{"title":"Comparison of Diffusion Simulation Results of JRODOS and NACADOS at a Coastal Plant Site in China","authors":"Duoxin Zhao, Sha Huang, Minghua Lyu, Longquan Chen","doi":"10.14407/jrpr.2023.00458","DOIUrl":"https://doi.org/10.14407/jrpr.2023.00458","url":null,"abstract":",","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141822331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.14407/jrpr.2023.00745
Clarissa Hosse, Johannes Kolck, Elif Can, U. Fehrenbach, T. Auer, Fabio Pivetta, F. Collettini, Bernhard Gebauer, M. Bucourt
Background: As the quantity and complexity of radiological interventions are constantly increasing, gear that offers optimal protection while maintaining mobility and a low weight burden is becoming more important. A newly developed exoskeleton radiation protection system (ERPS) (StemRad MD; StemRad Ltd.) can carry the weight of the shielding. The aim of our study was to analyze initial experience, especially in terms of advantages and disadvantages, with this new ERPS in interventional radiology
{"title":"Exoskeleton System for Radiation Protection in Interventional Radiology","authors":"Clarissa Hosse, Johannes Kolck, Elif Can, U. Fehrenbach, T. Auer, Fabio Pivetta, F. Collettini, Bernhard Gebauer, M. Bucourt","doi":"10.14407/jrpr.2023.00745","DOIUrl":"https://doi.org/10.14407/jrpr.2023.00745","url":null,"abstract":"Background: As the quantity and complexity of radiological interventions are constantly increasing, gear that offers optimal protection while maintaining mobility and a low weight burden is becoming more important. A newly developed exoskeleton radiation protection system (ERPS) (StemRad MD; StemRad Ltd.) can carry the weight of the shielding. The aim of our study was to analyze initial experience, especially in terms of advantages and disadvantages, with this new ERPS in interventional radiology","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141682357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.14407/jrpr.2024.00073
Beomjun Park, Kyungeun Jung, Changsoo Kim
Background: This study focuses on the fabrication and characterization of quasi-hemispherical Cd 0.9 Zn 0.1 Te (CZT) detector for gamma-ray spectroscopy applications, aiming to contribute to advancements in radiation measurement and research. Materials and Methods: A CZT ingot was grown using the vertical Bridgman technique, followed by proper fabrication processes including wafering, polishing, chemical etching, electrode deposition, and passivation. Response properties were evaluated under various external bias voltages using gamma-ray sources such as Co-57, Ba-133, and Cs-137. Results and Discussion: The fabricated quasi-hemispherical CZT detector demonstrated sufficient response properties across a wide range of gamma-ray energies, with sufficient energy resolution and peak distinguishability. Higher external bias voltages led to improved performance in terms of energy resolution and peak shape. However, further improvements in defect properties are necessary to enhance detector performance under low bias conditions. Conclusion: This study underscores the efficacy of quasi-hemispherical CZT detector for gamma-ray spectroscopy, providing valuable insights for enhancing their capabilities in radiation research field.
{"title":"Fabrication and Evaluation of Spectroscopic Grade Quasi-hemispherical CdZnTe Detector","authors":"Beomjun Park, Kyungeun Jung, Changsoo Kim","doi":"10.14407/jrpr.2024.00073","DOIUrl":"https://doi.org/10.14407/jrpr.2024.00073","url":null,"abstract":"Background: This study focuses on the fabrication and characterization of quasi-hemispherical Cd 0.9 Zn 0.1 Te (CZT) detector for gamma-ray spectroscopy applications, aiming to contribute to advancements in radiation measurement and research. Materials and Methods: A CZT ingot was grown using the vertical Bridgman technique, followed by proper fabrication processes including wafering, polishing, chemical etching, electrode deposition, and passivation. Response properties were evaluated under various external bias voltages using gamma-ray sources such as Co-57, Ba-133, and Cs-137. Results and Discussion: The fabricated quasi-hemispherical CZT detector demonstrated sufficient response properties across a wide range of gamma-ray energies, with sufficient energy resolution and peak distinguishability. Higher external bias voltages led to improved performance in terms of energy resolution and peak shape. However, further improvements in defect properties are necessary to enhance detector performance under low bias conditions. Conclusion: This study underscores the efficacy of quasi-hemispherical CZT detector for gamma-ray spectroscopy, providing valuable insights for enhancing their capabilities in radiation research field.","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141686085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.14407/jrpr.2024.00024
Min Ho Choi, Dong Yeon Lee, Y. Kang, Hyojin Kim
Background: Cone beam computed tomography (CBCT) is essential for correcting and verifying patient position before radiation therapy. However, it poses additional radiation exposure during CBCT scans. Therefore, this study aimed to evaluate radiological safety for the human body through dose assessment for CBCT. Materials and Methods: For CBCT dose assessment, the depth dose was evaluated using a cheese phantom, and the dose in the orbital area was evaluated using a human body phantom self-fabricated with a three-dimensional printer. Results and Discussion: The evaluation of radiation doses revealed maximum doses of 14.14 mGy and minimum doses of 6.12 mGy for pelvic imaging conditions. For chest imaging conditions, the maximum doses were 4.82 mGy, and the minimum doses were 2.35 mGy. Head imaging conditions showed maximum doses of 1.46 mGy and minimum doses of 0.39 mGy. The eyeball doses using a human body phantom model averaged at 2.11 mGy on the left and 2.19 mGy on the right. The depth dose ranged between 0.39 mGy and 14.14 mGy, depending on the change in depth for each imaging mode, and the average dose in the orbit area using a human body phantom was 2.15 mGy. Conclusion: Based on the experimental results, CBCT did not significantly affect the radiation dose. However, it is important to maintain a minimal radiation dose to optimize radiation protection following the as low as reasonable achievable principle.
{"title":"Depth Dose According to Depth during Cone Beam Computed Tomography Acquisition and Dose Assessment in the Orbital Area Using a Three-Dimensional Printer","authors":"Min Ho Choi, Dong Yeon Lee, Y. Kang, Hyojin Kim","doi":"10.14407/jrpr.2024.00024","DOIUrl":"https://doi.org/10.14407/jrpr.2024.00024","url":null,"abstract":"Background: Cone beam computed tomography (CBCT) is essential for correcting and verifying patient position before radiation therapy. However, it poses additional radiation exposure during CBCT scans. Therefore, this study aimed to evaluate radiological safety for the human body through dose assessment for CBCT. Materials and Methods: For CBCT dose assessment, the depth dose was evaluated using a cheese phantom, and the dose in the orbital area was evaluated using a human body phantom self-fabricated with a three-dimensional printer. Results and Discussion: The evaluation of radiation doses revealed maximum doses of 14.14 mGy and minimum doses of 6.12 mGy for pelvic imaging conditions. For chest imaging conditions, the maximum doses were 4.82 mGy, and the minimum doses were 2.35 mGy. Head imaging conditions showed maximum doses of 1.46 mGy and minimum doses of 0.39 mGy. The eyeball doses using a human body phantom model averaged at 2.11 mGy on the left and 2.19 mGy on the right. The depth dose ranged between 0.39 mGy and 14.14 mGy, depending on the change in depth for each imaging mode, and the average dose in the orbit area using a human body phantom was 2.15 mGy. Conclusion: Based on the experimental results, CBCT did not significantly affect the radiation dose. However, it is important to maintain a minimal radiation dose to optimize radiation protection following the as low as reasonable achievable principle.","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141686169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Soft errors in semiconductor devices caused by cosmic rays have been recognized as a significant threat to the reliability of electronic devices on the ground. Recently, concerns about soft errors induced by cosmic-ray muons have increased. Some previous studies have indicated that low-energy negative muons have a more significant contribution to the occurrence of soft errors than positive muons. Thus, charge-identified low-energy muon flux data on the ground are required for accurate evaluation of the soft error rate. However, there are no such experimental data in the low-energy region. Materials and Methods: We designed a new muon detector system to measure low-energy muon flux data with charge identification. The major components consist of two drift chambers and a permanent magnet. The charge and momentum of detected muon can be identified from the deflection of the muon trajectory in the magnetic field. An algorithm to estimate the muon momentum is developed using numerical optimization by combining the classical Runge-Kutta and quasi-Newton methods. The momentum search algorithm is applied to event-by-event data of positive and negative muons obtained by Monte Carlo simulations with Particle and Heavy Ion Transport code System, and its performance is examined. Results and Discussion: The momentum search algorithm is fully applicable even in the case of an inhomogeneous magnetic field. The precision of the momentum determination is evaluated by considering the stochastic fluctuation caused by multiple scattering and the position resolution of the drift chambers. It was found that multiple scattering has a significant contribution to the precision in the momentum region below 50 MeV/c, while the detector position resolution considerably affects the precision above that. Conclusion: It was confirmed that the momentum search algorithm works well with a sufficient precision of 15% in the low-momentum region below 100 MeV/c, where no muon flux data exist.
{"title":"Development of a Measuring Method of Cosmic-Ray Muon Momentum Distribution Using Drift Chambers","authors":"Naoto Nakagami, Satoko Kamei, Shoichiro Kawase, Akira Sato, Yukinobu Watanabe","doi":"10.14407/jrpr.2023.00423","DOIUrl":"https://doi.org/10.14407/jrpr.2023.00423","url":null,"abstract":"Background: Soft errors in semiconductor devices caused by cosmic rays have been recognized as a significant threat to the reliability of electronic devices on the ground. Recently, concerns about soft errors induced by cosmic-ray muons have increased. Some previous studies have indicated that low-energy negative muons have a more significant contribution to the occurrence of soft errors than positive muons. Thus, charge-identified low-energy muon flux data on the ground are required for accurate evaluation of the soft error rate. However, there are no such experimental data in the low-energy region. Materials and Methods: We designed a new muon detector system to measure low-energy muon flux data with charge identification. The major components consist of two drift chambers and a permanent magnet. The charge and momentum of detected muon can be identified from the deflection of the muon trajectory in the magnetic field. An algorithm to estimate the muon momentum is developed using numerical optimization by combining the classical Runge-Kutta and quasi-Newton methods. The momentum search algorithm is applied to event-by-event data of positive and negative muons obtained by Monte Carlo simulations with Particle and Heavy Ion Transport code System, and its performance is examined. Results and Discussion: The momentum search algorithm is fully applicable even in the case of an inhomogeneous magnetic field. The precision of the momentum determination is evaluated by considering the stochastic fluctuation caused by multiple scattering and the position resolution of the drift chambers. It was found that multiple scattering has a significant contribution to the precision in the momentum region below 50 MeV/c, while the detector position resolution considerably affects the precision above that. Conclusion: It was confirmed that the momentum search algorithm works well with a sufficient precision of 15% in the low-momentum region below 100 MeV/c, where no muon flux data exist.","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140676577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-27DOI: 10.14407/jrpr.2022.00136
Eunok Han, Yoonseok Choi
Background: This study aims to analyze radiation safety management and regulatory perceptions, focusing on companies that must report radiation sources. The intent is to reduce the gap between regulation measures and addressing real concerns while improving practical safety management measures and regulations for all stakeholders. Materials and Methods: Radiation safety officers at a total of 244 reporting companies using radiation generators (79.8%) and sealed radioisotopes (15.1%) were surveyed using a questionnaire. Results and Discussion: The perception that regulation is stronger than the actual risk of the radiation source used was 3.47 points (out of 5 points), indicating a score above average. The most important factors and considerations were education and training (48%) as a human factor, safety devices of the radiation source (71.3%) as a hazardous material factor, the use of radiation (50.8%) as an organizational environment, and the radiation effect of nearby facilities (67.2%) as a physical environment. Radiation safety management educational experience ( F =5.030, p <0.01), the group with high subjective knowledge ( t =6.017, p <0.001), and the group with high objective knowledge ( t =1.989, p <0.05) was found to be better at radiation safety management. Conclusion: It is necessary to standardize the educational experience regarding radiation safety management because each staff member has individual differences in educational experience. It is necessary to provide more information on how to solve radiation accidents via educational content. Applying radiation safety regulations based on the factors that significantly affect radiation safety management shown in this survey will help improve safety.
{"title":"Awareness Patterns Regarding Radiation Safety Management in Fields Related to Radiation Safety Regulations: Focusing on Companies that Must Report Radiation Sources","authors":"Eunok Han, Yoonseok Choi","doi":"10.14407/jrpr.2022.00136","DOIUrl":"https://doi.org/10.14407/jrpr.2022.00136","url":null,"abstract":"Background: This study aims to analyze radiation safety management and regulatory perceptions, focusing on companies that must report radiation sources. The intent is to reduce the gap between regulation measures and addressing real concerns while improving practical safety management measures and regulations for all stakeholders. Materials and Methods: Radiation safety officers at a total of 244 reporting companies using radiation generators (79.8%) and sealed radioisotopes (15.1%) were surveyed using a questionnaire. Results and Discussion: The perception that regulation is stronger than the actual risk of the radiation source used was 3.47 points (out of 5 points), indicating a score above average. The most important factors and considerations were education and training (48%) as a human factor, safety devices of the radiation source (71.3%) as a hazardous material factor, the use of radiation (50.8%) as an organizational environment, and the radiation effect of nearby facilities (67.2%) as a physical environment. Radiation safety management educational experience ( F =5.030, p <0.01), the group with high subjective knowledge ( t =6.017, p <0.001), and the group with high objective knowledge ( t =1.989, p <0.05) was found to be better at radiation safety management. Conclusion: It is necessary to standardize the educational experience regarding radiation safety management because each staff member has individual differences in educational experience. It is necessary to provide more information on how to solve radiation accidents via educational content. Applying radiation safety regulations based on the factors that significantly affect radiation safety management shown in this survey will help improve safety.","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140376208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-22DOI: 10.14407/jrpr.2023.00465
H. Choi, H. Park, B. Cheon, Kyunghoon Cho, Hakjae Lee, Yong Hyun Chung, Y. Yeom, S. You, H. Choi, Chul Hee Min
Background: The gamma emission tomography (GET) device has been reported a reliable technique to inspect partial defects within spent nuclear fuel (SNF) of pin-by-pin level. However, the existing GET devices have low accuracy owing to the high attenuation and scatter probability for SNF inspection condition. The purpose of this study is to design and optimize a Yonsei single-photon emission computed tomography version 2 (YSECT.v.2) for fast inspection of SNF in water storage by acquisition of high-quality tomographic images. Materials and Methods: Using Geant4 (Geant4 Collaboration) and DETECT-2000 (Glenn F. Knoll et al.) Monte Carlo simulation, the geometrical structure of the proposed device was determined and its performance was evaluated for the 137 Cs source in water. In a Geant4-based assessment, proposed device was compared with the International Atomic Energy Agency (IAEA)-authenticated device for the quality of tomographic images obtained for 12 fuel sources in a 14×14 Westinghouse-type fuel assembly. Results and Discussion: According to the results, the length, slit width, and septal width of the collimator were determined to be 65, 2.1, and 1.5 mm, respectively, and the material and length of the trapezoidal-shaped scintillator were determined to be gadolinium aluminum gallium garnet and 45 mm, respectively. Based on the results of performance comparison between the YSECT.v.2 and IAEA’s device, the proposed device showed 200 times higher performance in gamma-detection sensitivity and similar source discrimination probability. Conclusion: In this study, we optimally designed the GET device for improving the SNF inspection accuracy and evaluated its performance. Our results show that the YSECT.v.2 device could be employed for SNF inspection.
{"title":"Optimization of Yonsei Single-Photon Emission Computed Tomography (YSECT) Detector for Fast Inspection of Spent Nuclear Fuel in Water Storage","authors":"H. Choi, H. Park, B. Cheon, Kyunghoon Cho, Hakjae Lee, Yong Hyun Chung, Y. Yeom, S. You, H. Choi, Chul Hee Min","doi":"10.14407/jrpr.2023.00465","DOIUrl":"https://doi.org/10.14407/jrpr.2023.00465","url":null,"abstract":"Background: The gamma emission tomography (GET) device has been reported a reliable technique to inspect partial defects within spent nuclear fuel (SNF) of pin-by-pin level. However, the existing GET devices have low accuracy owing to the high attenuation and scatter probability for SNF inspection condition. The purpose of this study is to design and optimize a Yonsei single-photon emission computed tomography version 2 (YSECT.v.2) for fast inspection of SNF in water storage by acquisition of high-quality tomographic images. Materials and Methods: Using Geant4 (Geant4 Collaboration) and DETECT-2000 (Glenn F. Knoll et al.) Monte Carlo simulation, the geometrical structure of the proposed device was determined and its performance was evaluated for the 137 Cs source in water. In a Geant4-based assessment, proposed device was compared with the International Atomic Energy Agency (IAEA)-authenticated device for the quality of tomographic images obtained for 12 fuel sources in a 14×14 Westinghouse-type fuel assembly. Results and Discussion: According to the results, the length, slit width, and septal width of the collimator were determined to be 65, 2.1, and 1.5 mm, respectively, and the material and length of the trapezoidal-shaped scintillator were determined to be gadolinium aluminum gallium garnet and 45 mm, respectively. Based on the results of performance comparison between the YSECT.v.2 and IAEA’s device, the proposed device showed 200 times higher performance in gamma-detection sensitivity and similar source discrimination probability. Conclusion: In this study, we optimally designed the GET device for improving the SNF inspection accuracy and evaluated its performance. Our results show that the YSECT.v.2 device could be employed for SNF inspection.","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140219995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-08DOI: 10.14407/jrpr.2023.00087
Choonsik Lee
Exponential growth has been observed in nuclear medicine procedures worldwide in the past decades. The considerable increase is attributed to the advance of positron emission tomography and single photon emission computed tomography, as well as the introduction of new radio-pharmaceuticals. Although nuclear medicine procedures provide undisputable diagnostic and therapeutic benefits to patients, the substantial increase in radiation exposure to nuclear medicine patients raises concerns about potential adverse health effects and calls for the urgent need to monitor exposure levels. In the current article, model-based internal dosimetry methods were reviewed, focusing on Medical Internal Radiation Dose (MIRD) formalism, biokinetic data, human anatomy models (stylized, voxel, and hybrid computational human phantoms), and energy spectrum data of radionuclides. Key results from many articles on nuclear medicine dosimetry and comparisons of dosimetry quantities based on different types of human anatomy models were summarized. Key characteristics of seven model-based dose calculation tools were tabulated and discussed, including dose quantities, computational human phantoms used for dose calculations, decay data for radionuclides, biokinetic data, and user interface. Lastly, future research needs in nuclear medicine dosimetry were discussed. Model-based internal do-simetry methods were reviewed focusing on MIRD formalism, biokinetic data, human anatomy models, and energy spectrum data of radionuclides. Future research should focus on updating biokinetic data, revising energy transfer quantities for alimentary and gastrointestinal tracts, accounting for body size in nuclear medicine dosimetry, and recalculating dose coefficients based on the latest biokinetic and energy transfer data.
{"title":"A Review of Organ Dose Calculation Methods and Tools for Patients Undergoing Diagnostic Nuclear Medicine Procedures","authors":"Choonsik Lee","doi":"10.14407/jrpr.2023.00087","DOIUrl":"https://doi.org/10.14407/jrpr.2023.00087","url":null,"abstract":"Exponential growth has been observed in nuclear medicine procedures worldwide in the past decades. The considerable increase is attributed to the advance of positron emission tomography and single photon emission computed tomography, as well as the introduction of new radio-pharmaceuticals. Although nuclear medicine procedures provide undisputable diagnostic and therapeutic benefits to patients, the substantial increase in radiation exposure to nuclear medicine patients raises concerns about potential adverse health effects and calls for the urgent need to monitor exposure levels. In the current article, model-based internal dosimetry methods were reviewed, focusing on Medical Internal Radiation Dose (MIRD) formalism, biokinetic data, human anatomy models (stylized, voxel, and hybrid computational human phantoms), and energy spectrum data of radionuclides. Key results from many articles on nuclear medicine dosimetry and comparisons of dosimetry quantities based on different types of human anatomy models were summarized. Key characteristics of seven model-based dose calculation tools were tabulated and discussed, including dose quantities, computational human phantoms used for dose calculations, decay data for radionuclides, biokinetic data, and user interface. Lastly, future research needs in nuclear medicine dosimetry were discussed. Model-based internal do-simetry methods were reviewed focusing on MIRD formalism, biokinetic data, human anatomy models, and energy spectrum data of radionuclides. Future research should focus on updating biokinetic data, revising energy transfer quantities for alimentary and gastrointestinal tracts, accounting for body size in nuclear medicine dosimetry, and recalculating dose coefficients based on the latest biokinetic and energy transfer data.","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139011273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-30DOI: 10.14407/jrpr.2022.00213
M. Sasaki, K. Furukawa, Daiki Satoh, K. Shimada, S. Kudo, Shunji Takagi, S. Takahara, M. Kai
Background: Quantitative risk assessments should be accompanied by uncertainty analyses of the risk models employed in the calculations. In this study, we aim to develop a computational code named SUMRAY for use in cancer risk projections from radiation exposure taking into account uncertainties. We also aim to make SUMRAY publicly available as a resource for further improvement of risk projection.Materials and Methods: SUMRAY has two versions of code written in R and Python. The risk models used in SUMRAY for all-solid-cancer mortality and incidence were those published in the Life Span Study of a cohort of the atomic bomb survivors in Hiroshima and Nagasaki. The confidence intervals associated with the evaluated risks were derived by propagating the statistical uncertainties in the risk model parameter estimates by the Monte Carlo method.Results and Discussion: SUMRAY was used to calculate the lifetime or time-integrated attributable risks of cancer under an exposure scenario (baseline rates, dose[s], age[s] at exposure, age at the end of follow-up, sex) specified by the user. The results were compared with those calculated using another well-known web-based tool, Radiation Risk Assessment Tool (Rad- RAT; National Institutes of Health), and showed a reasonable agreement within the estimated confidential interval. Compared with RadRAT, SUMRAY can be used for a wide range of applications, as it allows the risk projection with arbitrarily specified risk models and/or population reference data.Conclusion: The reliabilities of SUMRAY with the present risk-model parameters and their variance-covariance matrices were verified by comparing them with those of the other codes. The SUMRAY code is distributed to the public as an open-source code under the Massachusetts Institute of Technology license.
{"title":"SUMRAY: R and Python Codes for Calculating Cancer Risk Due to Radiation Exposure of a Population","authors":"M. Sasaki, K. Furukawa, Daiki Satoh, K. Shimada, S. Kudo, Shunji Takagi, S. Takahara, M. Kai","doi":"10.14407/jrpr.2022.00213","DOIUrl":"https://doi.org/10.14407/jrpr.2022.00213","url":null,"abstract":"Background: Quantitative risk assessments should be accompanied by uncertainty analyses of the risk models employed in the calculations. In this study, we aim to develop a computational code named SUMRAY for use in cancer risk projections from radiation exposure taking into account uncertainties. We also aim to make SUMRAY publicly available as a resource for further improvement of risk projection.Materials and Methods: SUMRAY has two versions of code written in R and Python. The risk models used in SUMRAY for all-solid-cancer mortality and incidence were those published in the Life Span Study of a cohort of the atomic bomb survivors in Hiroshima and Nagasaki. The confidence intervals associated with the evaluated risks were derived by propagating the statistical uncertainties in the risk model parameter estimates by the Monte Carlo method.Results and Discussion: SUMRAY was used to calculate the lifetime or time-integrated attributable risks of cancer under an exposure scenario (baseline rates, dose[s], age[s] at exposure, age at the end of follow-up, sex) specified by the user. The results were compared with those calculated using another well-known web-based tool, Radiation Risk Assessment Tool (Rad- RAT; National Institutes of Health), and showed a reasonable agreement within the estimated confidential interval. Compared with RadRAT, SUMRAY can be used for a wide range of applications, as it allows the risk projection with arbitrarily specified risk models and/or population reference data.Conclusion: The reliabilities of SUMRAY with the present risk-model parameters and their variance-covariance matrices were verified by comparing them with those of the other codes. The SUMRAY code is distributed to the public as an open-source code under the Massachusetts Institute of Technology license.","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73654458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-30DOI: 10.14407/jrpr.2022.00059
Hyun-Kyu Lee, Ilgook Kim, I. Yoon, Wooshin Park, Seeun Chang, H. Jeon, Sung-Bong Park
Background: The purpose of this study is to purify uranium (U[VI])-contaminated soil-flushing effluent using the precipitation–distillation process for clearance. Precipitation and distillation are commonly used techniques for water treatment. We propose using a combination of these methods for the simple and effective removal of U(VI) ions from soil-flushing effluents. In addition, the U concentration (Bq/g) of solid waste generated in the proposed treatment process was analyzed to confirm whether it satisfies the clearance level.Materials and Methods: Uranium-contaminated soil was decontaminated by soil-flushing using 0.5 M sulfuric acid. The soil-flushing effluent was treated with sodium hydroxide powder to precipitate U(VI) ions, and the remaining U(VI) ions were removed by phosphate addition. The effluent from which U(VI) ions were removed was distilled for reuse as a soil-flushing eluent.Results and Discussion: The purification method using the precipitation–distillation process proposed in this study effectively removes U(VI) ions from U-contaminated soil-flushing effluent. In addition, most of the solid waste generated in the purification process satisfied the clearance level.Conclusion: The proposed purification process is considered to have potential as a soil-flushing effluent treatment method to reduce the amount of radioactive waste generated.
{"title":"A Simple and Effective Purification Method for Removal of U(VI) from Soil-Flushing Effluent Using Precipitation: Distillation Process for Clearance","authors":"Hyun-Kyu Lee, Ilgook Kim, I. Yoon, Wooshin Park, Seeun Chang, H. Jeon, Sung-Bong Park","doi":"10.14407/jrpr.2022.00059","DOIUrl":"https://doi.org/10.14407/jrpr.2022.00059","url":null,"abstract":"Background: The purpose of this study is to purify uranium (U[VI])-contaminated soil-flushing effluent using the precipitation–distillation process for clearance. Precipitation and distillation are commonly used techniques for water treatment. We propose using a combination of these methods for the simple and effective removal of U(VI) ions from soil-flushing effluents. In addition, the U concentration (Bq/g) of solid waste generated in the proposed treatment process was analyzed to confirm whether it satisfies the clearance level.Materials and Methods: Uranium-contaminated soil was decontaminated by soil-flushing using 0.5 M sulfuric acid. The soil-flushing effluent was treated with sodium hydroxide powder to precipitate U(VI) ions, and the remaining U(VI) ions were removed by phosphate addition. The effluent from which U(VI) ions were removed was distilled for reuse as a soil-flushing eluent.Results and Discussion: The purification method using the precipitation–distillation process proposed in this study effectively removes U(VI) ions from U-contaminated soil-flushing effluent. In addition, most of the solid waste generated in the purification process satisfied the clearance level.Conclusion: The proposed purification process is considered to have potential as a soil-flushing effluent treatment method to reduce the amount of radioactive waste generated.","PeriodicalId":36088,"journal":{"name":"Journal of Radiation Protection and Research","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85864574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}