Objectives: To provide a real-world example on how and to what extent Health Level Seven Fast Healthcare Interoperability Resources (FHIR) implements the Findable, Accessible, Interoperable, and Reusable (FAIR) guiding principles for scientific data. Additionally, presents a list of FAIR implementation choices for supporting future FAIR implementations that use FHIR.
Materials and methods: A case study was conducted on the Medical Information Mart for Intensive Care-IV Emergency Department (MIMIC-ED) dataset, a deidentified clinical dataset converted into FHIR. The FAIRness of this dataset was assessed using a set of common FAIR assessment indicators.
Results: The FHIR distribution of MIMIC-ED, comprising an implementation guide and demo data, was more FAIR compared to the non-FHIR distribution. The FAIRness score increased from 60 to 82 out of 95 points, a relative improvement of 37%. The most notable improvements were observed in interoperability, with a score increase from 5 to 19 out of 19 points, and reusability, with a score increase from 8 to 14 out of 24 points. A total of 14 FAIR implementation choices were identified.
Discussion: Our work examined how and to what extent the FHIR standard contributes to FAIR data. Challenges arose from interpreting the FAIR assessment indicators. This study stands out for providing a real-world example of a dataset that was made more FAIR using FHIR.
Conclusion: To the best of our knowledge, this is the first study that formally assessed the conformance of a FHIR dataset to the FAIR principles. FHIR improved the accessibility, interoperability, and reusability of MIMIC-ED. Future research should focus on implementing FHIR in research data infrastructures.