Pub Date : 2024-04-02DOI: 10.21468/scipostphysproc.15.005
C. Flett, Alan D. Martin, Mikhail (Misha) G. Ryskin, T. Teubner
We discuss exclusive J/psiψ photoproduction, initially in conventional collinear factorisation at NLO and then subsequently in a refined approach with a programme of low x resummation and implementation of a crucial low Q_0Q0 subtraction included. We compare and contrast predictions in both frameworks and remark about the possibility to constrain and ultimately determine the low x and low scale gluon PDF, emphasising the significance of this for future global PDF analyses.
{"title":"Implications of exclusive J/$psi$ photoproduction in a tamed collinear factorisation approach to NLO","authors":"C. Flett, Alan D. Martin, Mikhail (Misha) G. Ryskin, T. Teubner","doi":"10.21468/scipostphysproc.15.005","DOIUrl":"https://doi.org/10.21468/scipostphysproc.15.005","url":null,"abstract":"We discuss exclusive J/psiψ photoproduction, initially in conventional collinear factorisation at NLO and then subsequently in a refined approach with a programme of low x resummation and implementation of a crucial low Q_0Q0 subtraction included. We compare and contrast predictions in both frameworks and remark about the possibility to constrain and ultimately determine the low x and low scale gluon PDF, emphasising the significance of this for future global PDF analyses.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"179 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140754904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-02DOI: 10.21468/scipostphysproc.15.012
S. K. Malik, Ramni Gupta
Local density fluctuations are expected to scale as a universal power-law when the system approaches critical point. Such power-law fluctuations are studied within the framework of intermittency through the measurement of normalized factorial moments in (etaη, phiϕ) phase space. Observations and results from the intermittency analysis performed for charged particles in Pb-Pb collisions using PYTHIA8/Angantyr at 2.76 TeV and 5.02 TeV are reported. We observe no scaling behaviour in the particle generation for any of the centrality studied in narrow p_TT bins. The scaling exponent nuν shows no dependence on the centrality ranges.
{"title":"Intermittency analysis of charged hadrons generated in Pb-Pb collisions at $sqrt{s_{NN}}$= 2.76 TeV and 5.02 TeV","authors":"S. K. Malik, Ramni Gupta","doi":"10.21468/scipostphysproc.15.012","DOIUrl":"https://doi.org/10.21468/scipostphysproc.15.012","url":null,"abstract":"Local density fluctuations are expected to scale as a universal power-law when the system approaches critical point. Such power-law fluctuations are studied within the framework of intermittency through the measurement of normalized factorial moments in (etaη, phiϕ) phase space. Observations and results from the intermittency analysis performed for charged particles in Pb-Pb collisions using PYTHIA8/Angantyr at 2.76 TeV and 5.02 TeV are reported. We observe no scaling behaviour in the particle generation for any of the centrality studied in narrow p_TT bins. The scaling exponent nuν shows no dependence on the centrality ranges.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"73 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140755425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.21468/scipostphysproc.14.038
Guner Muarem
In this paper we use the canonical complex structure mathbb{J}𝕁 on mathbb{R}^{2n}ℝ2n to introduce a twist of the symplectic Dirac operator. This can be interpreted as the bosonic analogue of the Dirac operators on a Hermitian manifold. Moreover, we prove that the algebra of these Dirac operators is isomorphic to the Lie algebra mathfrak{su}(1,2)𝔰𝔲(1,2) which leads to the Howe dual pair (U(n),mathfrak{su}(1,2))(U(n),𝔰𝔲(1,2)).
{"title":"Unitary Howe dualities in fermionic and bosonic algebras and related Dirac operators","authors":"Guner Muarem","doi":"10.21468/scipostphysproc.14.038","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.038","url":null,"abstract":"<jats:p>In this paper we use the canonical complex structure <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{J}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mi>𝕁</mml:mi></mml:math></jats:alternatives></jats:inline-formula> on <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{R}^{2n}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msup><mml:mi>ℝ</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math></jats:alternatives></jats:inline-formula> to introduce a twist of the symplectic Dirac operator. This can be interpreted as the bosonic analogue of the Dirac operators on a Hermitian manifold. Moreover, we prove that the algebra of these Dirac operators is isomorphic to the Lie algebra <jats:inline-formula><jats:alternatives><jats:tex-math>mathfrak{su}(1,2)</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:mrow><mml:mi>𝔰</mml:mi><mml:mi>𝔲</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> which leads to the Howe dual pair <jats:inline-formula><jats:alternatives><jats:tex-math>(U(n),mathfrak{su}(1,2))</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mi>U</mml:mi><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:mrow><mml:mi>𝔰</mml:mi><mml:mi>𝔲</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>.</jats:p>","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"32 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139239786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.21468/scipostphysproc.14.036
A. Mayorgas, J. Guerrero, Manuel Calixto
We define the concept of Mixed Symmetry Quantum Phase Transition (MSQPT), considering each permutation symmetry sector muμ of an identical particles system, as singularities in the properties of the lowest-energy state into each muμ when shifting a Hamiltonian control parameter lambdaλ. A three-level Lipkin-Meshkov-Glick (LMG) model is chosen to typify our construction. Firstly, we analyze the finite number NN of particles case, proving the presence of MSQPT precursors. Then, in the thermodynamic limit Nto∞N→∞, we calculate the lowest-energy density inside each sector muμ, augmenting the control parameter space by muμ, and showing a phase diagram with four different quantum phases.
我们定义了混合对称量子相变(Mixed Symmetry Quantum Phase Transition,MSQPT)的概念,将相同粒子系统的每个排列对称扇区(permutation symmetry sector muμ)视为当移动哈密顿控制参数(Hamiltonian control parameter lambdaλ)时,最低能量态进入每个扇区(muμ)的奇异特性。我们选择了一个三层的利普金-梅什科夫-格里克(LMG)模型来说明我们的构造。首先,我们分析了粒子数 NN 有限的情况,证明了 MSQPT 前体的存在。然后,在热力学极限Nto∞N→∞中,我们计算了每个扇形内部的最低能量密度(muμ),用muμ增加了控制参数空间,并展示了具有四种不同量子相的相图。
{"title":"Mixed permutation symmetry quantum phase transitions of critical three-level atom models","authors":"A. Mayorgas, J. Guerrero, Manuel Calixto","doi":"10.21468/scipostphysproc.14.036","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.036","url":null,"abstract":"We define the concept of Mixed Symmetry Quantum Phase Transition (MSQPT), considering each permutation symmetry sector muμ of an identical particles system, as singularities in the properties of the lowest-energy state into each muμ when shifting a Hamiltonian control parameter lambdaλ. A three-level Lipkin-Meshkov-Glick (LMG) model is chosen to typify our construction. Firstly, we analyze the finite number NN of particles case, proving the presence of MSQPT precursors. Then, in the thermodynamic limit Nto∞N→∞, we calculate the lowest-energy density inside each sector muμ, augmenting the control parameter space by muμ, and showing a phase diagram with four different quantum phases.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139240920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.21468/scipostphysproc.14.042
Tobiasz Pietrzak, Łukasz Bratek
The clock hypothesis plays an important role in the theory of relativity. To test this hypothesis, a mechanical model of an ideal clock is needed. Such a model should have the phase of its intrinsic periodic motion increasing linearly with the affine parameter of the clock’s center of mass worldline. A class of relativistic rotators introduced by Staruszkiewicz in the context of an ideal clock is studied. A singularity in the inverse Legendre transform leading from the Hamiltonian to the Lagrangian leads to new possible Lagrangians characterized by fixed values of mass and spin. In free motion the rotators exhibit intrinsic motion with the speed of light and fixed frequency.
{"title":"Clocking mechanism from a minimal spinning particle model","authors":"Tobiasz Pietrzak, Łukasz Bratek","doi":"10.21468/scipostphysproc.14.042","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.042","url":null,"abstract":"The clock hypothesis plays an important role in the theory of relativity. To test this hypothesis, a mechanical model of an ideal clock is needed. Such a model should have the phase of its intrinsic periodic motion increasing linearly with the affine parameter of the clock’s center of mass worldline. A class of relativistic rotators introduced by Staruszkiewicz in the context of an ideal clock is studied. A singularity in the inverse Legendre transform leading from the Hamiltonian to the Lagrangian leads to new possible Lagrangians characterized by fixed values of mass and spin. In free motion the rotators exhibit intrinsic motion with the speed of light and fixed frequency.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"59 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139241994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.21468/SciPostPhysProc.14.035
A. Marrani
We introduce the so-called Magic Star (MS) projection within the root lattice of finite-dimensional exceptional Lie algebras, and relate it to rank-3 simple and semi-simple Jordan algebras. By relying on the Bott periodicity of reality and conjugacy properties of spinor representations, we present the so-called Exceptional Periodicity (EP) algebras, which are finite-dimensional algebras, violating the Jacobi identity, and providing an alternative with respect to Kac-Moody infinite-dimensional Lie algebras. Remarkably, also EP algebras can be characterized in terms of a MS projection, exploiting special Vinberg T-algebras, a class of generalized Hermitian matrix algebras introduced by Vinberg in the ’60s within his theory of homogeneous convex cones. As physical applications, we highlight the role of the invariant norm of special Vinberg T-algebras in Maxwell-Einstein-scalar theories in 5 space-time dimensions, in which the Bekenstein-Hawking entropy of extremal black strings can be expressed in terms of the cubic polynomial norm of the T-algebras.
我们在有限维例外李代数的根晶格中引入了所谓的魔星(MS)投影,并将其与秩-3 简单和半简单约旦代数联系起来。依靠现实的底周期性和旋量表征的共轭特性,我们提出了所谓的非凡周期性(EP)代数,它是有限维代数,违反雅可比同一性,并提供了与卡-莫迪无限维李代数相对应的另一种代数。值得注意的是,通过利用特殊的文伯格 T 级,EP 级也可以用 MS 投影来表征,文伯格在 60 年代在他的同质凸锥理论中引入了一类广义赫米特矩阵级。在物理应用方面,我们强调了特殊温伯格T-代数的不变规范在5维时空的麦克斯韦-爱因斯坦标量理论中的作用,其中极值黑弦的贝肯斯坦-霍金熵可以用T-代数的立方多项式规范来表示。
{"title":"Vinberg's T-algebras: From exceptional periodicity to black hole entropy","authors":"A. Marrani","doi":"10.21468/SciPostPhysProc.14.035","DOIUrl":"https://doi.org/10.21468/SciPostPhysProc.14.035","url":null,"abstract":"We introduce the so-called Magic Star (MS) projection within the root lattice of finite-dimensional exceptional Lie algebras, and relate it to rank-3 simple and semi-simple Jordan algebras. By relying on the Bott periodicity of reality and conjugacy properties of spinor representations, we present the so-called Exceptional Periodicity (EP) algebras, which are finite-dimensional algebras, violating the Jacobi identity, and providing an alternative with respect to Kac-Moody infinite-dimensional Lie algebras. Remarkably, also EP algebras can be characterized in terms of a MS projection, exploiting special Vinberg T-algebras, a class of generalized Hermitian matrix algebras introduced by Vinberg in the ’60s within his theory of homogeneous convex cones. As physical applications, we highlight the role of the invariant norm of special Vinberg T-algebras in Maxwell-Einstein-scalar theories in 5 space-time dimensions, in which the Bekenstein-Hawking entropy of extremal black strings can be expressed in terms of the cubic polynomial norm of the T-algebras.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"64 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139238406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.21468/SciPostPhysProc.14.046
Francesco Toppan
This paper presents the parastatistics of braided Majorana fermions obtained in the framework of a graded Hopf algebra endowed with a braided tensor product. The braiding property is encoded in a t-dependent 4×4 braiding matrix B_tBt related to the Alexander-Conway polynomial. The nonvanishing complex parameter t defines the braided parastatistics. At t=1 ordinary fermions are recovered. The values of t at roots of unity are organized into levels which specify the maximal number of braided Majorana fermions in a multiparticle sector. Generic values of t and the t=-1 root of unity mimick the behaviour of ordinary bosons.
本文介绍了在赋有辫状张量积的分级霍普夫代数框架内获得的辫状马约拉纳费米子的准统计特性。编织特性被编码在一个与亚历山大-康威多项式相关的、依赖于 t 的 4×4 编织矩阵 B_tBt 中。非消失复参数 t 定义了编织准统计量。在 t=1 时,普通费米子被恢复。统一根的 t 值被划分为若干等级,这些等级规定了多粒子扇形中编织马约拉纳费米子的最大数量。t 的一般值和 t=-1 的统一根模仿了普通玻色子的行为。
{"title":"The parastatistics of braided Majorana fermions","authors":"Francesco Toppan","doi":"10.21468/SciPostPhysProc.14.046","DOIUrl":"https://doi.org/10.21468/SciPostPhysProc.14.046","url":null,"abstract":"This paper presents the parastatistics of braided Majorana fermions obtained in the framework of a graded Hopf algebra endowed with a braided tensor product. The braiding property is encoded in a t-dependent 4×4 braiding matrix B_tBt related to the Alexander-Conway polynomial. The nonvanishing complex parameter t defines the braided parastatistics. At t=1 ordinary fermions are recovered. The values of t at roots of unity are organized into levels which specify the maximal number of braided Majorana fermions in a multiparticle sector. Generic values of t and the t=-1 root of unity mimick the behaviour of ordinary bosons.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"2007 33","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139239322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.21468/scipostphysproc.14.034
Seiichi Kuwata
Considering spin degrees of freedom incorporated in the conformal generators, we introduce an intrinsic momentum operator pi_muπμ, which is feasible for the Bhabha wave equation. If a physical state psi_{ph}ψph for spin s is annihilated by the pi_muπμ, the degree of psi_{ph}ψph, deg psi_{ph}ψph, should equal twice the spin degrees of freedom, 2 ( 2 s + 1)2(2s+1) for a massive particle, where the multiplicity 22 indicates the chirality. The relation deg psi_{ph}ψph = 2(2s+1) holds in the representation R_5R
{"title":"Spin degrees of freedom incorporated in conformal group: Introduction of an intrinsic momentum operator","authors":"Seiichi Kuwata","doi":"10.21468/scipostphysproc.14.034","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.034","url":null,"abstract":"<jats:p>Considering spin degrees of freedom incorporated in the conformal generators, we introduce an intrinsic momentum operator <jats:inline-formula><jats:alternatives><jats:tex-math>pi_mu</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>π</mml:mi><mml:mi>μ</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, which is feasible for the Bhabha wave equation. If a physical state <jats:inline-formula><jats:alternatives><jats:tex-math>psi_{ph}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>p</mml:mi><mml:mi>h</mml:mi></mml:mrow></mml:msub></mml:math></jats:alternatives></jats:inline-formula> for spin s is annihilated by the <jats:inline-formula><jats:alternatives><jats:tex-math>pi_mu</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>π</mml:mi><mml:mi>μ</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, the degree of <jats:inline-formula><jats:alternatives><jats:tex-math>psi_{ph}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>p</mml:mi><mml:mi>h</mml:mi></mml:mrow></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, deg <jats:inline-formula><jats:alternatives><jats:tex-math>psi_{ph}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>p</mml:mi><mml:mi>h</mml:mi></mml:mrow></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, should equal twice the spin degrees of freedom, <jats:inline-formula><jats:alternatives><jats:tex-math>2 ( 2 s + 1)</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:mn>2</mml:mn><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mn>2</mml:mn><mml:mi>s</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> for a massive particle, where the multiplicity <jats:inline-formula><jats:alternatives><jats:tex-math>2</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mn>2</mml:mn></mml:math></jats:alternatives></jats:inline-formula> indicates the chirality. The relation deg <jats:inline-formula><jats:alternatives><jats:tex-math>psi_{ph}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>p</mml:mi><mml:mi>h</mml:mi></mml:mrow></mml:msub></mml:math></jats:alternatives></jats:inline-formula> = 2(2s+1) holds in the representation <jats:inline-formula><jats:alternatives><jats:tex-math>R_5</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>R</mml:mi><mml","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"2016 15-16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139239625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.21468/scipostphysproc.14.041
Kurosh Mavaddat Nezhaad, A. Ashrafi
Gyrogroups are new algebraic structures that appeared in 1988 in the study of Einstein’s velocity addition in the special relativity theory. These new algebraic structures were studied intensively by Abraham Ungar. The first gyrogroup that was considered into account is the unit ball of Euclidean space mathbb{R}^3ℝ3 endowed with Einstein’s velocity addition. The second geometric example of a gyrogroup is the complex unit disk mathbb{D}𝔻={z ∈ mathbb{C}: |z|<1ℂ:|z|<1}. To construct a gyrogroup structure on mathbb{D}𝔻, we choose two elements z_1, z_2 ∈mathbb{D}z1,z2∈𝔻 and define the Möbius addition by z_1oplus z_2 = frac{z_1+z_2}{1+bar{z_1}z_2}z1⊕z2=z1+z21+z1‾z2. Then (mathbb{D},oplus)
{"title":"On Möbius gyrogroup and Möbius gyrovector space","authors":"Kurosh Mavaddat Nezhaad, A. Ashrafi","doi":"10.21468/scipostphysproc.14.041","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.041","url":null,"abstract":"<jats:p>Gyrogroups are new algebraic structures that appeared in 1988 in the study of Einstein’s velocity addition in the special relativity theory. These new algebraic structures were studied intensively by Abraham Ungar. The first gyrogroup that was considered into account is the unit ball of Euclidean space <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{R}^3</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msup><mml:mi>ℝ</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math></jats:alternatives></jats:inline-formula> endowed with Einstein’s velocity addition. The second geometric example of a gyrogroup is the complex unit disk <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{D}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mi>𝔻</mml:mi></mml:math></jats:alternatives></jats:inline-formula>={z ∈ <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{C}: |z|<1</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:mi>ℂ</mml:mi><mml:mo>:</mml:mo><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">|</mml:mo><mml:mi>z</mml:mi><mml:mo stretchy=\"true\" form=\"postfix\">|</mml:mo></mml:mrow><mml:mo><</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>}. To construct a gyrogroup structure on <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{D}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mi>𝔻</mml:mi></mml:math></jats:alternatives></jats:inline-formula>, we choose two elements <jats:inline-formula><jats:alternatives><jats:tex-math>z_1, z_2 ∈mathbb{D}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:msub><mml:mi>z</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>z</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>∈</mml:mo><mml:mi>𝔻</mml:mi></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> and define the Möbius addition by <jats:inline-formula><jats:alternatives><jats:tex-math>z_1oplus z_2 = frac{z_1+z_2}{1+bar{z_1}z_2}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:msub><mml:mi>z</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mi>z</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mfrac><mml:mrow><mml:msub><mml:mi>z</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>+</mml:mo><mml:msub><mml:mi>z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mover><mml:msub><mml:mi>z</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo accent=\"true\">‾</mml:mo></mml:mover><mml:msub><mml:mi>z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:mfrac></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>. Then <jats:inline-formula><jats:alternatives><jats:tex-math>(mathbb{D},oplus)</jats:","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"40 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139239512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.21468/scipostphysproc.14.037
Patrick Moylan
Almost immediately after the seminal papers of Poincaré (1905,1906) and Einstein (1905) on special relativity, wherein Poincaré established the full covariance of the Maxwell-Lorentz equations under the scale-extended Poincaré group and Einstein explained the Lorentz transformation using his assumption that the one-way speed of light in vacuo is constant and the same for all inertial observers (Einstein’s second postulate), attempts were made to get at the Lorentz transformations from basic properties of space and time but avoiding Einstein’s second postulate. Various such approaches usually involve general consequences of the relativity principle, such as a group structure to the set of all admissible inertial transformations and also assumptions about causality and/or homogeneity of space-time combined with isotropy of space. The first such attempt is usually attributed to von Ignatowsky in 1911. It was followed shortly thereafter by a paper of Frank and Rothe published in the same year. Since then, papers have continued to be written on the subject even up to the present. We elaborate on some of the results of such papers paying special attention to a 1968 paper of Bacri and Lévy-Leblond where possible kinematical groups include the de Sitter and anti-de Sitter groups and lead to special relativity in de Sitter and anti-de Sitter spaces.
{"title":"Relativistic kinematics in flat and curved space-times","authors":"Patrick Moylan","doi":"10.21468/scipostphysproc.14.037","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.037","url":null,"abstract":"Almost immediately after the seminal papers of Poincaré (1905,1906) and Einstein (1905) on special relativity, wherein Poincaré established the full covariance of the Maxwell-Lorentz equations under the scale-extended Poincaré group and Einstein explained the Lorentz transformation using his assumption that the one-way speed of light in vacuo is constant and the same for all inertial observers (Einstein’s second postulate), attempts were made to get at the Lorentz transformations from basic properties of space and time but avoiding Einstein’s second postulate. Various such approaches usually involve general consequences of the relativity principle, such as a group structure to the set of all admissible inertial transformations and also assumptions about causality and/or homogeneity of space-time combined with isotropy of space. The first such attempt is usually attributed to von Ignatowsky in 1911. It was followed shortly thereafter by a paper of Frank and Rothe published in the same year. Since then, papers have continued to be written on the subject even up to the present. We elaborate on some of the results of such papers paying special attention to a 1968 paper of Bacri and Lévy-Leblond where possible kinematical groups include the de Sitter and anti-de Sitter groups and lead to special relativity in de Sitter and anti-de Sitter spaces.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"460 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139241231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}