[This corrects the article DOI: 10.1093/biomethods/bpad042.].
[This corrects the article DOI: 10.1093/biomethods/bpad042.].
While the detection of single-nucleotide variants (SNVs) is important for evaluating human health and disease, most genotyping methods require a nucleic acid extraction step and lengthy analytical times. Here, we present a protocol which utilizes the integration of locked nucleic acids (LNAs) into self-annealing loop primers for the allelic discrimination of five isocitrate dehydrogenase 1 R132 (IDH1-R132) variants using loop-mediated isothermal amplification (LAMP). This genotyping panel was initially evaluated using purified synthetic DNA to show proof of specific SNV discrimination. Additional evaluation using glioma tumor lysates with known IDH1-R132 mutational status demonstrated specificity in approximately 35 min without the need for a nucleic acid extraction purification step. This LNA-LAMP-based genotyping assay can detect single base differences in purified nucleic acids or tissue homogenates, including instances where the variant of interest is present in an excess of background wild-type DNA. The pH-based colorimetric indicator of LNA-LAMP facilitates convenient visual interpretation of reactions, and we demonstrate successful translation to an end-point format using absorbance ratio, allowing for an alternative and objective approach for differentiating between positive and negative reactions. Importantly, the LNA-LAMP genotyping panel is highly reproducible, with no false-positive or false-negative results observed.
The establishment of high sensitive detection method for various pathogenic microorganisms remains constantly concerned. In the present study, multi-probe strategy was first systematically investigated followed by establishing a highly sensitive TaqMan real-time fluorescent quantitative PCR (qPCR) method for detecting African swine fever virus (ASFV). Briefly, four probes based on the B646L gene of ASFV were designed and the effects of different combinations of the probes in a single TaqMan qPCR assay on the detection sensitivity were investigated. As less as 0.5-5 copies/μl of the ASFV gene was detected by the established TaqMan qPCR assay. Furthermore, plasmid harboring the B646L in water samples could be concentrated 1000 times by ultrafiltration to enable a highly sensitive detection of trace viral nucleic acids. Moreover, no cross-reactivity was observed with other common clinical swine viruses such as PCV2, PCV3, PCV4, PEDV, PDCoV, CSFV, PRRSV, and PRV. When detecting 173 clinical porcine serum samples, the coincidence rate between the developed method and WOAH (World Organization of Animal Health) recommended method was 100%. This study might provide an integrated strategy to achieve higher detection sensitivity of trace pathogenic microorganisms and applicably sensitive TaqMan-based qPCR assays.
We present four different protocols of varying complexity for the isolation of cell culture-derived extracellular vesicles (EVs)/exosome-enriched fractions with the objective of providing researchers with easily conducted methods that can be adapted for many different uses in various laboratory settings and locations. These protocols are primarily based on polymer precipitation, filtration and/or ultracentrifugation, as well as size-exclusion chromatography (SEC) and include: (i) polyethylene glycol and sodium chloride supplementation of the conditioned medium followed by low-speed centrifugation; (ii) ultracentrifugation of conditioned medium; (iii) filtration of conditioned media through a 100-kDa exclusion filter; and (iv) isolation using a standard commercial kit. These techniques can be followed by further purification by ultracentrifugation, sucrose density gradient centrifugation, or SEC if needed and the equipment is available. HEK293 and SH-SY5Y cell cultures were used to generate conditioned medium containing exosomes. This medium was then depleted of cells and debris, filtered through a 0.2-µM filter, and supplemented with protease and RNAse inhibitors prior to exosomal isolation. The purified EVs can be used immediately or stably stored at 4°C (up to a week for imaging or using intact EVS downstream) or at -80°C for extended periods and then used for biochemical study. Our aim is not to compare these methodologies but to present them with descriptors so that researchers can choose the "best method" for their work under their individual conditions.
Evolution stands as a foundational pillar within modern biology, shaping our understanding of life. Studies related to evolution, for example constructing phylogenetic trees, are often carried out using DNA or protein sequences. These data, readily accessible from public databases, represent a treasure trove of resources that can be harnessed to create engaging activities with the public. At the heart of our project lies a collection of "stories" about evolution, each rooted in genuine scientific publications that furnish both biological context and supporting evidence. These narratives serve as the focal point of our LightOfEvolution.org website. Each story is accompanied by a dedicated "Your Turn to Play" section. Within this section, we furnish user-friendly activities and step-by-step guidelines, equipping visitors with the means to replicate analyses showcased in the highlighted publications. For example, the website OhMyGenes.org, relying on authentic scientific data, provides the capability to compute the proportion of shared genes across different species. Here, visitors can address the captivating question: "How many genes do we share with a banana?" To extend the educational reach, we have developed a series of modular activities, also related to the stories. These activities have been thoughtfully designed to be adaptable for face-to-face workshops held in classrooms or presented during public events. We aim to create stories and activities that resonate with participants, offering a tangible and enjoyable experience. By providing opportunities that reflect real-world scientific practices, we seek to offer participants valuable insights into the current workings of scientists "in the light of evolution."
Successful induction of antibodies in model organisms like mice depends strongly on antigen design and delivery. New antigen designs for immunization are helpful for developing future therapeutic monoclonal antibodies (mAbs). One of the gold standards to induce antibodies in mice is to express and purify the antigen for vaccination. This is especially time-consuming when mAbs are needed rapidly. We closed this gap and used the display technology tetraspanin anchor to develop a reliable immunization technique without the need to purify the antigen. This technique is able to speed up the immunization step enormously and we have demonstrated that we were able to induce antibodies against different proteins with a focus on the receptor-binding domain of SARS-CoV-2 and the extracellular loop of canine cluster of differentiation 20 displayed on the surface of human cells.
COVID-19 affects a variety of organs and systems of the body including the central nervous system. Recent research has shown that COVID-19 survivors often experience neurological and psychiatric complications that can last for months after infection. We conducted a large Internet study using online tests to analyze the effects of SARS-CoV-2 infection, COVID-19 severity, and vaccination on health, intelligence, memory, and information processing precision and speed in a cohort of 4445 subjects. We found that both SARS-CoV-2 infection and COVID-19 severity were associated with negative impacts on patients' health. Furthermore, we observed a negative association between COVID-19 severity and cognitive performance. Younger participants had a higher likelihood of SARS-CoV-2 contraction, while the elderly had a higher likelihood of severe COVID-19 and vaccination. The association between age and COVID-19 severity was primarily mediated by older participants' impaired long-term health. Vaccination was positively associated with intelligence and the precision of information processing. However, the positive association between vaccination and intelligence was likely mediated by achieved education, which was itself strongly associated with the likelihood of being vaccinated.