Pub Date : 2023-06-27DOI: 10.22337/2587-9618-2023-19-2-14-30
G. Safina
The injection method of soil stabilization is one of the methods to improve the soil base during the road construction. This method consists in the introduction of special compounds into the ground with the help of special equipment. Such compositions, as a rule, are solutions of polymers or cement, which harden, forming a solid base. The advantages of the injection method of soil stabilization for roads include rapid completion of work, minimal environmental impact, the possibility of application in difficult geological conditions, as well as strengthening the soil base at great depth. Injection solutions penetrate into microcracks and micropores of soils, forming a deposition. The study of liquid filtration in a porous soil system is of great practical importance. The paper considers the filtration of liquid in a porous medium with three types of particles. In the considered problem, each of the three types of suspension particles is characterized by its linear filtration function. It determines the size-exclusion particle capture mechanism, in which particles whose diameter exceeds the size of the pores get stuck in them, the rest pass through them unhindered. Numerical solutions are obtained for the concentrations of suspended particles of three types, as well as the total deposition. Depending on the initial parameters of the problem, the concentrations of suspended particles are either monotonic functions or non-monotonic, reaching the maximum value. In this paper, asymptotic solutions are constructed for the concentrations of suspended and retained particles near the concentration front, which are compared with numerical ones. The solution is obtained at infinity using a traveling wave.
{"title":"MODELLING OF A THREE-DISPERSED SUSPENSION FILTRATION","authors":"G. Safina","doi":"10.22337/2587-9618-2023-19-2-14-30","DOIUrl":"https://doi.org/10.22337/2587-9618-2023-19-2-14-30","url":null,"abstract":"The injection method of soil stabilization is one of the methods to improve the soil base during the road construction. This method consists in the introduction of special compounds into the ground with the help of special equipment. Such compositions, as a rule, are solutions of polymers or cement, which harden, forming a solid base. The advantages of the injection method of soil stabilization for roads include rapid completion of work, minimal environmental impact, the possibility of application in difficult geological conditions, as well as strengthening the soil base at great depth. Injection solutions penetrate into microcracks and micropores of soils, forming a deposition. The study of liquid filtration in a porous soil system is of great practical importance. The paper considers the filtration of liquid in a porous medium with three types of particles. In the considered problem, each of the three types of suspension particles is characterized by its linear filtration function. It determines the size-exclusion particle capture mechanism, in which particles whose diameter exceeds the size of the pores get stuck in them, the rest pass through them unhindered. Numerical solutions are obtained for the concentrations of suspended particles of three types, as well as the total deposition. Depending on the initial parameters of the problem, the concentrations of suspended particles are either monotonic functions or non-monotonic, reaching the maximum value. In this paper, asymptotic solutions are constructed for the concentrations of suspended and retained particles near the concentration front, which are compared with numerical ones. The solution is obtained at infinity using a traveling wave.","PeriodicalId":36116,"journal":{"name":"International Journal for Computational Civil and Structural Engineering","volume":"365 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76524307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-27DOI: 10.22337/2587-9618-2023-19-2-81-94
Vitaly V. Belikov, N. Borisova, A. Glotko, D. Kozlov
Numerical hydrodynamic modeling of water movement at discharges of 1% and 10% supply is considered in order to study the effect of ice effects and bottom deformations on the bridge supports across the reservoir of the Kuibyshev hydroelectric complex, and to predict the general erosion of the channel. The calculations use two-dimensional shallow water and sediment transport equations implemented in the STREAM 2D CUDA software package.
{"title":"NUMERICAL STUDY OF ICE AND CHANNEL PROCESSES ON THE BRIDGE SUPPORTS ACROSS THE KUIBYSHEV RESERVOIR (KAZAN)","authors":"Vitaly V. Belikov, N. Borisova, A. Glotko, D. Kozlov","doi":"10.22337/2587-9618-2023-19-2-81-94","DOIUrl":"https://doi.org/10.22337/2587-9618-2023-19-2-81-94","url":null,"abstract":"Numerical hydrodynamic modeling of water movement at discharges of 1% and 10% supply is considered in order to study the effect of ice effects and bottom deformations on the bridge supports across the reservoir of the Kuibyshev hydroelectric complex, and to predict the general erosion of the channel. The calculations use two-dimensional shallow water and sediment transport equations implemented in the STREAM 2D CUDA software package.","PeriodicalId":36116,"journal":{"name":"International Journal for Computational Civil and Structural Engineering","volume":"76 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72990837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-27DOI: 10.22337/2587-9618-2023-19-2-51-59
E. Korol, Yulia Kustikova
For the selection of the rational physical, mechanical and geometric parameters of three-layer reinforced concrete structures with monolithic bonding layers, it is necessary to have numerous data on the stress field and patterns of their deformation upon loading, changes in the energy parameters of the strength of concrete and the thickness of the layers. The important condition for the analysis of the stress-strain state by computer simulation is verification with experimental studies. This research is a confirmation of the reliability of the partitioning of the model into finite elements, the choice of their size and configuration. Modeling of three-layered enclosing structures with overall dimensions of attic overlappings allows obtaining strains and deformations in the outer and middle layers at different levels of loads and performing their comparison with limiting values. Due to the high rigidity of the three-layered enclosing structures with a monolithic bond of the layers and the use of structural concrete in the outer layers, the strength of which is more than 10 times higher than that of the middle layer, there are no cracks in the operating loads. In order to recommend considering the stress-strain state, there are more dimensional three-layer coating plates with monolithically bonded layers with different geometric and strength parameters, with different degrees of reinforcement and levels.
{"title":"SELECTION OF THE RATIONAL PARAMETERS OF THREE-LAYER REINFORCED CONCRETE STRUCTURES WITH MONOLITHIC BONDING LAYERS BY THE METHOD OF COMPUTER MODELING","authors":"E. Korol, Yulia Kustikova","doi":"10.22337/2587-9618-2023-19-2-51-59","DOIUrl":"https://doi.org/10.22337/2587-9618-2023-19-2-51-59","url":null,"abstract":"For the selection of the rational physical, mechanical and geometric parameters of three-layer reinforced concrete structures with monolithic bonding layers, it is necessary to have numerous data on the stress field and patterns of their deformation upon loading, changes in the energy parameters of the strength of concrete and the thickness of the layers. The important condition for the analysis of the stress-strain state by computer simulation is verification with experimental studies. This research is a confirmation of the reliability of the partitioning of the model into finite elements, the choice of their size and configuration. Modeling of three-layered enclosing structures with overall dimensions of attic overlappings allows obtaining strains and deformations in the outer and middle layers at different levels of loads and performing their comparison with limiting values. Due to the high rigidity of the three-layered enclosing structures with a monolithic bond of the layers and the use of structural concrete in the outer layers, the strength of which is more than 10 times higher than that of the middle layer, there are no cracks in the operating loads. In order to recommend considering the stress-strain state, there are more dimensional three-layer coating plates with monolithically bonded layers with different geometric and strength parameters, with different degrees of reinforcement and levels.","PeriodicalId":36116,"journal":{"name":"International Journal for Computational Civil and Structural Engineering","volume":"105 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80581712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-27DOI: 10.22337/2587-9618-2023-19-2-109-119
A. Treshchev, Nikita Yushchenco, A. Bobryshev
As a result of numerous experimental and theoretical studies, it has been established that when deforming both traditional and new structural materials, which are polymers, composites and synthetic structures used in construction, mechanical engineering, and power engineering devices, complicated mechanical properties manifest themselves.Most of these materials have an orthotropic structure complicated by the dependence of deformation and strength characteristics on the type of stress state, which can be interpreted as deformation anisotropy. These properties contradict the generally accepted theories of deformation. Therefore, a number of models have been specially developed for such materials over the past 56 years, taking into account the complicated properties of materials. However, all of them have disadvantages and certain contradictions with the fundamental rules for constructing equations of state. The previous works of the authors of the presented studies establish general approaches to the construction of energetically nonlinear deformation models of composite materials with recommendations for calculating their constants based on a wide range of experiments.It turned out that the set of necessary experiments should include experiments on complex stress states, most of which are technically unrealizable. In another work of the authors in 2021, using the tensor space of normalized stresses, the deformation potential was formulated in a quasi-linear form, constructed in the main axes of orthotropy of materials, for determining constants, which is sufficient for the data of the simplest experiments. Along with the obvious advantages of the introduced potential, it has one drawback, which is to replace real nonlinear diagrams with direct rays with minimal error. Despite the unconditional adequacy of the quasi-linear potential, the use of this level of approximations leads to quantitative errors.Therefore, simplified nonlinear equations of state for composite materials are proposed here, the simplest experiments are sufficient to determine the material functions of which. These equations are based on the general laws of mechanics, on the basis of which the constants of material polynomials for a carbon-graphite composite are calculated, taking into account the Drucker constraints.
{"title":"NONLINEAR REFINEMENT OF THE DEFORMATION MODEL OF ORTHOTROPIC MATERIALS, THE RIGIDITY OF WHICH DEPENDS ON THE TYPE OF STRESS STATE","authors":"A. Treshchev, Nikita Yushchenco, A. Bobryshev","doi":"10.22337/2587-9618-2023-19-2-109-119","DOIUrl":"https://doi.org/10.22337/2587-9618-2023-19-2-109-119","url":null,"abstract":"As a result of numerous experimental and theoretical studies, it has been established that when deforming both traditional and new structural materials, which are polymers, composites and synthetic structures used in construction, mechanical engineering, and power engineering devices, complicated mechanical properties manifest themselves.Most of these materials have an orthotropic structure complicated by the dependence of deformation and strength characteristics on the type of stress state, which can be interpreted as deformation anisotropy. These properties contradict the generally accepted theories of deformation. Therefore, a number of models have been specially developed for such materials over the past 56 years, taking into account the complicated properties of materials. However, all of them have disadvantages and certain contradictions with the fundamental rules for constructing equations of state. The previous works of the authors of the presented studies establish general approaches to the construction of energetically nonlinear deformation models of composite materials with recommendations for calculating their constants based on a wide range of experiments.It turned out that the set of necessary experiments should include experiments on complex stress states, most of which are technically unrealizable. In another work of the authors in 2021, using the tensor space of normalized stresses, the deformation potential was formulated in a quasi-linear form, constructed in the main axes of orthotropy of materials, for determining constants, which is sufficient for the data of the simplest experiments. Along with the obvious advantages of the introduced potential, it has one drawback, which is to replace real nonlinear diagrams with direct rays with minimal error. Despite the unconditional adequacy of the quasi-linear potential, the use of this level of approximations leads to quantitative errors.Therefore, simplified nonlinear equations of state for composite materials are proposed here, the simplest experiments are sufficient to determine the material functions of which. These equations are based on the general laws of mechanics, on the basis of which the constants of material polynomials for a carbon-graphite composite are calculated, taking into account the Drucker constraints.","PeriodicalId":36116,"journal":{"name":"International Journal for Computational Civil and Structural Engineering","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83883252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-27DOI: 10.22337/2587-9618-2023-19-2-71-80
N. Rogacheva, Y. Zheglova
For a number of materials used in modern practice, calculations according to the classical theory of elasticity give incorrect results. To ensure the reliable operation of structures, there is a need for new theories. At present, of particular interest for practical applications is the asymmetric moment theory of elasticity. In the work, by the method of hypotheses, the three-dimensional equations of the moment asymmetric theory of elasticity are reduced to the equations of the theory of plates. The hypotheses of the theory of plates in the moment theory of elasticity are formulated on the basis of previously obtained our results of the reduction of three-dimensional equations to two-dimensional theories by a mathematical method. Just as in the classical theory of elasticity, the complete problem of the moment theory of plates is divided into two problems - a plane problem and a problem of plate bending. The equations of the plane problem have been obtained in many papers. The situation is different with the construction of the theory of plate bending in the moment theory of elasticity. In this work, for the first time, substantiated hypotheses are formulated and a consistent theory of plate bending is presented. A numerical calculation of the bending of a rectangular hinged plate is carried out according to the obtained applied theory. The calculation results are presented in the form of graphs.
{"title":"PROBLEM OF PLATE BENDING IN THE MOMENT ASYMMETRIC THEORY OF ELASTICITY","authors":"N. Rogacheva, Y. Zheglova","doi":"10.22337/2587-9618-2023-19-2-71-80","DOIUrl":"https://doi.org/10.22337/2587-9618-2023-19-2-71-80","url":null,"abstract":"For a number of materials used in modern practice, calculations according to the classical theory of elasticity give incorrect results. To ensure the reliable operation of structures, there is a need for new theories. At present, of particular interest for practical applications is the asymmetric moment theory of elasticity. In the work, by the method of hypotheses, the three-dimensional equations of the moment asymmetric theory of elasticity are reduced to the equations of the theory of plates. The hypotheses of the theory of plates in the moment theory of elasticity are formulated on the basis of previously obtained our results of the reduction of three-dimensional equations to two-dimensional theories by a mathematical method. Just as in the classical theory of elasticity, the complete problem of the moment theory of plates is divided into two problems - a plane problem and a problem of plate bending. The equations of the plane problem have been obtained in many papers. The situation is different with the construction of the theory of plate bending in the moment theory of elasticity. In this work, for the first time, substantiated hypotheses are formulated and a consistent theory of plate bending is presented. A numerical calculation of the bending of a rectangular hinged plate is carried out according to the obtained applied theory. The calculation results are presented in the form of graphs.","PeriodicalId":36116,"journal":{"name":"International Journal for Computational Civil and Structural Engineering","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87123222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-27DOI: 10.22337/2587-9618-2023-19-2-136-49
T. Dmitrieva, K. Podshivalova
The research carried out in this paper is reduced to studying the design features of wooden frame structures and analyzing the nature and degree of influence of individual structural elements on the work of the frame as a whole based on a comparison of experimental and theoretical data. The results of the studies with the evaluation of natural oscillations are the basis for the correct modeling of structural systems when performing static and dynamic calculations.
{"title":"EXPERIMENTAL AND THEORETICAL STUDIES OF DYNAMIC CHARACTERISTICS OF WOODEN FRAME BUILDINGS","authors":"T. Dmitrieva, K. Podshivalova","doi":"10.22337/2587-9618-2023-19-2-136-49","DOIUrl":"https://doi.org/10.22337/2587-9618-2023-19-2-136-49","url":null,"abstract":"The research carried out in this paper is reduced to studying the design features of wooden frame structures and analyzing the nature and degree of influence of individual structural elements on the work of the frame as a whole based on a comparison of experimental and theoretical data. The results of the studies with the evaluation of natural oscillations are the basis for the correct modeling of structural systems when performing static and dynamic calculations.","PeriodicalId":36116,"journal":{"name":"International Journal for Computational Civil and Structural Engineering","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91243704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-27DOI: 10.22337/2587-9618-2023-19-2-161-171
O. Mkrtichev, S. Mingazova
One of the effective methods for ensuring seismic resistance of buildings and structures located in seismic-prone areas is the use of an active seismic protection system. The most common at present is an active seismic protection system based on seismic isolation. Seismic isolations in the form of rubber-metal (RMB) and pendulum sliding bearings (PSB) have gained great popularity in our country and abroad. Also known seismic isolation in the form of a sliding belt at the foundation level. Unlike RMB and PSB, the sliding belt is easier to manufacture, install, maintain, however, it is less studied and there are still a lack of sufficient design justifications. In this study, the effectiveness of a seismic isolating sliding belt at the foundation level with PTFE plates was investigated: a methodology for calculating a building with seismic isolating sliding belt at the foundation level using the direct dynamic method was developed; studies were conducted on the influence of the friction coefficient of the friction minimization component on the effectiveness of the anti-seismic sliding belt using the example of a 9-story monolithic reinforced concrete building under one-component seismic excitation. As a result of the calculations, graphs of relative displacements and accelerations, stress intensity, also pictures with displacement isofields, stress intensity and deformations were obtained. The analysis of the obtained results shows that the most effective component for friction minimization is the use of PTFE plates.
{"title":"NUMERICAL ANALYSIS OF ANTISEISMIC SLIDING BELT PERFORMANCE","authors":"O. Mkrtichev, S. Mingazova","doi":"10.22337/2587-9618-2023-19-2-161-171","DOIUrl":"https://doi.org/10.22337/2587-9618-2023-19-2-161-171","url":null,"abstract":"One of the effective methods for ensuring seismic resistance of buildings and structures located in seismic-prone areas is the use of an active seismic protection system. The most common at present is an active seismic protection system based on seismic isolation. Seismic isolations in the form of rubber-metal (RMB) and pendulum sliding bearings (PSB) have gained great popularity in our country and abroad. Also known seismic isolation in the form of a sliding belt at the foundation level. Unlike RMB and PSB, the sliding belt is easier to manufacture, install, maintain, however, it is less studied and there are still a lack of sufficient design justifications. In this study, the effectiveness of a seismic isolating sliding belt at the foundation level with PTFE plates was investigated: a methodology for calculating a building with seismic isolating sliding belt at the foundation level using the direct dynamic method was developed; studies were conducted on the influence of the friction coefficient of the friction minimization component on the effectiveness of the anti-seismic sliding belt using the example of a 9-story monolithic reinforced concrete building under one-component seismic excitation. As a result of the calculations, graphs of relative displacements and accelerations, stress intensity, also pictures with displacement isofields, stress intensity and deformations were obtained. The analysis of the obtained results shows that the most effective component for friction minimization is the use of PTFE plates.","PeriodicalId":36116,"journal":{"name":"International Journal for Computational Civil and Structural Engineering","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88506760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-27DOI: 10.22337/2587-9618-2023-19-2-95-108
A. Ter-Martirosyan, R. Cherkesov, Ilya O. Isaev, Viktoriya Rud, Mariya Ambrushkevich
As a result of active development of Moscow underground space, as well as due to the increased density of urban development, it is necessary to forecast additional displacements of surrounding buildings from new construction in order to prevent emergency situations. For this reason, one of the important directions is mathematical modeling of the additional displacements of the surrounding building after erection. Establishing the parameters of design boundaries of a geotechnical model is one of the factors that greatly influence the results of the simulation. This study deals with the assignment of the lower boundary of the scheme when estimating the impact from tunneling works in a two-dimensional formulation. A review of international experience in simulating the design scheme depth for various geotechnical problems and its comparison with Russian experience in modeling schemes has been made. The deformation marks located on the ground surface in the zone of influence of the Rublevo-Arkhangelskaya and Troitskaya (Kommunarskaya) lines of the Moscow Metro under construction were selected for the analysis. The authors carried out the selection of the lower boundary of the scheme by changing it in proportion to the outer diameter of the tunnels in dispersed and rocky soils. The obtained data were compared with geodetic monitoring one. Calculations were made for three different soil models such as Mohr-Coulomb, Mohr-Coulomb with increasing deformation modulus of the prism under the excavation and Hardening soil. In addition, calculations were made for two cases of assignment of the overburden coefficient - according to normative documentation and available research on the subject. As a result of this work, more than 600 calculated cases were obtained. Based on these cases, recommendations were developed for adjusting the scheme depth for the considered soil models.
{"title":"DETERMINATION OF BOUNDARIES PARAMETERS OF THE COMPUTATIONAL MODEL FOR ASSESSING THE IMPACT ON THE SURROUNDING FACILITIES FROM TUNNELING","authors":"A. Ter-Martirosyan, R. Cherkesov, Ilya O. Isaev, Viktoriya Rud, Mariya Ambrushkevich","doi":"10.22337/2587-9618-2023-19-2-95-108","DOIUrl":"https://doi.org/10.22337/2587-9618-2023-19-2-95-108","url":null,"abstract":"As a result of active development of Moscow underground space, as well as due to the increased density of urban development, it is necessary to forecast additional displacements of surrounding buildings from new construction in order to prevent emergency situations. For this reason, one of the important directions is mathematical modeling of the additional displacements of the surrounding building after erection. Establishing the parameters of design boundaries of a geotechnical model is one of the factors that greatly influence the results of the simulation. This study deals with the assignment of the lower boundary of the scheme when estimating the impact from tunneling works in a two-dimensional formulation. A review of international experience in simulating the design scheme depth for various geotechnical problems and its comparison with Russian experience in modeling schemes has been made. The deformation marks located on the ground surface in the zone of influence of the Rublevo-Arkhangelskaya and Troitskaya (Kommunarskaya) lines of the Moscow Metro under construction were selected for the analysis. The authors carried out the selection of the lower boundary of the scheme by changing it in proportion to the outer diameter of the tunnels in dispersed and rocky soils. The obtained data were compared with geodetic monitoring one. Calculations were made for three different soil models such as Mohr-Coulomb, Mohr-Coulomb with increasing deformation modulus of the prism under the excavation and Hardening soil. In addition, calculations were made for two cases of assignment of the overburden coefficient - according to normative documentation and available research on the subject. As a result of this work, more than 600 calculated cases were obtained. Based on these cases, recommendations were developed for adjusting the scheme depth for the considered soil models.","PeriodicalId":36116,"journal":{"name":"International Journal for Computational Civil and Structural Engineering","volume":"66 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89398158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-27DOI: 10.22337/2587-9618-2023-19-2-31-41
G. Slavcheva, Артем Левченко, M. Shvedova, Davut Karakchi-Ogli, D. Babenko, P. Yurov
We present the results of experimental studies and modelling of the evaluation of the bearing capacity of hollow 3D-printed walls with the printed shell performing bearing functions. The bearing capacity of hollow 3D-printed walls was experimentally assessed depending on the ratio of the void areas and casting layers in the wall structure. It was established that in case of central loading, a 3D-printed wall with bearing casting layers can serve as a bearing wall similar to traditional types of masonry construction without filling voids with structural concrete and reinforcement. We established the value of strength reduction of hollow 3D-printed walls, which amounted to ~0.1 – 0.25 MPa per 1 % of the increased area of voids. The limit value of the hollow structure parameter was determined, which must not exceed K = 0.75 in order to ensure the bearing capacity of self-bearing and non-bearing 3D-printed walls. We obtained an experimental model of the relationship between the hollow structure parameter and the bearing capacity, which allowed predicting the bearing capacity of a 3D-printed wall under central loading. It was suggested to take into account the hollow structure parameter K when calculating the elements of unreinforced 3D-printed walls under central compression according to the first group of limit states.
{"title":"THE EFFECT OF HOLLOW STRUCTURE PARAMETER ON THE 3D-PRINTED WALL BEARING CAPACITY. EXPERIMENTAL MODEL","authors":"G. Slavcheva, Артем Левченко, M. Shvedova, Davut Karakchi-Ogli, D. Babenko, P. Yurov","doi":"10.22337/2587-9618-2023-19-2-31-41","DOIUrl":"https://doi.org/10.22337/2587-9618-2023-19-2-31-41","url":null,"abstract":"We present the results of experimental studies and modelling of the evaluation of the bearing capacity of hollow 3D-printed walls with the printed shell performing bearing functions. The bearing capacity of hollow 3D-printed walls was experimentally assessed depending on the ratio of the void areas and casting layers in the wall structure. It was established that in case of central loading, a 3D-printed wall with bearing casting layers can serve as a bearing wall similar to traditional types of masonry construction without filling voids with structural concrete and reinforcement. We established the value of strength reduction of hollow 3D-printed walls, which amounted to ~0.1 – 0.25 MPa per 1 % of the increased area of voids. The limit value of the hollow structure parameter was determined, which must not exceed K = 0.75 in order to ensure the bearing capacity of self-bearing and non-bearing 3D-printed walls. We obtained an experimental model of the relationship between the hollow structure parameter and the bearing capacity, which allowed predicting the bearing capacity of a 3D-printed wall under central loading. It was suggested to take into account the hollow structure parameter K when calculating the elements of unreinforced 3D-printed walls under central compression according to the first group of limit states.","PeriodicalId":36116,"journal":{"name":"International Journal for Computational Civil and Structural Engineering","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87080174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-27DOI: 10.22337/2587-9618-2023-19-2-120-135
K. Sharafutdinov, Ksenia Saraykina, G. Kashevarova, Ya.A. Sanyagina, V. Erofeev, N. Vatin
The article presents an analysis of the results of experimental studies of the effect of different types of a super absorbent polymer additive on the strength of different types of concrete. The study is aimed at the effectiveness of a new type of super absorbent additive in concrete structures. In the course of full-scale experiments, it was possible to identify the optimum dosage of SAP for fine-grained and heavy concretes. In addition, the results showed that the strength of concrete remains unchanged if the dosage of super absorbent polymer additive (SAP) is 0.5% of the weight of cement or less. The possibility of modern intelligent technologies (artificial neural networks) to predict the properties of concrete mixture and hardened concrete at given values of input parameters (SAP dosage and W/C), influence on concrete characteristics (slump of the cone, bending strength, compressive strength) has also been shown.
{"title":"STRENGTH AND DURABILITY OF CONCRETES WITH A SUPER ABSORBENT POLYMER ADDITIVE","authors":"K. Sharafutdinov, Ksenia Saraykina, G. Kashevarova, Ya.A. Sanyagina, V. Erofeev, N. Vatin","doi":"10.22337/2587-9618-2023-19-2-120-135","DOIUrl":"https://doi.org/10.22337/2587-9618-2023-19-2-120-135","url":null,"abstract":"The article presents an analysis of the results of experimental studies of the effect of different types of a super absorbent polymer additive on the strength of different types of concrete. The study is aimed at the effectiveness of a new type of super absorbent additive in concrete structures. In the course of full-scale experiments, it was possible to identify the optimum dosage of SAP for fine-grained and heavy concretes. In addition, the results showed that the strength of concrete remains unchanged if the dosage of super absorbent polymer additive (SAP) is 0.5% of the weight of cement or less. The possibility of modern intelligent technologies (artificial neural networks) to predict the properties of concrete mixture and hardened concrete at given values of input parameters (SAP dosage and W/C), influence on concrete characteristics (slump of the cone, bending strength, compressive strength) has also been shown.","PeriodicalId":36116,"journal":{"name":"International Journal for Computational Civil and Structural Engineering","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79159924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}