Pub Date : 2021-12-09DOI: 10.32523/ejpfm.2021050401
K. Nazarov, S. Kichanov, E. Lukin, I. Zel, D. Kozlenko, T. Zholdybayev, B. Muhametuly, M. Kenessarin, A. Rutkauskas, A. Yskakov, M. Belova
The effect of sapphire and bismuth single-crystal filters and their combinations on the quality of neutron radiographic images and neutron tomography data has been studied. The parameters of the contrast of the neutron image were analyzed depending on the monocrystalline filters. Neutron transmission spectra were obtained for sapphire and bismuth single crystals. Additionally, the effect of filters on the overall intensity of the thermal neutron beam and the background of gamma-rays was investigated. Based on the obtained data, we assume that a single-crystal sapphire filter can be most effectively used for radiographic and tomographic installations using thermal neutrons.
{"title":"A comparative study of promising filter materials for neutron imaging facilities","authors":"K. Nazarov, S. Kichanov, E. Lukin, I. Zel, D. Kozlenko, T. Zholdybayev, B. Muhametuly, M. Kenessarin, A. Rutkauskas, A. Yskakov, M. Belova","doi":"10.32523/ejpfm.2021050401","DOIUrl":"https://doi.org/10.32523/ejpfm.2021050401","url":null,"abstract":"The effect of sapphire and bismuth single-crystal filters and their combinations on the quality of neutron radiographic images and neutron tomography data has been studied. The parameters of the contrast of the neutron image were analyzed depending on the monocrystalline filters. Neutron transmission spectra were obtained for sapphire and bismuth single crystals. Additionally, the effect of filters on the overall intensity of the thermal neutron beam and the background of gamma-rays was investigated. Based on the obtained data, we assume that a single-crystal sapphire filter can be most effectively used for radiographic and tomographic installations using thermal neutrons.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45021797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-09DOI: 10.32523/ejpfm.2021050402
S. Mazhen, P. Sedyshev, N. Simbirtseva, A. Yergashov, A. Dmitriev, V. L. Ivchenkov
Neutron Resonance Capture Analysis (NRCA) is presently being developed at the Frank Laboratory of Neutron Physics (FLNP) to determine the elemental composition of samples. The NRCA is a nondestructive method that allows measuring objects’ bulk composition. The procedure is based on detecting neutron resonances in radiative capture and the measurement of the yield of reaction products in these resonances. The experiments are carried out at the Intense REsonance Neutron source (IREN). In this study, we applied the NRCA to investigate an archaeological object provided by the Museum and Exhibition Complex (MVK) "Volokolamsk Kremlin". The object was a women’s Old Believer cross (second half of the 17th century) found in the Moscow region, Volokolamsk district, the village of Chubarovo.
{"title":"Application of non-destructive neutron resonance capture analysis for investigation of women’s Old Believer cross dating back to the second half of the 17th century","authors":"S. Mazhen, P. Sedyshev, N. Simbirtseva, A. Yergashov, A. Dmitriev, V. L. Ivchenkov","doi":"10.32523/ejpfm.2021050402","DOIUrl":"https://doi.org/10.32523/ejpfm.2021050402","url":null,"abstract":"Neutron Resonance Capture Analysis (NRCA) is presently being developed at the Frank Laboratory of Neutron Physics (FLNP) to determine the elemental composition of samples. The NRCA is a nondestructive method that allows measuring objects’ bulk composition. The procedure is based on detecting neutron resonances in radiative capture and the measurement of the yield of reaction products in these resonances. The experiments are carried out at the Intense REsonance Neutron source (IREN). In this study, we applied the NRCA to investigate an archaeological object provided by the Museum and Exhibition Complex (MVK) \"Volokolamsk Kremlin\". The object was a women’s Old Believer cross (second half of the 17th century) found in the Moscow region, Volokolamsk district, the village of Chubarovo.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43819533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-09DOI: 10.32523/ejpfm.2021050403
I. Sokolov, M. Skakov, A. Miniyazov, B. T. Aubakirov, T. Tulenbergenov, A. Gradoboev
The paper provides data on the peculiarity of change in the structure, structural phase changes and destructions in beryllium resulting from interaction with a near-wall plasma of fusion facilities. Beryllium resistance under conditions of ITER operation was evaluated, which considers factors leading to possible partial melting and erosion of panels of the ITER first wall. It presents the modelling of a heat s distribution in element (”finger”) of the first wall at ”normal” and ”increased” heat flux of the ITER operation.
{"title":"Analysis of the beryllium stability under standard and critical operation in a fusion reactor","authors":"I. Sokolov, M. Skakov, A. Miniyazov, B. T. Aubakirov, T. Tulenbergenov, A. Gradoboev","doi":"10.32523/ejpfm.2021050403","DOIUrl":"https://doi.org/10.32523/ejpfm.2021050403","url":null,"abstract":"The paper provides data on the peculiarity of change in the structure, structural phase changes and destructions in beryllium resulting from interaction with a near-wall plasma of fusion facilities. Beryllium resistance under conditions of ITER operation was evaluated, which considers factors leading to possible partial melting and erosion of panels of the ITER first wall. It presents the modelling of a heat s distribution in element (”finger”) of the first wall at ”normal” and ”increased” heat flux of the ITER operation.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46969345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-22DOI: 10.32523/ejpfm.2021050305
T. Nurakhmetov, B. Yussupbekova, A. Zhunusbekov, D. Daurenbekov, B. Sadykova, K. Zhangylyssov, T. Alibay, D. Tolekov
The mechanisms of creation of impurity and intrinsic electron-hole trapping centers in Na2SO4 − Cu crystals have been investigated by spectroscopic methods. It is shown that impurity and intrinsic electron-hole trapping centers in the crystal lattice Na2SO4 − Cu are created in the same energy distances approximately 3.87-4.0 eV and 4.43-4.5 eV. During the annealing of electron-hole trapping centers, the energy of the recombination processes is transferred to impurities.
{"title":"Influence of Cu+ impurity on the efficiency of creation of electron-hole trapping centers in irradiated Na2SO4 − Cu crystals","authors":"T. Nurakhmetov, B. Yussupbekova, A. Zhunusbekov, D. Daurenbekov, B. Sadykova, K. Zhangylyssov, T. Alibay, D. Tolekov","doi":"10.32523/ejpfm.2021050305","DOIUrl":"https://doi.org/10.32523/ejpfm.2021050305","url":null,"abstract":"The mechanisms of creation of impurity and intrinsic electron-hole trapping centers in Na2SO4 − Cu crystals have been investigated by spectroscopic methods. It is shown that impurity and intrinsic electron-hole trapping centers in the crystal lattice Na2SO4 − Cu are created in the same energy distances approximately 3.87-4.0 eV and 4.43-4.5 eV. During the annealing of electron-hole trapping centers, the energy of the recombination processes is transferred to impurities.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41385218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-22DOI: 10.32523/ejpfm.2021050306
B. Rakhadilov, R. Kozhanova, D. Baizhan, L. Zhurerova, G. Yerbolatova, A. Kalitova, L.N. Zhanuzakova
This work presented a study of the structure, hardness and wear resistance of 65G steel treated with electrolyte-plasma hardening under different conditions. The electrolyte-plasma hardening technology and a laboratory installation for the realisation of electrolyte-plasma hardening are also described. After electrolyte-plasma hardening, we have established that a modified layer consists of the a-phase (martensite) and M3C cementite. The study results showed that electrolyte-plasma hardening makes it possible to obtain layers on the 65G steel surface that provides an increase in microhardness by 2.6 times, wear resistance by two times, resistance to abrasive wear by 1.7 times compared to the original samples. In addition, local hardening ensures the achievement of technical and economic effects due to the absence of the need to isolate an unwanted site of parts, processing only the areas requiring hardening.
{"title":"Influence of plasma electrolytic hardening modes on the structure and properties of 65G steel","authors":"B. Rakhadilov, R. Kozhanova, D. Baizhan, L. Zhurerova, G. Yerbolatova, A. Kalitova, L.N. Zhanuzakova","doi":"10.32523/ejpfm.2021050306","DOIUrl":"https://doi.org/10.32523/ejpfm.2021050306","url":null,"abstract":"This work presented a study of the structure, hardness and wear resistance of 65G steel treated with electrolyte-plasma hardening under different conditions. The electrolyte-plasma hardening technology and a laboratory installation for the realisation of electrolyte-plasma hardening are also described. After electrolyte-plasma hardening, we have established that a modified layer consists of the a-phase (martensite) and M3C cementite. The study results showed that electrolyte-plasma hardening makes it possible to obtain layers on the 65G steel surface that provides an increase in microhardness by 2.6 times, wear resistance by two times, resistance to abrasive wear by 1.7 times compared to the original samples. In addition, local hardening ensures the achievement of technical and economic effects due to the absence of the need to isolate an unwanted site of parts, processing only the areas requiring hardening.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42083597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-22DOI: 10.32523/ejpfm.2021050304
M. Zdorovets, A. Kozlovskiy, D. Borgekov, D. Shlimas
The paper presents data on changes in strength properties, including data on microhardness, crack resistance, bending strength and wear of BeO ceramics as a result of irradiation with heavy accelerated ions. The following types of ions were selected as heavy ions: O2+ (28 MeV), Ar8+ (70 MeV), Kr15+ (147 MeV), Xe22+ (230 MeV). Radiation doses were 1013 -1015 ion/cm2 , which make it possible to assess the effect of both single defects arising from radiation, and cluster overlapping defective areas occurring at large radiation doses. During the studies carried out, it was found that an increase in the ion energy and, consequently, in the damaging ability and depth of the damaged area, leads to a sharp decrease in the strength mechanical characteristics of ceramics, which is due to an increase in defective areas in the material of the near-surface damaged layer. However, an increase in irradiation dose for all types of exposure results in an almost equilibrium decrease in strength characteristics and the same trend of change in strength characteristics. The obtained dependencies indicate that the proposed mechanisms responsible for changing the strength properties can, under certain assumptions, be extrapolated to various types of exposure to heavy ions in the energy range (25-250 MeV).
{"title":"Study of change in beryllium oxide strength properties as a result of irradiation with heavy ions","authors":"M. Zdorovets, A. Kozlovskiy, D. Borgekov, D. Shlimas","doi":"10.32523/ejpfm.2021050304","DOIUrl":"https://doi.org/10.32523/ejpfm.2021050304","url":null,"abstract":"The paper presents data on changes in strength properties, including data on microhardness, crack resistance, bending strength and wear of BeO ceramics as a result of irradiation with heavy accelerated ions. The following types of ions were selected as heavy ions: O2+ (28 MeV), Ar8+ (70 MeV), Kr15+ (147 MeV), Xe22+ (230 MeV). Radiation doses were 1013 -1015 ion/cm2 , which make it possible to assess the effect of both single defects arising from radiation, and cluster overlapping defective areas occurring at large radiation doses. During the studies carried out, it was found that an increase in the ion energy and, consequently, in the damaging ability and depth of the damaged area, leads to a sharp decrease in the strength mechanical characteristics of ceramics, which is due to an increase in defective areas in the material of the near-surface damaged layer. However, an increase in irradiation dose for all types of exposure results in an almost equilibrium decrease in strength characteristics and the same trend of change in strength characteristics. The obtained dependencies indicate that the proposed mechanisms responsible for changing the strength properties can, under certain assumptions, be extrapolated to various types of exposure to heavy ions in the energy range (25-250 MeV).","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48766743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-22DOI: 10.32523/ejpfm.2021050308
T. Nurakhmetov, K. Zhangylyssov, A. Zhunusbekov, D. Daurenbekov, T. Alibay, B. Sadykova, B. Yussupbekova, D. Tolekov
The mechanism of creation of electron-hole trapping centers in CaSO4 at 15-300 K was investigated by the methods of vacuum-ultraviolet and thermoactivation spectroscopy. It is shown that electron-hole trapping centers are formed upon trap of electrons in the anionic complexes SO4− and localization of holes in the form of SO4− radical. Based on the measurement of the spectrum of excitation of long-wavelength recombination emission at 3.0-3.1 eV and 2.7 eV, the energy distance of the formed electron-hole trapping centers was estimated (4.43 eV and 3.87 eV).
{"title":"Mechanisms for the creation of intrinsic electron-hole trapping centers in a CaSO4 crystall","authors":"T. Nurakhmetov, K. Zhangylyssov, A. Zhunusbekov, D. Daurenbekov, T. Alibay, B. Sadykova, B. Yussupbekova, D. Tolekov","doi":"10.32523/ejpfm.2021050308","DOIUrl":"https://doi.org/10.32523/ejpfm.2021050308","url":null,"abstract":"The mechanism of creation of electron-hole trapping centers in CaSO4 at 15-300 K was investigated by the methods of vacuum-ultraviolet and thermoactivation spectroscopy. It is shown that electron-hole trapping centers are formed upon trap of electrons in the anionic complexes SO4− and localization of holes in the form of SO4− radical. Based on the measurement of the spectrum of excitation of long-wavelength recombination emission at 3.0-3.1 eV and 2.7 eV, the energy distance of the formed electron-hole trapping centers was estimated (4.43 eV and 3.87 eV).","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42698468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-22DOI: 10.32523/ejpfm.2021050309
D. Sergeyev, K. Shunkeyev, B. Kuatov, N. Zhanturina
In this paper, the features of the characteristics of model thin-film solar cells based on the non-toxic multicomponent compound CuZn2AlS4 (CZAS) are considered. The main parameters (open-circuit voltage, short-circuit current, fill factor, efficiency) and characteristics (quantum efficiency, current-voltage characteristic) of thin-film solar cells based on CZAS have been determined. The minimum optimal thickness of the CZAS absorber is found (1-1.25 microns). Deterioration of the performance of solar cells with an increase in operating temperature (280-400 K) is shown. It is revealed that in the wavelength range of 390-500 nm CZAS has a high external quantum efficiency, which allows its use in designs of multi-junction solar cells designed to absorb solar radiation in the specified range. It is shown that the combination of CZAS films with a buffer layer of non-toxic ZnS increases the performance of solar cells.
{"title":"Features of model thin-film solar cells photoelectric characteristics based on a non-toxic multi-component connection CuZn2AlS4","authors":"D. Sergeyev, K. Shunkeyev, B. Kuatov, N. Zhanturina","doi":"10.32523/ejpfm.2021050309","DOIUrl":"https://doi.org/10.32523/ejpfm.2021050309","url":null,"abstract":"In this paper, the features of the characteristics of model thin-film solar cells based on the non-toxic multicomponent compound CuZn2AlS4 (CZAS) are considered. The main parameters (open-circuit voltage, short-circuit current, fill factor, efficiency) and characteristics (quantum efficiency, current-voltage characteristic) of thin-film solar cells based on CZAS have been determined. The minimum optimal thickness of the CZAS absorber is found (1-1.25 microns). Deterioration of the performance of solar cells with an increase in operating temperature (280-400 K) is shown. It is revealed that in the wavelength range of 390-500 nm CZAS has a high external quantum efficiency, which allows its use in designs of multi-junction solar cells designed to absorb solar radiation in the specified range. It is shown that the combination of CZAS films with a buffer layer of non-toxic ZnS increases the performance of solar cells.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44858940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-22DOI: 10.32523/ejpfm.2021050303
S. Dzhumanov, S. Malikov, Sh.S. Djumanov
The intrinsic mechanisms of the unusual metallic transports of three types of relevant charge carriers (large polarons, excited (dissociated) polaronic components of bosonic Cooper pairs and bosonic Cooper pairs themselves) along the CuO2 layers of high-Tc cuprates are identified and the new features of metallic conductivity in the CuO2 layers (i.e. ab -planes) of underdoped and optimally doped cuprates are explained. The in-plane conductivity of high-Tc cuprates is associated with the metallic transports of such charge carriers at their scattering by lattice vibrations in thin CuO2 layers. The proposed charge transport theory in high-Tc cuprates allows to explain consistently the distinctive features of metallic conductivity and the puzzling experimental data on the temperature dependences of their in-plane resistivity pab. In underdoped and optimally doped cuprates the linear temperature dependence of pab(T) above the pseudogap formation temperature T∗ is associated with the scattering of polaronic carriers at acoustic and optical phonons, while the different (upward and downward) deviations from the linearity in pab(T) below T∗ are caused by the pseudogap effect on the conductivity of the excited Fermi components of bosonic Cooper pairs and by the dominating conductivity of bosonic Cooper pairs themselves in the normal state of these high-Tc materials.
{"title":"Unusual metallic conductivity of high-Tc cuprates","authors":"S. Dzhumanov, S. Malikov, Sh.S. Djumanov","doi":"10.32523/ejpfm.2021050303","DOIUrl":"https://doi.org/10.32523/ejpfm.2021050303","url":null,"abstract":"The intrinsic mechanisms of the unusual metallic transports of three types of relevant charge carriers (large polarons, excited (dissociated) polaronic components of bosonic Cooper pairs and bosonic Cooper pairs themselves) along the CuO2 layers of high-Tc cuprates are identified and the new features of metallic conductivity in the CuO2 layers (i.e. ab -planes) of underdoped and optimally doped cuprates are explained. The in-plane conductivity of high-Tc cuprates is associated with the metallic transports of such charge carriers at their scattering by lattice vibrations in thin CuO2 layers. The proposed charge transport theory in high-Tc cuprates allows to explain consistently the distinctive features of metallic conductivity and the puzzling experimental data on the temperature dependences of their in-plane resistivity pab. In underdoped and optimally doped cuprates the linear temperature dependence of pab(T) above the pseudogap formation temperature T∗ is associated with the scattering of polaronic carriers at acoustic and optical phonons, while the different (upward and downward) deviations from the linearity in pab(T) below T∗ are caused by the pseudogap effect on the conductivity of the excited Fermi components of bosonic Cooper pairs and by the dominating conductivity of bosonic Cooper pairs themselves in the normal state of these high-Tc materials.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42244226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-22DOI: 10.32523/ejpfm.2021050307
A. Nogai, Z. Salikhodzha, A. Nogai, D. Uskenbaev
In this research, the structure parameters, conducting and dielectric properties of Na3Fe2(PO4)3 and Na2FePO4F polycrystals were studied obtained by solid-phase synthesis. The phase transition temperatures, conducting and dielectric parameters of Na3Fe2(PO4)3 and Na2FePO4F polycrystals were refined. A comparative evaluation of the conductive properties of Na3Fe2(PO4)3 and Na2FePO4F polycrystals is given in this article. The prospects of using of Na3Fe2(PO4)3 and Na2FePO4F are justified as electrode materials in sodium ion batteries.
{"title":"Conducting and dielectric properties of Na3Fe2(PO4)3 and Na2FePO4F","authors":"A. Nogai, Z. Salikhodzha, A. Nogai, D. Uskenbaev","doi":"10.32523/ejpfm.2021050307","DOIUrl":"https://doi.org/10.32523/ejpfm.2021050307","url":null,"abstract":"In this research, the structure parameters, conducting and dielectric properties of Na3Fe2(PO4)3 and Na2FePO4F polycrystals were studied obtained by solid-phase synthesis. The phase transition temperatures, conducting and dielectric parameters of Na3Fe2(PO4)3 and Na2FePO4F polycrystals were refined. A comparative evaluation of the conductive properties of Na3Fe2(PO4)3 and Na2FePO4F polycrystals is given in this article. The prospects of using of Na3Fe2(PO4)3 and Na2FePO4F are justified as electrode materials in sodium ion batteries.","PeriodicalId":36047,"journal":{"name":"Eurasian Journal of Physics and Functional Materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41629438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}