Pub Date : 2020-12-25DOI: 10.29317/ejpfm.2020040402
S. Dabylova, Yu. N. Kopach, S. Sakhiyev, D. Grozdanov, N. Fedorov
The work is devoted to determining the response function of the detector NaI(Tl) for g -quanta with energy of 4.43 MeV, formed during inelastic scattering of neutrons with energy of 14.1 MeV on the nuclei 12C. In gamma spectrometry, output pulses are recorded, the amplitudes of which are proportional to the energy lost in the detection medium by incident photons. One of the main tasks of radiation detection is to restore radiation characteristics from signals measured at the outputs of detectors. For this, it is necessary to know, first of all, the general characteristics of detectors as converters of radiation into signals. The main characteristic of the detector is its response function, which can be defined as the probability that a particle with given properties generates a certain signal in the detector that will be registered by the device. The article presents the results of modeling the response function of a scintillation detector based on a NaI(Tl) crystal for gamma radiation from inelastic fast neutron scattering in order to study the mechanism of its formation.
{"title":"Determination of the response function of the NaI detector for g-quanta with an energy of 4.43 MeV, formed during inelastic scattering of neutrons with an energy of 14.1 MeV on carbon nuclei","authors":"S. Dabylova, Yu. N. Kopach, S. Sakhiyev, D. Grozdanov, N. Fedorov","doi":"10.29317/ejpfm.2020040402","DOIUrl":"https://doi.org/10.29317/ejpfm.2020040402","url":null,"abstract":"The work is devoted to determining the response function of the detector NaI(Tl) for g -quanta with energy of 4.43 MeV, formed during inelastic scattering of neutrons with energy of 14.1 MeV on the nuclei 12C. In gamma spectrometry, output pulses are recorded, the amplitudes of which are proportional to the energy lost in the detection medium by incident photons. One of the main tasks of radiation detection is to restore radiation characteristics from signals measured at the outputs of detectors. For this, it is necessary to know, first of all, the general characteristics of detectors as converters of radiation into signals. The main characteristic of the detector is its response function, which can be defined as the probability that a particle with given properties generates a certain signal in the detector that will be registered by the device. The article presents the results of modeling the response function of a scintillation detector based on a NaI(Tl) crystal for gamma radiation from inelastic fast neutron scattering in order to study the mechanism of its formation.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44406637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-25DOI: 10.29317/ejpfm.2020040407
M. Aumalikova, D. Ibrayeva, K. Ilbekova, P. Kazymbet, M. Bakhtin, D. D. Janabaev, N. Altaeva
The main objective of current study is to assess the dose burden and health status of workers at the uranium processing hydrometallurgical plant in order to develop measures aimed at reducing their incidence. This article presents the results of radiation monitoring and data on the health status of workers at the hydrometallurgical plant of the Stepnogorsk Mining and Chemical Combine (SMCC). The data of the accumulated effective dose for the entire length of service, as well as data on the incidence rate for the period 2013-2019, obtained from the base of the Industrial Radiation and Epidemiological Register, have been analyzed. Based on the results of measurements of the uranium content in urine, the expected effective dose of internal irradiation of the enterprise personnel was calculated. The assessment of the health status of workers was carried out based on the materials of outpatient and hospital visits, as well as the results of mandatory periodic medical examinations over the past 5 years. Based on the results, an excess of the expected effective dose of internal irradiation was revealed based on the analysis of a urine sample by 3 times. The most typical for the studied contingent of the main group turned out to be diseases of the eye and its adnexa (23%).
{"title":"Assessment of the dose burden and health status of the uranium processing workers of the Republic of Kazakhstan","authors":"M. Aumalikova, D. Ibrayeva, K. Ilbekova, P. Kazymbet, M. Bakhtin, D. D. Janabaev, N. Altaeva","doi":"10.29317/ejpfm.2020040407","DOIUrl":"https://doi.org/10.29317/ejpfm.2020040407","url":null,"abstract":"The main objective of current study is to assess the dose burden and health status of workers at the uranium processing hydrometallurgical plant in order to develop measures aimed at reducing their incidence. This article presents the results of radiation monitoring and data on the health status of workers at the hydrometallurgical plant of the Stepnogorsk Mining and Chemical Combine (SMCC). The data of the accumulated effective dose for the entire length of service, as well as data on the incidence rate for the period 2013-2019, obtained from the base of the Industrial Radiation and Epidemiological Register, have been analyzed. Based on the results of measurements of the uranium content in urine, the expected effective dose of internal irradiation of the enterprise personnel was calculated. The assessment of the health status of workers was carried out based on the materials of outpatient and hospital visits, as well as the results of mandatory periodic medical examinations over the past 5 years. Based on the results, an excess of the expected effective dose of internal irradiation was revealed based on the analysis of a urine sample by 3 times. The most typical for the studied contingent of the main group turned out to be diseases of the eye and its adnexa (23%).","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45308260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-25DOI: 10.29317/ejpfm.2020040400
Eurasian Journal of Physics and Functional Materials is an international journal published 4 Number per year starting from October 2017. The aim of the journal is rapid publication of original articles and rewiews in the following areas: nuclear physics, high energy physics, radiation ecology, alternative energy (nuclear and hydrogen, photovoltaic, new energy sources, energy efficiency and energy saving, the energy sector impact on the environment), functional materials and related problems of high technologies.
《Eurasian Journal of Physics and Functional Materials》是2017年10月起每年出版4期的国际期刊。本刊旨在快速发表以下领域的原创文章和评论:核物理、高能物理、辐射生态学、替代能源(核与氢、光伏、新能源、能效与节能、能源部门对环境的影响)、功能材料和相关高技术问题。
{"title":"Editorial","authors":"","doi":"10.29317/ejpfm.2020040400","DOIUrl":"https://doi.org/10.29317/ejpfm.2020040400","url":null,"abstract":"Eurasian Journal of Physics and Functional Materials is an international journal published 4 Number per year starting from October 2017. The aim of the journal is rapid publication of original articles and rewiews in the following areas: nuclear physics, high energy physics, radiation ecology, alternative energy (nuclear and hydrogen, photovoltaic, new energy sources, energy efficiency and energy saving, the energy sector impact on the environment), functional materials and related problems of high technologies.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44672236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-25DOI: 10.29317/ejpfm.2020040408
D. Ibrayeva, M. Aumalikova, K. Ilbekova, M. Bakhtin, P. Kazymbet
Radon is a noble gas that is one of the natural radioactive decay products of radium resulting from the disintegration of uranium. Humans are exposed to sources of natural radiation activity, being radon and its progeny breathing air responsible for more than 50% of the annual dose received from natural radiation. The aim of this study was to determine the radon concentration in the air in settlements’ dwellings and social objects and calculate the annual effective dose of population from radon on the territory mining activities in Stepnogorsk area. The study has shown that activity concentrations of indoor radon in the buildings ranged from 8 to 870 Bq · m−3 in Aqsu, 3-540 Bq · m−3 in Kvartsitka located close to former gold mining sites. The Einh corresponding to the activity concentrations ranged from 1-27 mSv · y−1 received by the settlements’ public. The highest value of Einh in Aqsu School reaches up to 68 mSv · y−1 received by the critical group of public was found at the territory of former mining the Stepnogorsk area. The results of this study show significant radiation hazards in Aqsu School which located at the territory of former mining site, and there is evidence of radon health risk to the members of the public.
{"title":"Determination of radon levels in dwellings and social objects and evaluation annual effective dose from inhalation of radon in Stepnogorsk area Northern Kazakhstan","authors":"D. Ibrayeva, M. Aumalikova, K. Ilbekova, M. Bakhtin, P. Kazymbet","doi":"10.29317/ejpfm.2020040408","DOIUrl":"https://doi.org/10.29317/ejpfm.2020040408","url":null,"abstract":"Radon is a noble gas that is one of the natural radioactive decay products of radium resulting from the disintegration of uranium. Humans are exposed to sources of natural radiation activity, being radon and its progeny breathing air responsible for more than 50% of the annual dose received from natural radiation. The aim of this study was to determine the radon concentration in the air in settlements’ dwellings and social objects and calculate the annual effective dose of population from radon on the territory mining activities in Stepnogorsk area. The study has shown that activity concentrations of indoor radon in the buildings ranged from 8 to 870 Bq · m−3 in Aqsu, 3-540 Bq · m−3 in Kvartsitka located close to former gold mining sites. The Einh corresponding to the activity concentrations ranged from 1-27 mSv · y−1 received by the settlements’ public. The highest value of Einh in Aqsu School reaches up to 68 mSv · y−1 received by the critical group of public was found at the territory of former mining the Stepnogorsk area. The results of this study show significant radiation hazards in Aqsu School which located at the territory of former mining site, and there is evidence of radon health risk to the members of the public.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44036170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-25DOI: 10.29317/ejpfm.2020040404
D. Borgekov, N. Hlebnikov, D. Shlimas, A. Kozlovskiy
The results of the efficiency of using FexNi100−x nanotubes as anode materials for lithium-ion batteries have been obtained. In the course of research, it was found that an increase in the concentration of nickel in the structure to 40 and 60 at.% leads to a sharp increase in the resource number of cycles by more than two times in comparison with iron nanotubes. Such a difference in the resource lifetime is due to the higher stability of FexNi100−x nanotubes with a nickel concentration of more than 40 at.% to destruction, as well as resistance to oxidation.
{"title":"Study of the influence of the phase composition and crystal structure of FexNi100−x nanostructures on the efficiency of using lithium-ion batteries as anode materials","authors":"D. Borgekov, N. Hlebnikov, D. Shlimas, A. Kozlovskiy","doi":"10.29317/ejpfm.2020040404","DOIUrl":"https://doi.org/10.29317/ejpfm.2020040404","url":null,"abstract":"The results of the efficiency of using FexNi100−x nanotubes as anode materials for lithium-ion batteries have been obtained. In the course of research, it was found that an increase in the concentration of nickel in the structure to 40 and 60 at.% leads to a sharp increase in the resource number of cycles by more than two times in comparison with iron nanotubes. Such a difference in the resource lifetime is due to the higher stability of FexNi100−x nanotubes with a nickel concentration of more than 40 at.% to destruction, as well as resistance to oxidation.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48726065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-25DOI: 10.29317/ejpfm.2020040401
S. Lukyanov, T. Issatayev, B. Hue, V. Maslov, K. Mendibayev, S. Stukalov, D. Aznabayev, A. Shakhov, K. Kuterbekov, A. Kabyshev
The availability of new radioactive ion beams has broadened the study of nuclear reactions and nuclear structure. The main mechanism to produce the secondary beams is the fragmentation of the projectile. An alternative method for the production of the exotic nuclei is the multinucleon transfer. We measured production cross section for the B, C, N and O isotopes in the reaction 18O + Ta and the beam energy at 10 MeV/nucleon. The cross-sections were obtained by integrating the momentum distributions of the isotopes. It was shown that in deep inelastic processes the production yields of different isotopes could be well described using statistical models and could also be explained by the Qgg-systematic.
{"title":"Neutron pick-up reactions in 18O (10 MeV/nucleon) + Ta","authors":"S. Lukyanov, T. Issatayev, B. Hue, V. Maslov, K. Mendibayev, S. Stukalov, D. Aznabayev, A. Shakhov, K. Kuterbekov, A. Kabyshev","doi":"10.29317/ejpfm.2020040401","DOIUrl":"https://doi.org/10.29317/ejpfm.2020040401","url":null,"abstract":"The availability of new radioactive ion beams has broadened the study of nuclear reactions and nuclear structure. The main mechanism to produce the secondary beams is the fragmentation of the projectile. An alternative method for the production of the exotic nuclei is the multinucleon transfer. We measured production cross section for the B, C, N and O isotopes in the reaction 18O + Ta and the beam energy at 10 MeV/nucleon. The cross-sections were obtained by integrating the momentum distributions of the isotopes. It was shown that in deep inelastic processes the production yields of different isotopes could be well described using statistical models and could also be explained by the Qgg-systematic.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43503879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-25DOI: 10.29317/ejpfm.2020040406
B. Rakhadilov, Z. Satbayeva, R. Kozhanova, D. Baizhan, M. Rakhadilov, G. B. Botabayeva
The article presents the results of studying the process of electrolytic-plasma hardening of 0.34Cr-1Ni-Mo-Fe steel by surface hardening, as well as the results of the current-voltage characteristics of the cathodic electrolytic-plasma process depending on the composition of the electrolyte. Temperature-time and special modes of electrolytic-plasma hardening of steel 0.34Cr-1Ni-Mo-Fe were determined. The optimal composition of the electrolyte for electrolytic-plasma hardening has been determined, providing a relatively high heating rate and high hardness of the steel surface. It has been determined that after the electrolytic-plasma hardening, the microhardness of 34KhN1M steel increases 2.9 times due to the formation of fine martensite. In this case, the basis of the material does not change, it consists of a ferrite-pearlite structure.
{"title":"Influence of electrolytic-plasma hardening modes on structure and hardness of 0.34Cr-1Ni-Mo-Fe steel","authors":"B. Rakhadilov, Z. Satbayeva, R. Kozhanova, D. Baizhan, M. Rakhadilov, G. B. Botabayeva","doi":"10.29317/ejpfm.2020040406","DOIUrl":"https://doi.org/10.29317/ejpfm.2020040406","url":null,"abstract":"The article presents the results of studying the process of electrolytic-plasma hardening of 0.34Cr-1Ni-Mo-Fe steel by surface hardening, as well as the results of the current-voltage characteristics of the cathodic electrolytic-plasma process depending on the composition of the electrolyte. Temperature-time and special modes of electrolytic-plasma hardening of steel 0.34Cr-1Ni-Mo-Fe were determined. The optimal composition of the electrolyte for electrolytic-plasma hardening has been determined, providing a relatively high heating rate and high hardness of the steel surface. It has been determined that after the electrolytic-plasma hardening, the microhardness of 34KhN1M steel increases 2.9 times due to the formation of fine martensite. In this case, the basis of the material does not change, it consists of a ferrite-pearlite structure.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46900594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-23DOI: 10.29317/ejpfm.2020040300
{"title":"Editorial","authors":"","doi":"10.29317/ejpfm.2020040300","DOIUrl":"https://doi.org/10.29317/ejpfm.2020040300","url":null,"abstract":"","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47923021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-23DOI: 10.29317/EJPFM.2020040309
N. Ibrayev, A. Zhumabekov, E. Seliverstova
A ternary nanocomposite material based on TiO 2 , graphene oxide and core-shell nanostructures of Ag/TiO 2 composition was obtained by a two-step hydrothermal method. The formation of a dual TiO 2 -GO nanocomposite was confirmed by Raman spectroscopy data, where the nanocomposite spec- tra contain peaks characteristic of both TiO 2 and graphene oxide. Studies of electrophysical characteristics have shown that the addition of plasmon nanoparticles leads to an improvement in the charge- transfer characteristics of the synthesized material. This is due to the fact that the charge transfer resistance of a ternary nanocomposite material TiO 2 -GO-Ag is noticeably lower than for pure TiO 2 ( ≈ 13 times) and TiO 2 -GO nanocomposite ( ≈ 3 times). In addition, the prescence of Ag/TiO 2 core-shell nanostructures in the TiO 2 -GO nanocomposite material leads to an increase in the efficiency of conversion of incident light into photocurrent, which will be resulted in the growth of photocatalytic activity of synthesized materials.
{"title":"Photoelectric properties of TiO2-GO+Ag ternary nanocomposite material","authors":"N. Ibrayev, A. Zhumabekov, E. Seliverstova","doi":"10.29317/EJPFM.2020040309","DOIUrl":"https://doi.org/10.29317/EJPFM.2020040309","url":null,"abstract":"A ternary nanocomposite material based on TiO 2 , graphene oxide and core-shell nanostructures of Ag/TiO 2 composition was obtained by a two-step hydrothermal method. The formation of a dual TiO 2 -GO nanocomposite was confirmed by Raman spectroscopy data, where the nanocomposite spec- tra contain peaks characteristic of both TiO 2 and graphene oxide. Studies of electrophysical characteristics have shown that the addition of plasmon nanoparticles leads to an improvement in the charge- transfer characteristics of the synthesized material. This is due to the fact that the charge transfer resistance of a ternary nanocomposite material TiO 2 -GO-Ag is noticeably lower than for pure TiO 2 ( ≈ 13 times) and TiO 2 -GO nanocomposite ( ≈ 3 times). In addition, the prescence of Ag/TiO 2 core-shell nanostructures in the TiO 2 -GO nanocomposite material leads to an increase in the efficiency of conversion of incident light into photocurrent, which will be resulted in the growth of photocatalytic activity of synthesized materials.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49255778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}