首页 > 最新文献

SciPost Physics Proceedings最新文献

英文 中文
Extensions of realisations for low-dimensional Lie algebras 低维李代数的实现扩展
Pub Date : 2023-11-24 DOI: 10.21468/scipostphysproc.14.048
Iryna Yehorchenko
We find extensions of realisations of some low-dimensional Lie algebras, in particular, for the Poincaré algebra for one space dimension. Using inequivalent extensions, we performed comprehensive classification of relative differential invariants for these Lie algebras. We show difference between classification of extensions of realisations, and classification of nonlinear realisations of Lie algebras.
我们发现了一些低维李代数,特别是一维空间的波恩卡莱代数的现实化扩展。利用不等价扩展,我们对这些李代数的相对微分不变式进行了全面分类。我们展示了变现扩展分类与非线性李代数变现分类之间的区别。
{"title":"Extensions of realisations for low-dimensional Lie algebras","authors":"Iryna Yehorchenko","doi":"10.21468/scipostphysproc.14.048","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.048","url":null,"abstract":"We find extensions of realisations of some low-dimensional Lie algebras, in particular, for the Poincaré algebra for one space dimension. Using inequivalent extensions, we performed comprehensive classification of relative differential invariants for these Lie algebras. We show difference between classification of extensions of realisations, and classification of nonlinear realisations of Lie algebras.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":" 37","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139240239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hilbert space structure and classical limit of the low energy sector of U(N) quantum Hall ferromagnets U(N)量子霍尔铁磁体的希尔伯特空间结构和低能段的经典极限
Pub Date : 2023-11-23 DOI: 10.21468/scipostphysproc.14.021
Manuel Calixto, A. Mayorgas, J. Guerrero
Using the Lieb–Mattis ordering theorem of electronic energy levels, we identify and construct the Hilbert space of the low energy sector of U(N) quantum Hall/Heisenberg ferromagnets at filling factor M for L Landau/lattice sites. The carrier Hilbert space of irreducible representations of U(N) is described by rectangular Young tableaux of M rows and L columns, and associated with Grassmannian phase spaces U(N)/U(M)×U(N-M). Replacing U(N)-spin operators by their expectation values in a Grassmannian coherent state allows for a semi-classical treatment of the low energy U(N)-spin-wave coherent excitations (skyrmions) of U(N) quantum Hall ferromagnets in terms of Grasmannian nonlinear sigma models.
利用电子能级的利布-马蒂斯排序定理,我们确定并构建了 L 个兰道/晶格位点填充因子为 M 的 U(N) 量子霍尔/海森堡铁磁体低能段的希尔伯特空间。U(N) 不可还原表征的载波希尔伯特空间由 M 行 L 列的矩形杨表描述,并与格拉斯曼相空间 U(N)/U(M)×U(N-M) 相关联。用它们在格拉斯曼相干态中的期望值代替 U(N)-spin 算子,就可以用格拉斯曼非线性西格玛模型对 U(N) 量子霍尔铁磁体的低能 U(N)-spin 波相干激发(skyrmions)进行半经典处理。
{"title":"Hilbert space structure and classical limit of the low energy sector of U(N) quantum Hall ferromagnets","authors":"Manuel Calixto, A. Mayorgas, J. Guerrero","doi":"10.21468/scipostphysproc.14.021","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.021","url":null,"abstract":"Using the Lieb–Mattis ordering theorem of electronic energy levels, we identify and construct the Hilbert space of the low energy sector of U(N) quantum Hall/Heisenberg ferromagnets at filling factor M for L Landau/lattice sites. The carrier Hilbert space of irreducible representations of U(N) is described by rectangular Young tableaux of M rows and L columns, and associated with Grassmannian phase spaces U(N)/U(M)×U(N-M). Replacing U(N)-spin operators by their expectation values in a Grassmannian coherent state allows for a semi-classical treatment of the low energy U(N)-spin-wave coherent excitations (skyrmions) of U(N) quantum Hall ferromagnets in terms of Grasmannian nonlinear sigma models.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139242811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of the diffusion parameter on the passage time of the folding process 扩散参数对折叠过程通过时间的影响
Pub Date : 2023-11-23 DOI: 10.21468/scipostphysproc.14.015
Marcelo Tozo Araujo, J. Chahine, E. Drigo Filho, Regina Maria Ricotta
Recently, a mathematical method to solve the Fokker Plank equation (FPE) enabled the analysis of the protein folding kinetics, through the construction of the temporal evolution of the probability density. A symmetric tri-stable potential function was used to describe the unfolded and folded states of the protein as well as an intermediate state of the protein. In this paper, the main points of the methodology are reviewed, based on the algebraic Supersymmetric Quantum Mechanics (SQM) formalism, and new results on the kinetics of the evolution of the system characterized in terms of the diffusion parameter are presented.
最近,一种求解福克-普朗克方程(FPE)的数学方法通过构建概率密度的时间演化,对蛋白质折叠动力学进行了分析。对称三稳定势函数被用来描述蛋白质的展开和折叠状态,以及蛋白质的中间状态。本文以代数超对称量子力学(SQM)形式为基础,回顾了该方法的要点,并介绍了以扩散参数为特征的系统演化动力学的新结果。
{"title":"The impact of the diffusion parameter on the passage time of the folding process","authors":"Marcelo Tozo Araujo, J. Chahine, E. Drigo Filho, Regina Maria Ricotta","doi":"10.21468/scipostphysproc.14.015","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.015","url":null,"abstract":"Recently, a mathematical method to solve the Fokker Plank equation (FPE) enabled the analysis of the protein folding kinetics, through the construction of the temporal evolution of the probability density. A symmetric tri-stable potential function was used to describe the unfolded and folded states of the protein as well as an intermediate state of the protein. In this paper, the main points of the methodology are reviewed, based on the algebraic Supersymmetric Quantum Mechanics (SQM) formalism, and new results on the kinetics of the evolution of the system characterized in terms of the diffusion parameter are presented.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"78 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139243594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dark matter as a QCD effect in an anti de Sitter geometry: Cosmogonic implications of de Sitter, anti de Sitter and Poincaré symmetries 暗物质作为反德西特几何中的 QCD 效应:德西特、反德西特和庞加莱对称的宇宙学意义
Pub Date : 2023-11-23 DOI: 10.21468/scipostphysproc.14.004
Gilles Cohen-Tanoudji, J. Gazeau
The LambdaΛCDM standard model of cosmology involves two dark components of the universe, dark energy and dark matter. Whereas dark energy is usually associated with the (positive) cosmological constant LambdaΛ associated with a de Sitter geometry, we propose to explain dark matter as a pure QCD effect, namely a gluonic Bose Einstein condensate with the status of a Cosmic Gluonic Background (CGB). This effect is due to the trace anomaly viewed as an effective negative cosmological constant determining an Anti de Sitter geometry and accompanying baryonic matter at the hadronization transition from the quark gluon plasma phase to the colorless hadronic phase. Our approach also allows to assume a ratio Dark/Visible equal to 11/2.
蓝姆达ΛCDM 宇宙学标准模型涉及宇宙的两个暗成分--暗能量和暗物质。暗能量通常与与德西特几何相关的(正)宇宙学常数(LambdaΛ)联系在一起,而我们建议把暗物质解释为一种纯粹的QCD效应,即具有宇宙胶子背景(CGB)状态的胶子玻色爱因斯坦凝聚态。这种效应是由于被视为有效负宇宙学常数的痕量反常决定了反德西特几何,并在从夸克胶子等离子体阶段向无色强子阶段的强子化转变中伴随着重子物质。我们的方法还允许假设暗/可见之比等于 11/2。
{"title":"Dark matter as a QCD effect in an anti de Sitter geometry: Cosmogonic implications of de Sitter, anti de Sitter and Poincaré symmetries","authors":"Gilles Cohen-Tanoudji, J. Gazeau","doi":"10.21468/scipostphysproc.14.004","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.004","url":null,"abstract":"The LambdaΛCDM standard model of cosmology involves two dark components of the universe, dark energy and dark matter. Whereas dark energy is usually associated with the (positive) cosmological constant LambdaΛ associated with a de Sitter geometry, we propose to explain dark matter as a pure QCD effect, namely a gluonic Bose Einstein condensate with the status of a Cosmic Gluonic Background (CGB). This effect is due to the trace anomaly viewed as an effective negative cosmological constant determining an Anti de Sitter geometry and accompanying baryonic matter at the hadronization transition from the quark gluon plasma phase to the colorless hadronic phase. Our approach also allows to assume a ratio Dark/Visible equal to 11/2.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"116 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139242835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laudatio of Dr. Erik Panzer, 2020 Hermann Weyl Prize 对2020年赫尔曼-韦尔奖获得者埃里克-潘泽博士的赞誉
Pub Date : 2023-11-23 DOI: 10.21468/scipostphysproc.14.002
María Antonia Lledó Barrena
Erik Panzer, from the University of Oxford, has been awarded the 2020 Hermann Weyl Prize of the International Colloquium on Group Theoretical Methods in Physics, for “his pioneering achievements in the calculation of amplitudes in gauge theories, for developing new mathematical structures that exploit the language of symmetries, and for his contribution to the description of important physical phenomena present in nature.”
牛津大学的埃里克-潘泽(Erik Panzer)因 "在规整理论振幅计算方面取得的开创性成就、利用对称语言开发的新数学结构,以及对描述自然界中存在的重要物理现象的贡献 "而被授予2020年赫尔曼-韦尔物理学群论方法国际讨论会奖。
{"title":"Laudatio of Dr. Erik Panzer, 2020 Hermann Weyl Prize","authors":"María Antonia Lledó Barrena","doi":"10.21468/scipostphysproc.14.002","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.002","url":null,"abstract":"Erik Panzer, from the University of Oxford, has been awarded the 2020 Hermann Weyl Prize of the International Colloquium on Group Theoretical Methods in Physics, for “his pioneering achievements in the calculation of amplitudes in gauge theories, for developing new mathematical structures that exploit the language of symmetries, and for his contribution to the description of important physical phenomena present in nature.”","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139245960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tchavdar Dimitrov Palev - In memoriam 查夫达尔-季米特洛夫-帕利夫 - 悼念
Pub Date : 2023-11-23 DOI: 10.21468/scipostphysproc.14.011
N. I. Stoilova
Tchavdar Dimitrov Palev - In memoriam
查夫达尔-季米特洛夫-帕利夫 - 悼念
{"title":"Tchavdar Dimitrov Palev - In memoriam","authors":"N. I. Stoilova","doi":"10.21468/scipostphysproc.14.011","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.011","url":null,"abstract":"Tchavdar Dimitrov Palev - In memoriam","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"81 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139244068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Newton mechanics, Galilean relativity, and special relativity in $alpha$-deformed binary operation setting 牛顿力学、伽利略相对论和特殊相对论在 $alpha$ 变形二元运算设置中的应用
Pub Date : 2023-11-23 DOI: 10.21468/scipostphysproc.14.024
Won S. Chung, M. N. Hounkonnou
We define new velocity and acceleration having dimension of (Length)^{alpha}/(Time)(Length)α/(Time) and (Length)^{alpha}/(Time)^2,(Length)α/(Time)2, respectively, based on the fractional addition rule. We discuss the formulation of fractional Newton mechanics, Galilean relativity and special relativity in the same setting. We show the conservation of the fractional energy, characterize the Lorentz transformation and group, and derive the expressions of the energy and momentum. The two body decay is discussed as a concrete illustration.
我们根据分数加法法则定义了新的速度和加速度,其维度分别为(Length)^{alpha}/(Time)(Length)α/(Time)和(Length)^{alpha}/(Time)^2,(Length)α/(Time)2。我们讨论了分数牛顿力学、伽利略相对论和狭义相对论在同一环境中的表述。我们说明了分数能量守恒,描述了洛伦兹变换和群,并推导出能量和动量的表达式。我们还讨论了双体衰变作为具体说明。
{"title":"Newton mechanics, Galilean relativity, and special relativity in $alpha$-deformed binary operation setting","authors":"Won S. Chung, M. N. Hounkonnou","doi":"10.21468/scipostphysproc.14.024","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.024","url":null,"abstract":"<jats:p>We define new velocity and acceleration having dimension of <jats:inline-formula><jats:alternatives><jats:tex-math>(Length)^{alpha}/(Time)</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:msup><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mi>L</mml:mi><mml:mi>e</mml:mi><mml:mi>n</mml:mi><mml:mi>g</mml:mi><mml:mi>t</mml:mi><mml:mi>h</mml:mi><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow><mml:mi>α</mml:mi></mml:msup><mml:mi>/</mml:mi><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mi>T</mml:mi><mml:mi>i</mml:mi><mml:mi>m</mml:mi><mml:mi>e</mml:mi><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:tex-math>(Length)^{alpha}/(Time)^2,</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:msup><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mi>L</mml:mi><mml:mi>e</mml:mi><mml:mi>n</mml:mi><mml:mi>g</mml:mi><mml:mi>t</mml:mi><mml:mi>h</mml:mi><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow><mml:mi>α</mml:mi></mml:msup><mml:mi>/</mml:mi><mml:msup><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mi>T</mml:mi><mml:mi>i</mml:mi><mml:mi>m</mml:mi><mml:mi>e</mml:mi><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup><mml:mo>,</mml:mo></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> respectively, based on the fractional addition rule. We discuss the formulation of fractional Newton mechanics, Galilean relativity and special relativity in the same setting. We show the conservation of the fractional energy, characterize the Lorentz transformation and group, and derive the expressions of the energy and momentum. The two body decay is discussed as a concrete illustration.</jats:p>","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139245677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kurt Bernardo Wolf memorial lecture 库尔特-贝尔纳多-沃尔夫纪念演讲
Pub Date : 2023-11-23 DOI: 10.21468/scipostphysproc.14.010
G. Pogosyan, Mariano A. del Olmo
A personal view of the Mexican mathematical physicist Kurt Bernardo Wolf (1942-2022) is presented here.
这里介绍的是墨西哥数学物理学家库尔特-贝尔纳多-沃尔夫(1942-2022 年)的个人观点。
{"title":"Kurt Bernardo Wolf memorial lecture","authors":"G. Pogosyan, Mariano A. del Olmo","doi":"10.21468/scipostphysproc.14.010","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.010","url":null,"abstract":"A personal view of the Mexican mathematical physicist Kurt Bernardo Wolf (1942-2022) is presented here.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"229 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139244000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized Heisenberg-Weyl groups and Hermite functions 广义海森堡-韦尔群和赫米特函数
Pub Date : 2023-11-23 DOI: 10.21468/scipostphysproc.14.023
E. Celeghini, M. Gadella, Mariano A. del Olmo
A generalisation of Euclidean and pseudo-Euclidean groups is presented, where the Weyl-Heisenberg groups, well known in quantum mechanics, are involved. A new family of groups is obtained including all the above-mentioned groups as subgroups. Symmetries, like self-similarity and invariance with respect to the orientation of the axes, are properly included in the structure of this new family of groups. Generalized Hermite functions on multidimensional spaces, which serve as orthogonal bases of Hilbert spaces supporting unitary irreducible representations of these new groups, are introduced.
介绍了欧几里得群和假欧几里得群的广义,其中涉及量子力学中众所周知的韦尔-海森堡群。新的群族包括上述所有群的子群。对称性,如自相似性和轴方向不变性,都适当地包含在这个新群族的结构中。介绍了多维空间上的广义赫米特函数,它是支持这些新群的单元不可还原表示的希尔伯特空间的正交基。
{"title":"Generalized Heisenberg-Weyl groups and Hermite functions","authors":"E. Celeghini, M. Gadella, Mariano A. del Olmo","doi":"10.21468/scipostphysproc.14.023","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.023","url":null,"abstract":"A generalisation of Euclidean and pseudo-Euclidean groups is presented, where the Weyl-Heisenberg groups, well known in quantum mechanics, are involved. A new family of groups is obtained including all the above-mentioned groups as subgroups. Symmetries, like self-similarity and invariance with respect to the orientation of the axes, are properly included in the structure of this new family of groups. Generalized Hermite functions on multidimensional spaces, which serve as orthogonal bases of Hilbert spaces supporting unitary irreducible representations of these new groups, are introduced.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139244448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Irreducible representations of $mathbb{Z}_2^2$-graded supersymmetry algebra and their applications $mathbb{Z}_2^2$ 等级超对称代数的不可还原表示及其应用
Pub Date : 2023-11-23 DOI: 10.21468/scipostphysproc.14.016
Naruhiko Aizawa
We give a brief review on recent developments of mathbb{Z}_2^n2n-graded symmetry in physics in which hidden mathbb{Z}_2^n2n-graded symmetries and mathbb{Z}_2^n2n-graded extensions of known systems are discussed. This elucidates physical relevance of the mathbb{Z}_2^n2n-graded algebras. As an example of physically interesting algebra, we take mathbb{Z}_2^222-graded supersymmetry (SUSY) algebras and consider their irreducible representations (irreps). A list of irreps for N = 1, 2N=1,2 algebras is presented and as an application of the irreps, mathbb{Z}_2^222-graded SUSY classical actions are constructed.
我们简要回顾了物理学中的mathbb{Z}_2^nℤ2n-等级对称性的最新发展,其中讨论了隐藏的mathbb{Z}_2^nℤ2n-等级对称性和已知系统的mathbb{Z}_2^nℤ2n-等级扩展。这阐明了 mathbb{Z}_2^nℤ2n 级代数的物理意义。作为物理上有趣的代数的一个例子,我们以 mathbb{Z}_2^2ℤ22 等级超对称(SUSY)代数为例,考虑它们的不可还原表示(irreps)。我们提出了一个 N = 1, 2N=1,2 矩阵的不可还原表征列表,作为不可还原表征的应用,我们构造了 mathbb{Z}_2^2ℤ22 等级的 SUSY 经典作用。
{"title":"Irreducible representations of $mathbb{Z}_2^2$-graded supersymmetry algebra and their applications","authors":"Naruhiko Aizawa","doi":"10.21468/scipostphysproc.14.016","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.016","url":null,"abstract":"<jats:p>We give a brief review on recent developments of <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{Z}_2^n</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msubsup><mml:mi>ℤ</mml:mi><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:msubsup></mml:math></jats:alternatives></jats:inline-formula>-graded symmetry in physics in which hidden <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{Z}_2^n</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msubsup><mml:mi>ℤ</mml:mi><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:msubsup></mml:math></jats:alternatives></jats:inline-formula>-graded symmetries and <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{Z}_2^n</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msubsup><mml:mi>ℤ</mml:mi><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:msubsup></mml:math></jats:alternatives></jats:inline-formula>-graded extensions of known systems are discussed. This elucidates physical relevance of the <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{Z}_2^n</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msubsup><mml:mi>ℤ</mml:mi><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:msubsup></mml:math></jats:alternatives></jats:inline-formula>-graded algebras. As an example of physically interesting algebra, we take <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{Z}_2^2</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msubsup><mml:mi>ℤ</mml:mi><mml:mn>2</mml:mn><mml:mn>2</mml:mn></mml:msubsup></mml:math></jats:alternatives></jats:inline-formula>-graded supersymmetry (SUSY) algebras and consider their irreducible representations (irreps). A list of irreps for <jats:inline-formula><jats:alternatives><jats:tex-math>N = 1, 2</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> algebras is presented and as an application of the irreps, <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{Z}_2^2</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msubsup><mml:mi>ℤ</mml:mi><mml:mn>2</mml:mn><mml:mn>2</mml:mn></mml:msubsup></mml:math></jats:alternatives></jats:inline-formula>-graded SUSY classical actions are constructed.</jats:p>","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"15 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139245217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
SciPost Physics Proceedings
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1