Pub Date : 2019-05-23eCollection Date: 2019-09-01DOI: 10.1007/s41666-019-00053-4
Magnus Andersson Hagiwara, Lars Lundberg, Bengt Arne Sjöqvist, Hanna Maurin Söderholm
Stroke is a serious condition and the stroke chain of care is a complex. The present study aims to explore the impact of a computerised decision support system (CDSS) for the prehospital stroke process, with focus on work processes and performance. The study used an exploratory approach with a randomised controlled crossover design in a realistic contextualised simulation experiment. The study compared clinical performance among 11 emergency medical services (EMS) teams of 22 EMS clinicians using (1) a computerised decision support system (CDSS) and (2) their usual paper-based process support. Data collection consisted of video recordings, postquestionnaires and post-interviews, and data were analysed using a combination of qualitative and quantitative approaches. In this experiment, using a CDSS improved patient assessment, decision making and compliance to process recommendations. Minimal impact of the CDSS was found on EMS clinicians' self-efficacy, suggesting that even though the system was found to be cumbersome to use it did not have any negative effects on self-efficacy. Negative effects of the CDSS include increased on-scene time and a cognitive burden of using the system, affecting patient interaction and collaboration with team members. The CDSS's overall process advantage to the prehospital stroke process is assumed to lead to a prehospital care that is both safer and of higher quality. The key to user acceptance of a system such as this CDSS is the relative advantages of improved documentation process and the resulting patient journal. This could improve the overall prehospital stroke process.
{"title":"The Effects of Integrated IT Support on the Prehospital Stroke Process: Results from a Realistic Experiment.","authors":"Magnus Andersson Hagiwara, Lars Lundberg, Bengt Arne Sjöqvist, Hanna Maurin Söderholm","doi":"10.1007/s41666-019-00053-4","DOIUrl":"10.1007/s41666-019-00053-4","url":null,"abstract":"<p><p>Stroke is a serious condition and the stroke chain of care is a complex. The present study aims to explore the impact of a computerised decision support system (CDSS) for the prehospital stroke process, with focus on work processes and performance. The study used an exploratory approach with a randomised controlled crossover design in a realistic contextualised simulation experiment. The study compared clinical performance among 11 emergency medical services (EMS) teams of 22 EMS clinicians using (1) a computerised decision support system (CDSS) and (2) their usual paper-based process support. Data collection consisted of video recordings, postquestionnaires and post-interviews, and data were analysed using a combination of qualitative and quantitative approaches. In this experiment, using a CDSS improved patient assessment, decision making and compliance to process recommendations. Minimal impact of the CDSS was found on EMS clinicians' self-efficacy, suggesting that even though the system was found to be cumbersome to use it did not have any negative effects on self-efficacy. Negative effects of the CDSS include increased on-scene time and a cognitive burden of using the system, affecting patient interaction and collaboration with team members. The CDSS's overall process advantage to the prehospital stroke process is assumed to lead to a prehospital care that is both safer and of higher quality. The key to user acceptance of a system such as this CDSS is the relative advantages of improved documentation process and the resulting patient journal. This could improve the overall prehospital stroke process.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982745/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"53224883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-01Epub Date: 2018-09-25DOI: 10.1007/s41666-018-0033-x
Jessica Schroeder, Ravi Karkar, James Fogarty, Julie A Kientz, Sean A Munson, Matthew Kay
The rise of affordable sensors and apps has enabled people to monitor various health indicators via self-tracking. This trend encourages self-experimentation, a subset of self-tracking in which a person systematically explores potential causal relationships to try to answer questions about their health. Although recent research has investigated how to support the data collection necessary for self-experiments, less research has considered the best way to analyze data resulting from these self-experiments. Most tools default to using traditional frequentist methods. However, the US Agency for Healthcare Research and Quality recommends using Bayesian analysis for n-of-1 studies, arguing from a statistical perspective. To develop a complementary patient-centered perspective on the potential benefits of Bayesian analysis, this paper describes types of questions people want to answer via self-experimentation, as informed by 1) our experiences engaging with irritable bowel syndrome patients and their healthcare providers and 2) a survey investigating what questions individuals want to answer about their health and wellness. We provide examples of how those questions might be answered using 1) frequentist null hypothesis significance testing, 2) frequentist estimation, and 3) Bayesian estimation and prediction. We then provide design recommendations for analyses and visualizations that could help people answer and interpret such questions. We find the majority of the questions people want to answer with self-tracking data are better answered with Bayesian methods than with frequentist methods. Our results therefore provide patient-centered support for the use of Bayesian analysis for n-of-1 studies.
{"title":"A Patient-Centered Proposal for Bayesian Analysis of Self-Experiments for Health.","authors":"Jessica Schroeder, Ravi Karkar, James Fogarty, Julie A Kientz, Sean A Munson, Matthew Kay","doi":"10.1007/s41666-018-0033-x","DOIUrl":"10.1007/s41666-018-0033-x","url":null,"abstract":"<p><p>The rise of affordable sensors and apps has enabled people to monitor various health indicators via self-tracking. This trend encourages self-experimentation, a subset of self-tracking in which a person systematically explores potential causal relationships to try to answer questions about their health. Although recent research has investigated how to support the data collection necessary for self-experiments, less research has considered the best way to analyze data resulting from these self-experiments. Most tools default to using traditional frequentist methods. However, the US Agency for Healthcare Research and Quality recommends using Bayesian analysis for n-of-1 studies, arguing from a statistical perspective. To develop a complementary patient-centered perspective on the potential benefits of Bayesian analysis, this paper describes types of questions people want to answer via self-experimentation, as informed by 1) our experiences engaging with irritable bowel syndrome patients and their healthcare providers and 2) a survey investigating what questions individuals want to answer about their health and wellness. We provide examples of how those questions might be answered using 1) frequentist null hypothesis significance testing, 2) frequentist estimation, and 3) Bayesian estimation and prediction. We then provide design recommendations for analyses and visualizations that could help people answer and interpret such questions. We find the majority of the questions people want to answer with self-tracking data are better answered with Bayesian methods than with frequentist methods. Our results therefore provide patient-centered support for the use of Bayesian analysis for n-of-1 studies.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398612/pdf/41666_2018_Article_33.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37196829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-02-27DOI: 10.1007/s41666-019-00049-0
Gandhimathi Moharasan, Tu-Bao Ho
{"title":"Extraction of Temporal Information from Clinical Narratives","authors":"Gandhimathi Moharasan, Tu-Bao Ho","doi":"10.1007/s41666-019-00049-0","DOIUrl":"https://doi.org/10.1007/s41666-019-00049-0","url":null,"abstract":"","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2019-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41666-019-00049-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"53224785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-02-11DOI: 10.1007/s41666-019-00047-2
Ching-Hua Chen, J. Smyth
{"title":"Special Issue on Health Behavior in the Information Age","authors":"Ching-Hua Chen, J. Smyth","doi":"10.1007/s41666-019-00047-2","DOIUrl":"https://doi.org/10.1007/s41666-019-00047-2","url":null,"abstract":"","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2019-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41666-019-00047-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48050999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01Epub Date: 2019-04-08DOI: 10.1007/s41666-019-00046-3
Zexian Zeng, Liang Yao, Ankita Roy, Xiaoyu Li, Sasa Espino, Susan E Clare, Seema A Khan, Yuan Luo
Accurately identifying distant recurrences in breast cancer from the Electronic Health Records (EHR) is important for both clinical care and secondary analysis. Although multiple applications have been developed for computational phenotyping in breast cancer, distant recurrence identification still relies heavily on manual chart review. In this study, we aim to develop a model that identifies distant recurrences in breast cancer using clinical narratives and structured data from EHR. We applied MetaMap to extract features from clinical narratives and also retrieved structured clinical data from EHR. Using these features, we trained a support vector machine model to identify distant recurrences in breast cancer patients. We trained the model using 1,396 double-annotated subjects and validated the model using 599 double-annotated subjects. In addition, we validated the model on a set of 4,904 single-annotated subjects as a generalization test. In the held-out test and generalization test, we obtained F-measure scores of 0.78 and 0.74, area under curve (AUC) scores of 0.95 and 0.93, respectively. To explore the representation learning utility of deep neural networks, we designed multiple convolutional neural networks and multilayer neural networks to identify distant recurrences. Using the same test set and generalizability test set, we obtained F-measure scores of 0.79 ± 0.02 and 0.74 ± 0.004, AUC scores of 0.95 ± 0.002 and 0.95 ± 0.01, respectively. Our model can accurately and efficiently identify distant recurrences in breast cancer by combining features extracted from unstructured clinical narratives and structured clinical data.
{"title":"Identifying Breast Cancer Distant Recurrences from Electronic Health Records Using Machine Learning.","authors":"Zexian Zeng, Liang Yao, Ankita Roy, Xiaoyu Li, Sasa Espino, Susan E Clare, Seema A Khan, Yuan Luo","doi":"10.1007/s41666-019-00046-3","DOIUrl":"https://doi.org/10.1007/s41666-019-00046-3","url":null,"abstract":"<p><p>Accurately identifying distant recurrences in breast cancer from the Electronic Health Records (EHR) is important for both clinical care and secondary analysis. Although multiple applications have been developed for computational phenotyping in breast cancer, distant recurrence identification still relies heavily on manual chart review. In this study, we aim to develop a model that identifies distant recurrences in breast cancer using clinical narratives and structured data from EHR. We applied MetaMap to extract features from clinical narratives and also retrieved structured clinical data from EHR. Using these features, we trained a support vector machine model to identify distant recurrences in breast cancer patients. We trained the model using 1,396 double-annotated subjects and validated the model using 599 double-annotated subjects. In addition, we validated the model on a set of 4,904 single-annotated subjects as a generalization test. In the held-out test and generalization test, we obtained F-measure scores of 0.78 and 0.74, area under curve (AUC) scores of 0.95 and 0.93, respectively. To explore the representation learning utility of deep neural networks, we designed multiple convolutional neural networks and multilayer neural networks to identify distant recurrences. Using the same test set and generalizability test set, we obtained F-measure scores of 0.79 ± 0.02 and 0.74 ± 0.004, AUC scores of 0.95 ± 0.002 and 0.95 ± 0.01, respectively. Our model can accurately and efficiently identify distant recurrences in breast cancer by combining features extracted from unstructured clinical narratives and structured clinical data.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41666-019-00046-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38633435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1007/s41666-018-0034-9
Haik Kalantarian, Peter Washington, Jessey Schwartz, Jena Daniels, Nick Haber, Dennis P Wall
Autism Spectrum Disorder (ASD) is a condition affecting an estimated 1 in 59 children in the United States. Due to delays in diagnosis and imbalances in coverage, it is necessary to develop new methods of care delivery that can appropriately empower children and caregivers by capitalizing on mobile tools and wearable devices for use outside of clinical settings. In this paper, we present a mobile charades-style game, Guess What?, used for the acquisition of structured video from children with ASD for behavioral disease research. We then apply face tracking and emotion recognition algorithms to videos acquired through Guess What? game play. By analyzing facial affect in response to various prompts, we demonstrate that engagement and facial affect can be quantified and measured using real-time image processing algorithms: an important first-step for future therapies, at-home screenings, and outcome measures based on home video. Our study of eight subjects demonstrates the efficacy of this system for deriving highly emotive structured video from children with ASD through an engaging gamified mobile platform, while revealing the most efficacious prompts and categories for producing diverse emotion in participants.
{"title":"Guess What?: Towards Understanding Autism from Structured Video Using Facial Affect.","authors":"Haik Kalantarian, Peter Washington, Jessey Schwartz, Jena Daniels, Nick Haber, Dennis P Wall","doi":"10.1007/s41666-018-0034-9","DOIUrl":"https://doi.org/10.1007/s41666-018-0034-9","url":null,"abstract":"<p><p>Autism Spectrum Disorder (ASD) is a condition affecting an estimated 1 in 59 children in the United States. Due to delays in diagnosis and imbalances in coverage, it is necessary to develop new methods of care delivery that can appropriately empower children and caregivers by capitalizing on mobile tools and wearable devices for use outside of clinical settings. In this paper, we present a mobile charades-style game, <i>Guess What?</i>, used for the acquisition of structured video from children with ASD for behavioral disease research. We then apply face tracking and emotion recognition algorithms to videos acquired through <i>Guess What?</i> game play. By analyzing facial affect in response to various prompts, we demonstrate that engagement and facial affect can be quantified and measured using real-time image processing algorithms: an important first-step for future therapies, at-home screenings, and outcome measures based on home video. Our study of eight subjects demonstrates the efficacy of this system for deriving highly emotive structured video from children with ASD through an engaging gamified mobile platform, while revealing the most efficacious prompts and categories for producing diverse emotion in participants.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41666-018-0034-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10696608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-19DOI: 10.1007/s41666-018-0041-x
S. Chandrababu, D. Bastola
{"title":"An Integrated Approach to Recognize Potential Protective Effects of Culinary Herbs Against Chronic Diseases","authors":"S. Chandrababu, D. Bastola","doi":"10.1007/s41666-018-0041-x","DOIUrl":"https://doi.org/10.1007/s41666-018-0041-x","url":null,"abstract":"","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41666-018-0041-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"53224583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-13DOI: 10.1007/s41666-018-0040-y
F. van Wyk, Anahita Khojandi, Brian Williams, Don Macmillan, R. Davis, Daniel A. Jacobson, R. Kamaleswaran
{"title":"A Cost-Benefit Analysis of Automated Physiological Data Acquisition Systems Using Data-Driven Modeling","authors":"F. van Wyk, Anahita Khojandi, Brian Williams, Don Macmillan, R. Davis, Daniel A. Jacobson, R. Kamaleswaran","doi":"10.1007/s41666-018-0040-y","DOIUrl":"https://doi.org/10.1007/s41666-018-0040-y","url":null,"abstract":"","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2018-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41666-018-0040-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"53224386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-04DOI: 10.1007/s41666-018-0030-0
Kislaya Kunjan, Huanmei Wu, Tammy R Toscos, B. Doebbeling
{"title":"Large-Scale Data Mining to Optimize Patient-Centered Scheduling at Health Centers","authors":"Kislaya Kunjan, Huanmei Wu, Tammy R Toscos, B. Doebbeling","doi":"10.1007/s41666-018-0030-0","DOIUrl":"https://doi.org/10.1007/s41666-018-0030-0","url":null,"abstract":"","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2018-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41666-018-0030-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41574031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-12DOI: 10.1007/s41666-018-0027-8
Ruiqi Liu, Adriana Pérez, Dongfeng Wu
{"title":"Estimation of Lead Time via Low-Dose CT in the National Lung Screening Trial","authors":"Ruiqi Liu, Adriana Pérez, Dongfeng Wu","doi":"10.1007/s41666-018-0027-8","DOIUrl":"https://doi.org/10.1007/s41666-018-0027-8","url":null,"abstract":"","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41666-018-0027-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"53224343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}