xiaopeng Bian, David Roberson, Rakesh Khanna, Qingrong Chen, Chunhua Yan, Rowan Beck, Zelia Worman, Daoud Meerzaman","doi":"10.1177/11769351231180992","DOIUrl":"https://doi.org/10.1177/11769351231180992","url":null,"abstract":"<p><strong>Introduction: </strong>In the era of big data, gene-set pathway analyses derived from multi-omics are exceptionally powerful. When preparing and analyzing high-dimensional multi-omics data, the installation process and programing skills required to use existing tools can be challenging. This is especially the case for those who are not familiar with coding. In addition, implementation with high performance computing solutions is required to run these tools efficiently.</p><p><strong>Methods: </strong>We introduce an automatic multi-omics pathway workflow, a point and click graphical user interface to Multivariate Single Sample Gene Set Analysis (MOGSA), hosted on the Cancer Genomics Cloud by Seven Bridges Genomics. This workflow leverages the combination of different tools to perform data preparation for each given data types, dimensionality reduction, and MOGSA pathway analysis. The Omics data includes copy number alteration, transcriptomics data, proteomics and phosphoproteomics data. We have also provided an additional workflow to help with downloading data from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium and preprocessing these data to be used for this multi-omics pathway workflow.</p><p><strong>Results: </strong>The main outputs of this workflow are the distinct pathways for subgroups of interest provided by users, which are displayed in heatmaps if identified. In addition to this, graphs and tables are provided to users for reviewing.</p><p><strong>Conclusion: </strong>Multi-omics Pathway Workflow requires no coding experience. Users can bring their own data or download and preprocess public datasets from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium using our additional workflow based on the samples of interest. Distinct overactivated or deactivated pathways for groups of interest can be found. This useful information is important in effective therapeutic targeting.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"22 ","pages":"11769351231180992"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/28/1c/10.1177_11769351231180992.PMC10278438.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9707715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/11769351231154679
Youcef Derbal
Genome instability of cancer cells translates into increased entropy and lower information processing capacity, leading to metabolic reprograming toward higher energy states, presumed to be aligned with a cancer growth imperative. Dubbed as the cell adaptive fitness, the proposition postulates that the coupling between cell signaling and metabolism constrains cancer evolutionary dynamics along trajectories privileged by the maintenance of metabolic sufficiency for survival. In particular, the conjecture postulates that clonal expansion becomes restricted when genetic alterations induce a sufficiently high level of disorder, that is, high entropy, in the regulatory signaling network, abrogating as a result the ability of cancer cells to successfully replicate, leading to a stage of clonal stagnation. The proposition is analyzed in the context of an in-silico model of tumor evolutionary dynamics to illustrate how cell-inherent adaptive fitness may predictably constrain clonal evolution of tumors, which would have significant implications for the design of adaptive cancer therapies.
{"title":"Cell Adaptive Fitness and Cancer Evolutionary Dynamics.","authors":"Youcef Derbal","doi":"10.1177/11769351231154679","DOIUrl":"https://doi.org/10.1177/11769351231154679","url":null,"abstract":"Genome instability of cancer cells translates into increased entropy and lower information processing capacity, leading to metabolic reprograming toward higher energy states, presumed to be aligned with a cancer growth imperative. Dubbed as the cell adaptive fitness, the proposition postulates that the coupling between cell signaling and metabolism constrains cancer evolutionary dynamics along trajectories privileged by the maintenance of metabolic sufficiency for survival. In particular, the conjecture postulates that clonal expansion becomes restricted when genetic alterations induce a sufficiently high level of disorder, that is, high entropy, in the regulatory signaling network, abrogating as a result the ability of cancer cells to successfully replicate, leading to a stage of clonal stagnation. The proposition is analyzed in the context of an in-silico model of tumor evolutionary dynamics to illustrate how cell-inherent adaptive fitness may predictably constrain clonal evolution of tumors, which would have significant implications for the design of adaptive cancer therapies.","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"22 ","pages":"11769351231154679"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/77/f7/10.1177_11769351231154679.PMC9969436.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9074198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/11769351231171743
Nourhan Abu-Shahba, Elsayed Hegazy, Faiz M Khan, Mahmoud Elhefnawi
Abnormal miRNA expression has been evidenced to be directly linked to HCC initiation and progression. This study was designed to detect possible prognostic, diagnostic, and/or therapeutic miRNAs for HCC using computational analysis of miRNAs expression. Methods: miRNA expression datasets meta-analysis was performed using the YM500v2 server to compare miRNA expression in normal and cancerous liver tissues. The most significant differentially regulated miRNAs in our study undergone target gene analysis using the mirWalk tool to obtain their validated and predicted targets. The combinatorial target prediction tool; miRror Suite was used to obtain the commonly regulated target genes. Functional enrichment analysis was performed on the resulting targets using the DAVID tool. A network was constructed based on interactions among microRNAs, their targets, and transcription factors. Hub nodes and gatekeepers were identified using network topological analysis. Further, we performed patient data survival analysis based on low and high expression of identified hubs and gatekeeper nodes, patients were stratified into low and high survival probability groups. Results: Using the meta-analysis option in the YM500v2 server, 34 miRNAs were found to be significantly differentially regulated (P-value ⩽ .05); 5 miRNAs were down-regulated while 29 were up-regulated. The validated and predicted target genes for each miRNA, as well as the combinatorially predicted targets, were obtained. DAVID enrichment analysis resulted in several important cellular functions that are directly related to the main cancer hallmarks. Among these functions are focal adhesion, cell cycle, PI3K-Akt signaling, insulin signaling, Ras and MAPK signaling pathways. Several hub genes and gatekeepers were found that could serve as potential drug targets for hepatocellular carcinoma. POU2F1 and PPARA showed a significant difference between low and high survival probabilities (P-value ⩽ .05) in HCC patients. Our study sheds light on important biomarker miRNAs for hepatocellular carcinoma along with their target genes and their regulated functions.
{"title":"In Silico Analysis of MicroRNA Expression Data in Liver Cancer.","authors":"Nourhan Abu-Shahba, Elsayed Hegazy, Faiz M Khan, Mahmoud Elhefnawi","doi":"10.1177/11769351231171743","DOIUrl":"https://doi.org/10.1177/11769351231171743","url":null,"abstract":"<p><p>Abnormal miRNA expression has been evidenced to be directly linked to HCC initiation and progression. This study was designed to detect possible prognostic, diagnostic, and/or therapeutic miRNAs for HCC using computational analysis of miRNAs expression. Methods: miRNA expression datasets meta-analysis was performed using the YM500v2 server to compare miRNA expression in normal and cancerous liver tissues. The most significant differentially regulated miRNAs in our study undergone target gene analysis using the mirWalk tool to obtain their validated and predicted targets. The combinatorial target prediction tool; miRror Suite was used to obtain the commonly regulated target genes. Functional enrichment analysis was performed on the resulting targets using the DAVID tool. A network was constructed based on interactions among microRNAs, their targets, and transcription factors. Hub nodes and gatekeepers were identified using network topological analysis. Further, we performed patient data survival analysis based on low and high expression of identified hubs and gatekeeper nodes, patients were stratified into low and high survival probability groups. Results: Using the meta-analysis option in the YM500v2 server, 34 miRNAs were found to be significantly differentially regulated (<i>P</i>-value ⩽ .05); 5 miRNAs were down-regulated while 29 were up-regulated. The validated and predicted target genes for each miRNA, as well as the combinatorially predicted targets, were obtained. DAVID enrichment analysis resulted in several important cellular functions that are directly related to the main cancer hallmarks. Among these functions are focal adhesion, cell cycle, PI3K-Akt signaling, insulin signaling, Ras and MAPK signaling pathways. Several hub genes and gatekeepers were found that could serve as potential drug targets for hepatocellular carcinoma. POU2F1 and PPARA showed a significant difference between low and high survival probabilities (<i>P</i>-value ⩽ .05) in HCC patients. Our study sheds light on important biomarker miRNAs for hepatocellular carcinoma along with their target genes and their regulated functions.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"22 ","pages":"11769351231171743"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/64/09/10.1177_11769351231171743.PMC10185868.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9492897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osteosarcoma (OS) is the most common primary cancer in the skeletal system, characterized by a high incidence of lung metastasis, local recurrence and death. Systemic treatment of this aggressive cancer has not improved significantly since the introduction of chemotherapy regimens, underscoring a critical need for new treatment strategies. TRAIL receptors have long been proposed to be therapeutic targets for cancer treatment, but their role in osteosarcoma remains unclear. In this study, we investigated the expression profile of four TRAIL receptors in human OS cells using total RNA-seq and single-cell RNA-seq (scRNA-seq). The results revealed that TNFRSF10B and TNFRSF10D but not TNFRSF10A and TNFRSF10C are differentially expressed in human OS cells as compared to normal cells. At the single cell level by scRNA-seq analyses, TNFRSF10B, TNFRSF10D, TNFRSF10A and TNFRSF10C are most abundantly expressed in endothelial cells of OS tissues among nine distinct cell clusters. Notably, in osteoblastic OS cells, TNFRSF10B is most abundantly expressed, followed by TNFRSF10D, TNFRSF10A and TNFRSF10C. Similarly, in an OS cell line U2-OS using RNA-seq, TNFRSF10B is most abundantly expressed, followed by TNFRSF10D, TNFRSF10A and TNFRSF10C. According to the TARGET online database, poor patient outcomes were associated with low expression of TNFRSF10C. These results could provide a new perspective to design novel therapeutic targets of TRAIL receptors for the diagnosis, prognosis and treatment of OS and other cancers.
{"title":"RNA-seq and Single-Cell Transcriptome Analyses of TRAIL Receptors Gene Expression in Human Osteosarcoma Cells and Tissues.","authors":"Wenyu Feng, Haiyingjie Lin, Emel Rothzerg, Dezhi Song, Wenxiang Zhao, Tingting Ning, Qingjun Wei, Jinmin Zhao, David Wood, Yun Liu, Jiake Xu","doi":"10.1177/11769351231161478","DOIUrl":"https://doi.org/10.1177/11769351231161478","url":null,"abstract":"<p><p>Osteosarcoma (OS) is the most common primary cancer in the skeletal system, characterized by a high incidence of lung metastasis, local recurrence and death. Systemic treatment of this aggressive cancer has not improved significantly since the introduction of chemotherapy regimens, underscoring a critical need for new treatment strategies. TRAIL receptors have long been proposed to be therapeutic targets for cancer treatment, but their role in osteosarcoma remains unclear. In this study, we investigated the expression profile of four TRAIL receptors in human OS cells using total RNA-seq and single-cell RNA-seq (scRNA-seq). The results revealed that <i>TNFRSF10B</i> and <i>TNFRSF10D</i> but not <i>TNFRSF10A</i> and <i>TNFRSF10C</i> are differentially expressed in human OS cells as compared to normal cells. At the single cell level by scRNA-seq analyses, <i>TNFRSF10B, TNFRSF10D, TNFRSF10A</i> and <i>TNFRSF10C</i> are most abundantly expressed in endothelial cells of OS tissues among nine distinct cell clusters. Notably, in osteoblastic OS cells, <i>TNFRSF10B</i> is most abundantly expressed, followed by <i>TNFRSF10D, TNFRSF10A</i> and <i>TNFRSF10C.</i> Similarly, in an OS cell line U2-OS using RNA-seq, <i>TNFRSF10B</i> is most abundantly expressed, followed by <i>TNFRSF10D, TNFRSF10A</i> and <i>TNFRSF10C</i>. According to the TARGET online database, poor patient outcomes were associated with low expression of <i>TNFRSF10C</i>. These results could provide a new perspective to design novel therapeutic targets of TRAIL receptors for the diagnosis, prognosis and treatment of OS and other cancers.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"22 ","pages":"11769351231161478"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ab/49/10.1177_11769351231161478.PMC10123892.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9356658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}