首页 > 最新文献

SciPost Physics Proceedings最新文献

英文 中文
Implications of exclusive J/$psi$ photoproduction in a tamed collinear factorisation approach to NLO 驯服的对偶因式分解方法中专属 J/$psi$ 光生成对 NLO 的影响
Pub Date : 2024-04-02 DOI: 10.21468/scipostphysproc.15.005
C. Flett, Alan D. Martin, Mikhail (Misha) G. Ryskin, T. Teubner
We discuss exclusive J/psiψ photoproduction, initially in conventional collinear factorisation at NLO and then subsequently in a refined approach with a programme of low x resummation and implementation of a crucial low Q_0Q0 subtraction included. We compare and contrast predictions in both frameworks and remark about the possibility to constrain and ultimately determine the low x and low scale gluon PDF, emphasising the significance of this for future global PDF analyses.
我们讨论了排他性的J/psiψ光生成,最初是在NLO的传统对偶因式分解中进行的,然后是在一种包含了低x重和方案和实施关键的低Q_0Q0减法的改进方法中进行的。我们比较和对比了这两种框架的预测结果,并评论了约束和最终确定低x和低尺度胶子PDF的可能性,强调了这对未来全球PDF分析的重要意义。
{"title":"Implications of exclusive J/$psi$ photoproduction in a tamed collinear factorisation approach to NLO","authors":"C. Flett, Alan D. Martin, Mikhail (Misha) G. Ryskin, T. Teubner","doi":"10.21468/scipostphysproc.15.005","DOIUrl":"https://doi.org/10.21468/scipostphysproc.15.005","url":null,"abstract":"We discuss exclusive J/psiψ photoproduction, initially in conventional collinear factorisation at NLO and then subsequently in a refined approach with a programme of low x resummation and implementation of a crucial low Q_0Q0 subtraction included. We compare and contrast predictions in both frameworks and remark about the possibility to constrain and ultimately determine the low x and low scale gluon PDF, emphasising the significance of this for future global PDF analyses.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"179 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140754904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intermittency analysis of charged hadrons generated in Pb-Pb collisions at $sqrt{s_{NN}}$= 2.76 TeV and 5.02 TeV 在 $sqrt{s_{NN}}$= 2.76 TeV 和 5.02 TeV 的 Pb-Pb 对撞中产生的带电强子的间歇性分析
Pub Date : 2024-04-02 DOI: 10.21468/scipostphysproc.15.012
S. K. Malik, Ramni Gupta
Local density fluctuations are expected to scale as a universal power-law when the system approaches critical point. Such power-law fluctuations are studied within the framework of intermittency through the measurement of normalized factorial moments in (etaη, phiϕ) phase space. Observations and results from the intermittency analysis performed for charged particles in Pb-Pb collisions using PYTHIA8/Angantyr at 2.76 TeV and 5.02 TeV are reported. We observe no scaling behaviour in the particle generation for any of the centrality studied in narrow p_TT bins. The scaling exponent nuν shows no dependence on the centrality ranges.
当系统接近临界点时,局部密度波动预计会以普遍幂律的形式扩展。通过测量(etaη, phiϕ)相空间中的归一化因子矩,在间歇性框架内研究了这种幂律波动。报告了使用PYTHIA8/Angantyr在2.76 TeV和5.02 TeV对Pb-Pb碰撞中的带电粒子进行间歇性分析的观测结果。我们观察到,在窄p_TT bins中研究的任何中心性粒子生成都没有缩放行为。缩放指数 nuν 与中心度范围没有关系。
{"title":"Intermittency analysis of charged hadrons generated in Pb-Pb collisions at $sqrt{s_{NN}}$= 2.76 TeV and 5.02 TeV","authors":"S. K. Malik, Ramni Gupta","doi":"10.21468/scipostphysproc.15.012","DOIUrl":"https://doi.org/10.21468/scipostphysproc.15.012","url":null,"abstract":"Local density fluctuations are expected to scale as a universal power-law when the system approaches critical point. Such power-law fluctuations are studied within the framework of intermittency through the measurement of normalized factorial moments in (etaη, phiϕ) phase space. Observations and results from the intermittency analysis performed for charged particles in Pb-Pb collisions using PYTHIA8/Angantyr at 2.76 TeV and 5.02 TeV are reported. We observe no scaling behaviour in the particle generation for any of the centrality studied in narrow p_TT bins. The scaling exponent nuν shows no dependence on the centrality ranges.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"73 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140755425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unitary Howe dualities in fermionic and bosonic algebras and related Dirac operators 费米子和玻色子代数和相关狄拉克算子中的单元豪对偶性
Pub Date : 2023-11-24 DOI: 10.21468/scipostphysproc.14.038
Guner Muarem
In this paper we use the canonical complex structure mathbb{J}𝕁 on mathbb{R}^{2n}2n to introduce a twist of the symplectic Dirac operator. This can be interpreted as the bosonic analogue of the Dirac operators on a Hermitian manifold. Moreover, we prove that the algebra of these Dirac operators is isomorphic to the Lie algebra mathfrak{su}(1,2)𝔰𝔲(1,2) which leads to the Howe dual pair (U(n),mathfrak{su}(1,2))(U(n),𝔰𝔲(1,2)).
在本文中,我们使用 mathbb{R}^{2n}ℝ2n 上的典型复结构 mathbb{J}𝕁 来引入交点狄拉克算子的扭转。这可以解释为赫米流形上狄拉克算子的玻色类似。此外,我们证明了这些狄拉克算子的代数与李代数 mathfrak{su}(1,2)𝔰𝔲(1,2) 同构,这导致了豪对偶 (U(n),mathfrak{su}(1,2))(U(n),𝔰𝔲(1,2)) 。
{"title":"Unitary Howe dualities in fermionic and bosonic algebras and related Dirac operators","authors":"Guner Muarem","doi":"10.21468/scipostphysproc.14.038","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.038","url":null,"abstract":"<jats:p>In this paper we use the canonical complex structure <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{J}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mi>𝕁</mml:mi></mml:math></jats:alternatives></jats:inline-formula> on <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{R}^{2n}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msup><mml:mi>ℝ</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math></jats:alternatives></jats:inline-formula> to introduce a twist of the symplectic Dirac operator. This can be interpreted as the bosonic analogue of the Dirac operators on a Hermitian manifold. Moreover, we prove that the algebra of these Dirac operators is isomorphic to the Lie algebra <jats:inline-formula><jats:alternatives><jats:tex-math>mathfrak{su}(1,2)</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:mrow><mml:mi>𝔰</mml:mi><mml:mi>𝔲</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> which leads to the Howe dual pair <jats:inline-formula><jats:alternatives><jats:tex-math>(U(n),mathfrak{su}(1,2))</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mi>U</mml:mi><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:mrow><mml:mi>𝔰</mml:mi><mml:mi>𝔲</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>.</jats:p>","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"32 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139239786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed permutation symmetry quantum phase transitions of critical three-level atom models 临界三量级原子模型的混合排列对称量子相变
Pub Date : 2023-11-24 DOI: 10.21468/scipostphysproc.14.036
A. Mayorgas, J. Guerrero, Manuel Calixto
We define the concept of Mixed Symmetry Quantum Phase Transition (MSQPT), considering each permutation symmetry sector muμ of an identical particles system, as singularities in the properties of the lowest-energy state into each muμ when shifting a Hamiltonian control parameter lambdaλ. A three-level Lipkin-Meshkov-Glick (LMG) model is chosen to typify our construction. Firstly, we analyze the finite number NN of particles case, proving the presence of MSQPT precursors. Then, in the thermodynamic limit Nto∞N→∞, we calculate the lowest-energy density inside each sector muμ, augmenting the control parameter space by muμ, and showing a phase diagram with four different quantum phases.
我们定义了混合对称量子相变(Mixed Symmetry Quantum Phase Transition,MSQPT)的概念,将相同粒子系统的每个排列对称扇区(permutation symmetry sector muμ)视为当移动哈密顿控制参数(Hamiltonian control parameter lambdaλ)时,最低能量态进入每个扇区(muμ)的奇异特性。我们选择了一个三层的利普金-梅什科夫-格里克(LMG)模型来说明我们的构造。首先,我们分析了粒子数 NN 有限的情况,证明了 MSQPT 前体的存在。然后,在热力学极限Nto∞N→∞中,我们计算了每个扇形内部的最低能量密度(muμ),用muμ增加了控制参数空间,并展示了具有四种不同量子相的相图。
{"title":"Mixed permutation symmetry quantum phase transitions of critical three-level atom models","authors":"A. Mayorgas, J. Guerrero, Manuel Calixto","doi":"10.21468/scipostphysproc.14.036","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.036","url":null,"abstract":"We define the concept of Mixed Symmetry Quantum Phase Transition (MSQPT), considering each permutation symmetry sector muμ of an identical particles system, as singularities in the properties of the lowest-energy state into each muμ when shifting a Hamiltonian control parameter lambdaλ. A three-level Lipkin-Meshkov-Glick (LMG) model is chosen to typify our construction. Firstly, we analyze the finite number NN of particles case, proving the presence of MSQPT precursors. Then, in the thermodynamic limit Nto∞N→∞, we calculate the lowest-energy density inside each sector muμ, augmenting the control parameter space by muμ, and showing a phase diagram with four different quantum phases.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139240920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clocking mechanism from a minimal spinning particle model 来自最小旋转粒子模型的时钟机制
Pub Date : 2023-11-24 DOI: 10.21468/scipostphysproc.14.042
Tobiasz Pietrzak, Łukasz Bratek
The clock hypothesis plays an important role in the theory of relativity. To test this hypothesis, a mechanical model of an ideal clock is needed. Such a model should have the phase of its intrinsic periodic motion increasing linearly with the affine parameter of the clock’s center of mass worldline. A class of relativistic rotators introduced by Staruszkiewicz in the context of an ideal clock is studied. A singularity in the inverse Legendre transform leading from the Hamiltonian to the Lagrangian leads to new possible Lagrangians characterized by fixed values of mass and spin. In free motion the rotators exhibit intrinsic motion with the speed of light and fixed frequency.
时钟假说在相对论中扮演着重要角色。为了验证这一假说,需要一个理想时钟的机械模型。这种模型的固有周期运动相位应与时钟质心世界线的仿射参数线性增长。本文研究了 Staruszkiewicz 在理想时钟背景下引入的一类相对论旋转器。从哈密顿到拉格朗日的逆 Legendre 变换中的奇点导致了以质量和自旋的固定值为特征的新的可能拉格朗日。在自由运动中,旋转体表现出光速和固定频率的固有运动。
{"title":"Clocking mechanism from a minimal spinning particle model","authors":"Tobiasz Pietrzak, Łukasz Bratek","doi":"10.21468/scipostphysproc.14.042","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.042","url":null,"abstract":"The clock hypothesis plays an important role in the theory of relativity. To test this hypothesis, a mechanical model of an ideal clock is needed. Such a model should have the phase of its intrinsic periodic motion increasing linearly with the affine parameter of the clock’s center of mass worldline. A class of relativistic rotators introduced by Staruszkiewicz in the context of an ideal clock is studied. A singularity in the inverse Legendre transform leading from the Hamiltonian to the Lagrangian leads to new possible Lagrangians characterized by fixed values of mass and spin. In free motion the rotators exhibit intrinsic motion with the speed of light and fixed frequency.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"59 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139241994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vinberg's T-algebras: From exceptional periodicity to black hole entropy 温伯格 T 型代数:从非凡周期性到黑洞熵
Pub Date : 2023-11-24 DOI: 10.21468/SciPostPhysProc.14.035
A. Marrani
We introduce the so-called Magic Star (MS) projection within the root lattice of finite-dimensional exceptional Lie algebras, and relate it to rank-3 simple and semi-simple Jordan algebras. By relying on the Bott periodicity of reality and conjugacy properties of spinor representations, we present the so-called Exceptional Periodicity (EP) algebras, which are finite-dimensional algebras, violating the Jacobi identity, and providing an alternative with respect to Kac-Moody infinite-dimensional Lie algebras. Remarkably, also EP algebras can be characterized in terms of a MS projection, exploiting special Vinberg T-algebras, a class of generalized Hermitian matrix algebras introduced by Vinberg in the ’60s within his theory of homogeneous convex cones. As physical applications, we highlight the role of the invariant norm of special Vinberg T-algebras in Maxwell-Einstein-scalar theories in 5 space-time dimensions, in which the Bekenstein-Hawking entropy of extremal black strings can be expressed in terms of the cubic polynomial norm of the T-algebras.
我们在有限维例外李代数的根晶格中引入了所谓的魔星(MS)投影,并将其与秩-3 简单和半简单约旦代数联系起来。依靠现实的底周期性和旋量表征的共轭特性,我们提出了所谓的非凡周期性(EP)代数,它是有限维代数,违反雅可比同一性,并提供了与卡-莫迪无限维李代数相对应的另一种代数。值得注意的是,通过利用特殊的文伯格 T 级,EP 级也可以用 MS 投影来表征,文伯格在 60 年代在他的同质凸锥理论中引入了一类广义赫米特矩阵级。在物理应用方面,我们强调了特殊温伯格T-代数的不变规范在5维时空的麦克斯韦-爱因斯坦标量理论中的作用,其中极值黑弦的贝肯斯坦-霍金熵可以用T-代数的立方多项式规范来表示。
{"title":"Vinberg's T-algebras: From exceptional periodicity to black hole entropy","authors":"A. Marrani","doi":"10.21468/SciPostPhysProc.14.035","DOIUrl":"https://doi.org/10.21468/SciPostPhysProc.14.035","url":null,"abstract":"We introduce the so-called Magic Star (MS) projection within the root lattice of finite-dimensional exceptional Lie algebras, and relate it to rank-3 simple and semi-simple Jordan algebras. By relying on the Bott periodicity of reality and conjugacy properties of spinor representations, we present the so-called Exceptional Periodicity (EP) algebras, which are finite-dimensional algebras, violating the Jacobi identity, and providing an alternative with respect to Kac-Moody infinite-dimensional Lie algebras. Remarkably, also EP algebras can be characterized in terms of a MS projection, exploiting special Vinberg T-algebras, a class of generalized Hermitian matrix algebras introduced by Vinberg in the ’60s within his theory of homogeneous convex cones. As physical applications, we highlight the role of the invariant norm of special Vinberg T-algebras in Maxwell-Einstein-scalar theories in 5 space-time dimensions, in which the Bekenstein-Hawking entropy of extremal black strings can be expressed in terms of the cubic polynomial norm of the T-algebras.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"64 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139238406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The parastatistics of braided Majorana fermions 编织马约拉纳费米子的副统计量
Pub Date : 2023-11-24 DOI: 10.21468/SciPostPhysProc.14.046
Francesco Toppan
This paper presents the parastatistics of braided Majorana fermions obtained in the framework of a graded Hopf algebra endowed with a braided tensor product. The braiding property is encoded in a t-dependent 4×4 braiding matrix B_tBt related to the Alexander-Conway polynomial. The nonvanishing complex parameter t defines the braided parastatistics. At t=1 ordinary fermions are recovered. The values of t at roots of unity are organized into levels which specify the maximal number of braided Majorana fermions in a multiparticle sector. Generic values of t and the t=-1 root of unity mimick the behaviour of ordinary bosons.
本文介绍了在赋有辫状张量积的分级霍普夫代数框架内获得的辫状马约拉纳费米子的准统计特性。编织特性被编码在一个与亚历山大-康威多项式相关的、依赖于 t 的 4×4 编织矩阵 B_tBt 中。非消失复参数 t 定义了编织准统计量。在 t=1 时,普通费米子被恢复。统一根的 t 值被划分为若干等级,这些等级规定了多粒子扇形中编织马约拉纳费米子的最大数量。t 的一般值和 t=-1 的统一根模仿了普通玻色子的行为。
{"title":"The parastatistics of braided Majorana fermions","authors":"Francesco Toppan","doi":"10.21468/SciPostPhysProc.14.046","DOIUrl":"https://doi.org/10.21468/SciPostPhysProc.14.046","url":null,"abstract":"This paper presents the parastatistics of braided Majorana fermions obtained in the framework of a graded Hopf algebra endowed with a braided tensor product. The braiding property is encoded in a t-dependent 4×4 braiding matrix B_tBt related to the Alexander-Conway polynomial. The nonvanishing complex parameter t defines the braided parastatistics. At t=1 ordinary fermions are recovered. The values of t at roots of unity are organized into levels which specify the maximal number of braided Majorana fermions in a multiparticle sector. Generic values of t and the t=-1 root of unity mimick the behaviour of ordinary bosons.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"2007 33","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139239322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spin degrees of freedom incorporated in conformal group: Introduction of an intrinsic momentum operator 共形组中的自旋自由度引入本征动量算子
Pub Date : 2023-11-24 DOI: 10.21468/scipostphysproc.14.034
Seiichi Kuwata
Considering spin degrees of freedom incorporated in the conformal generators, we introduce an intrinsic momentum operator pi_muπμ, which is feasible for the Bhabha wave equation. If a physical state psi_{ph}ψph for spin s is annihilated by the pi_muπμ, the degree of psi_{ph}ψph, deg psi_{ph}ψph, should equal twice the spin degrees of freedom, 2 ( 2 s + 1)2(2s+1) for a massive particle, where the multiplicity 22 indicates the chirality. The relation deg psi_{ph}ψph = 2(2s+1) holds in the representation R_5R
考虑到共形发生器中包含的自旋自由度,我们引入了一个本征动量算子 pi_muπμ,它对巴巴波方程是可行的。如果自旋为 s 的物理态 psi_{ph}ψph 被 pi_muπμ 湮灭,psi_{ph}ψph 的度 deg psi_{ph}ψph 应该等于自旋自由度的两倍,对于大质量粒子为 2 ( 2 s + 1)2(2s+1) ,其中倍数 22 表示手性。deg psi_{ph}ψph = 2(2s+1)关系在五维洛伦兹群的不可还原表示 R_5R5 (s,s)中成立。
{"title":"Spin degrees of freedom incorporated in conformal group: Introduction of an intrinsic momentum operator","authors":"Seiichi Kuwata","doi":"10.21468/scipostphysproc.14.034","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.034","url":null,"abstract":"<jats:p>Considering spin degrees of freedom incorporated in the conformal generators, we introduce an intrinsic momentum operator <jats:inline-formula><jats:alternatives><jats:tex-math>pi_mu</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>π</mml:mi><mml:mi>μ</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, which is feasible for the Bhabha wave equation. If a physical state <jats:inline-formula><jats:alternatives><jats:tex-math>psi_{ph}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>p</mml:mi><mml:mi>h</mml:mi></mml:mrow></mml:msub></mml:math></jats:alternatives></jats:inline-formula> for spin s is annihilated by the <jats:inline-formula><jats:alternatives><jats:tex-math>pi_mu</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>π</mml:mi><mml:mi>μ</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, the degree of <jats:inline-formula><jats:alternatives><jats:tex-math>psi_{ph}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>p</mml:mi><mml:mi>h</mml:mi></mml:mrow></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, deg <jats:inline-formula><jats:alternatives><jats:tex-math>psi_{ph}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>p</mml:mi><mml:mi>h</mml:mi></mml:mrow></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, should equal twice the spin degrees of freedom, <jats:inline-formula><jats:alternatives><jats:tex-math>2 ( 2 s + 1)</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:mn>2</mml:mn><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mn>2</mml:mn><mml:mi>s</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> for a massive particle, where the multiplicity <jats:inline-formula><jats:alternatives><jats:tex-math>2</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mn>2</mml:mn></mml:math></jats:alternatives></jats:inline-formula> indicates the chirality. The relation deg <jats:inline-formula><jats:alternatives><jats:tex-math>psi_{ph}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>p</mml:mi><mml:mi>h</mml:mi></mml:mrow></mml:msub></mml:math></jats:alternatives></jats:inline-formula> = 2(2s+1) holds in the representation <jats:inline-formula><jats:alternatives><jats:tex-math>R_5</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>R</mml:mi><mml","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"2016 15-16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139239625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Möbius gyrogroup and Möbius gyrovector space 关于莫比乌斯陀螺群和莫比乌斯陀螺向量空间
Pub Date : 2023-11-24 DOI: 10.21468/scipostphysproc.14.041
Kurosh Mavaddat Nezhaad, A. Ashrafi
Gyrogroups are new algebraic structures that appeared in 1988 in the study of Einstein’s velocity addition in the special relativity theory. These new algebraic structures were studied intensively by Abraham Ungar. The first gyrogroup that was considered into account is the unit ball of Euclidean space mathbb{R}^33 endowed with Einstein’s velocity addition. The second geometric example of a gyrogroup is the complex unit disk mathbb{D}𝔻={z ∈ mathbb{C}: |z|<1:|z|<1}. To construct a gyrogroup structure on mathbb{D}𝔻, we choose two elements z_1, z_2 ∈mathbb{D}z1,z2𝔻 and define the Möbius addition by z_1oplus z_2 = frac{z_1+z_2}{1+bar{z_1}z_2}z1z2=z1+z21+z1z2. Then (mathbb{D},oplus)
陀螺群是 1988 年在研究狭义相对论中爱因斯坦速度加法时出现的新代数结构。亚伯拉罕-温加尔对这些新的代数结构进行了深入研究。第一个被考虑的陀螺群是欧几里得空间的单位球 mathbb{R}^3ℝ3,它被赋予了爱因斯坦速度加法。陀螺群的第二个几何例子是复数单位盘 mathbb{D}𝔻={z∈ mathbb{C}:|z|ℂ:|z|1}。为了在 mathbb{D}𝔻 上构建陀螺群结构,我们选择两个元素 z_1, z_2 ∈mathbb{D}z1、z2∈𝔻 并用 z_1oplus z_2 = frac{z_1+z_2}{1+bar{z_1}z_2}z1⊕z2=z1+z21+z1‾z2 定义莫比乌斯加法。那么 (mathbb{D},oplus)(𝔻,⊕) 是一个陀螺交换陀螺群。如果我们定义 r odot xr⊙x==frac{(1+|x|)^r - (1-|x|)^r}{(1+|x|)^r + (1-|x|)^r}frac{x}{|x|}(1+|x|)r-(1-|x|)r(1+|x|)r+(1-|x|)rx|x|、其中 x∈ mathbb{D}x∈𝔻,r∈ mathbb{R}r∈ℝ,那么 (mathbb{D},oplus,odot)(𝔻,⊕,⊙) 将是一个实陀螺向量空间。本文旨在考察这些莫比乌斯陀螺群和莫比乌斯陀螺矢量空间的主要性质。
{"title":"On Möbius gyrogroup and Möbius gyrovector space","authors":"Kurosh Mavaddat Nezhaad, A. Ashrafi","doi":"10.21468/scipostphysproc.14.041","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.041","url":null,"abstract":"<jats:p>Gyrogroups are new algebraic structures that appeared in 1988 in the study of Einstein’s velocity addition in the special relativity theory. These new algebraic structures were studied intensively by Abraham Ungar. The first gyrogroup that was considered into account is the unit ball of Euclidean space <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{R}^3</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msup><mml:mi>ℝ</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math></jats:alternatives></jats:inline-formula> endowed with Einstein’s velocity addition. The second geometric example of a gyrogroup is the complex unit disk <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{D}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mi>𝔻</mml:mi></mml:math></jats:alternatives></jats:inline-formula>={z ∈ <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{C}: |z|<1</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:mi>ℂ</mml:mi><mml:mo>:</mml:mo><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">|</mml:mo><mml:mi>z</mml:mi><mml:mo stretchy=\"true\" form=\"postfix\">|</mml:mo></mml:mrow><mml:mo><</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>}. To construct a gyrogroup structure on <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{D}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mi>𝔻</mml:mi></mml:math></jats:alternatives></jats:inline-formula>, we choose two elements <jats:inline-formula><jats:alternatives><jats:tex-math>z_1, z_2 ∈mathbb{D}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:msub><mml:mi>z</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>z</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>∈</mml:mo><mml:mi>𝔻</mml:mi></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> and define the Möbius addition by <jats:inline-formula><jats:alternatives><jats:tex-math>z_1oplus z_2 = frac{z_1+z_2}{1+bar{z_1}z_2}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:msub><mml:mi>z</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mi>z</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mfrac><mml:mrow><mml:msub><mml:mi>z</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>+</mml:mo><mml:msub><mml:mi>z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mover><mml:msub><mml:mi>z</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo accent=\"true\">‾</mml:mo></mml:mover><mml:msub><mml:mi>z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:mfrac></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>. Then <jats:inline-formula><jats:alternatives><jats:tex-math>(mathbb{D},oplus)</jats:","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"40 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139239512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relativistic kinematics in flat and curved space-times 平面和弯曲时空中的相对论运动学
Pub Date : 2023-11-24 DOI: 10.21468/scipostphysproc.14.037
Patrick Moylan
Almost immediately after the seminal papers of Poincaré (1905,1906) and Einstein (1905) on special relativity, wherein Poincaré established the full covariance of the Maxwell-Lorentz equations under the scale-extended Poincaré group and Einstein explained the Lorentz transformation using his assumption that the one-way speed of light in vacuo is constant and the same for all inertial observers (Einstein’s second postulate), attempts were made to get at the Lorentz transformations from basic properties of space and time but avoiding Einstein’s second postulate. Various such approaches usually involve general consequences of the relativity principle, such as a group structure to the set of all admissible inertial transformations and also assumptions about causality and/or homogeneity of space-time combined with isotropy of space. The first such attempt is usually attributed to von Ignatowsky in 1911. It was followed shortly thereafter by a paper of Frank and Rothe published in the same year. Since then, papers have continued to be written on the subject even up to the present. We elaborate on some of the results of such papers paying special attention to a 1968 paper of Bacri and Lévy-Leblond where possible kinematical groups include the de Sitter and anti-de Sitter groups and lead to special relativity in de Sitter and anti-de Sitter spaces.
几乎就在波恩卡莱(Poincaré,1905,1906 年)和爱因斯坦(Einstein,1905 年)发表了关于狭义相对论的开创性论文之后,波恩卡莱建立了麦克斯韦-洛伦兹方程在尺度扩展的波恩卡莱群下的完全协变性,而爱因斯坦则用他的假设解释了洛伦兹变换,即虚空中的单向光速是恒定的,并且对所有惯性观测者都是一样的(爱因斯坦第二公设)、人们试图从空间和时间的基本特性出发,但又避免使用爱因斯坦的第二公设,从而得出洛伦兹变换。各种此类方法通常涉及相对论原理的一般后果,如所有可接受惯性变换集合的群结构,以及关于因果性和/或时空同质性与空间各向同性的假设。第一次这样的尝试通常归功于 1911 年的 von Ignatowsky。此后不久,弗兰克和罗特在同年发表了一篇论文。从那时起,有关这一主题的论文一直持续到现在。我们将详细阐述这些论文的一些结果,并特别关注 Bacri 和 Lévy-Leblond 于 1968 年发表的一篇论文,在这篇论文中,可能的运动群包括了德西特群和反德西特群,并引出了德西特和反德西特空间中的狭义相对论。
{"title":"Relativistic kinematics in flat and curved space-times","authors":"Patrick Moylan","doi":"10.21468/scipostphysproc.14.037","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.037","url":null,"abstract":"Almost immediately after the seminal papers of Poincaré (1905,1906) and Einstein (1905) on special relativity, wherein Poincaré established the full covariance of the Maxwell-Lorentz equations under the scale-extended Poincaré group and Einstein explained the Lorentz transformation using his assumption that the one-way speed of light in vacuo is constant and the same for all inertial observers (Einstein’s second postulate), attempts were made to get at the Lorentz transformations from basic properties of space and time but avoiding Einstein’s second postulate. Various such approaches usually involve general consequences of the relativity principle, such as a group structure to the set of all admissible inertial transformations and also assumptions about causality and/or homogeneity of space-time combined with isotropy of space. The first such attempt is usually attributed to von Ignatowsky in 1911. It was followed shortly thereafter by a paper of Frank and Rothe published in the same year. Since then, papers have continued to be written on the subject even up to the present. We elaborate on some of the results of such papers paying special attention to a 1968 paper of Bacri and Lévy-Leblond where possible kinematical groups include the de Sitter and anti-de Sitter groups and lead to special relativity in de Sitter and anti-de Sitter spaces.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"460 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139241231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
SciPost Physics Proceedings
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1