Pub Date : 2024-07-30eCollection Date: 2024-01-01DOI: 10.1093/biomethods/bpae055
Areej Alsaafin, Hamid R Tizhoosh
We present SEQuence Weighted Alignment for Sorting and Harmonization (Seqwash), an algorithm designed to process sequencing profiles utilizing large language models. Seqwash harmonizes immune cell sequences into a unified representation, empowering LLMs to embed meaningful patterns while eliminating irrelevant information. Evaluations using immune cell sequencing data showcase Seqwash's efficacy in standardizing profiles, leading to improved feature quality and enhanced performance in both supervised and unsupervised downstream tasks for sequencing data.
我们介绍的 SEQuence Weighted Alignment for Sorting and Harmonization(Seqwash)是一种利用大型语言模型处理测序剖面的算法。Seqwash 将免疫细胞序列统一为一个表征,使 LLM 能够嵌入有意义的模式,同时消除不相关的信息。使用免疫细胞测序数据进行的评估显示,Seqwash 在标准化剖面方面的功效显著,从而提高了特征质量,并增强了测序数据在有监督和无监督下游任务中的性能。
{"title":"Harmonizing immune cell sequences for computational analysis with large language models.","authors":"Areej Alsaafin, Hamid R Tizhoosh","doi":"10.1093/biomethods/bpae055","DOIUrl":"https://doi.org/10.1093/biomethods/bpae055","url":null,"abstract":"<p><p>We present SEQuence Weighted Alignment for Sorting and Harmonization (Seqwash), an algorithm designed to process sequencing profiles utilizing large language models. Seqwash <i>harmonizes</i> immune cell sequences into a unified representation, empowering LLMs to embed meaningful patterns while eliminating irrelevant information. Evaluations using immune cell sequencing data showcase Seqwash's efficacy in standardizing profiles, leading to improved feature quality and enhanced performance in both supervised and unsupervised downstream tasks for sequencing data.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142297455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30eCollection Date: 2024-01-01DOI: 10.1093/biomethods/bpae054
David Fröhlich, Michaela Bodner, Günther Raspotnig, Christoph Hahn
The integration of data from multiple sources and analytical techniques to obtain novel insights and answer challenging questions is a hallmark of modern science. In arthropods, exocrine secretions may act as pheromones, defensive substances, antibiotics, as well as surface protectants, and as such they play a crucial role in ecology and evolution. Exocrine chemical compounds are frequently characterized by gas chromatography-mass spectrometry. Technological advances of recent years now allow us to routinely characterize the total gene complement transcribed in a particular biological tissue, often in the context of experimental treatment, via RNAseq. We here introduce a novel methodological approach to successfully characterize exocrine secretions and full transcriptomes of one and the same individual of oribatid mites. We found that chemical extraction prior to RNA extraction had only minor effects on the total RNA integrity. De novo transcriptomes obtained from such combined extractions were of comparable quality to those assembled for samples that were subject to RNA extraction only, indicating that combined chemical/RNA extraction is perfectly suitable for phylotranscriptomic studies. However, in-depth analysis of RNA expression analysis indicates that chemical extraction prior to RNAseq may affect transcript degradation rates, similar to the effects reported in previous studies comparing RNA extraction protocols. With this pilot study, we demonstrate that profiling chemical secretions and RNA expression levels from the same individual is methodologically feasible, paving the way for future research to understand the genes and pathways underlying the syntheses of biogenic chemical compounds. Our approach should be applicable broadly to most arachnids, insects, and other arthropods.
{"title":"Simple protocol for combined extraction of exocrine secretions and RNA in small arthropods.","authors":"David Fröhlich, Michaela Bodner, Günther Raspotnig, Christoph Hahn","doi":"10.1093/biomethods/bpae054","DOIUrl":"10.1093/biomethods/bpae054","url":null,"abstract":"<p><p>The integration of data from multiple sources and analytical techniques to obtain novel insights and answer challenging questions is a hallmark of modern science. In arthropods, exocrine secretions may act as pheromones, defensive substances, antibiotics, as well as surface protectants, and as such they play a crucial role in ecology and evolution. Exocrine chemical compounds are frequently characterized by gas chromatography-mass spectrometry. Technological advances of recent years now allow us to routinely characterize the total gene complement transcribed in a particular biological tissue, often in the context of experimental treatment, via RNAseq. We here introduce a novel methodological approach to successfully characterize exocrine secretions <i>and</i> full transcriptomes of one and the same individual of oribatid mites. We found that chemical extraction prior to RNA extraction had only minor effects on the total RNA integrity. De novo transcriptomes obtained from such combined extractions were of comparable quality to those assembled for samples that were subject to RNA extraction only, indicating that combined chemical/RNA extraction is perfectly suitable for phylotranscriptomic studies. However, in-depth analysis of RNA expression analysis indicates that chemical extraction prior to RNAseq may affect transcript degradation rates, similar to the effects reported in previous studies comparing RNA extraction protocols. With this pilot study, we demonstrate that profiling chemical secretions and RNA expression levels from the same individual is methodologically feasible, paving the way for future research to understand the genes and pathways underlying the syntheses of biogenic chemical compounds. Our approach should be applicable broadly to most arachnids, insects, and other arthropods.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-27DOI: 10.1093/biomethods/bpae053
S. Wurtzer, Mathilde Duvivier, H. Accrombessi, Morgane Levert, Elise Richard, Laurent Moulin
The development of high-throughput sequencing has greatly improved our knowledge of microbial diversity in aquatic environments and its evolution in highly diverse ecosystems. Relevant microbial diversity description based on high throughput sequencing relies on good quality of the nucleic acid recovered. Indeed, long genetic fragments are more informative for identifying mutation combinations that characterize variants or species in complex samples. This study describes a new analytical method based on digital PCR partitioning technology for assessing the fragmentation of nucleic acid and more specifically viral RNA. This method allows to overcome limits associated to hydrolysis probe-based assay by focusing on the distance between different amplicons, and not as usually on the size of amplicons. RNA integrity can thus be determined as a new fragmentation index, so called Fragment size 50. Application of this method has provided information on issues that are inerrant in environmental analyses, such as the storage impact of raw samples or extracted RNA, extraction methods or the nature of the sample on the integrity of viral RNA. Finally, the estimation of fragment size by dPCR showed a very strong similarity with the fragment size sequenced using Oxford Nanopore Technology. In addition to enabling objective improvements in analytical methods, this approach could become a systematic quality control prior to any long-read sequencing, avoiding insufficiently productive sequencing runs or biases in the representativeness of sequenced fragments.
{"title":"Assessing RNA Integrity by Digital RT-PCR: Influence of Extraction, Storage, and Matrices","authors":"S. Wurtzer, Mathilde Duvivier, H. Accrombessi, Morgane Levert, Elise Richard, Laurent Moulin","doi":"10.1093/biomethods/bpae053","DOIUrl":"https://doi.org/10.1093/biomethods/bpae053","url":null,"abstract":"\u0000 The development of high-throughput sequencing has greatly improved our knowledge of microbial diversity in aquatic environments and its evolution in highly diverse ecosystems. Relevant microbial diversity description based on high throughput sequencing relies on good quality of the nucleic acid recovered. Indeed, long genetic fragments are more informative for identifying mutation combinations that characterize variants or species in complex samples. This study describes a new analytical method based on digital PCR partitioning technology for assessing the fragmentation of nucleic acid and more specifically viral RNA. This method allows to overcome limits associated to hydrolysis probe-based assay by focusing on the distance between different amplicons, and not as usually on the size of amplicons. RNA integrity can thus be determined as a new fragmentation index, so called Fragment size 50. Application of this method has provided information on issues that are inerrant in environmental analyses, such as the storage impact of raw samples or extracted RNA, extraction methods or the nature of the sample on the integrity of viral RNA. Finally, the estimation of fragment size by dPCR showed a very strong similarity with the fragment size sequenced using Oxford Nanopore Technology. In addition to enabling objective improvements in analytical methods, this approach could become a systematic quality control prior to any long-read sequencing, avoiding insufficiently productive sequencing runs or biases in the representativeness of sequenced fragments.","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141797860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19eCollection Date: 2024-01-01DOI: 10.1093/biomethods/bpae052
Camilla Mapstone, Helen Hunter, Daniel Brison, Julia Handl, Berenika Plusa
Demand for in vitro fertilization (IVF) treatment is growing; however, success rates remain low partly due to difficulty in selecting the best embryo to be transferred. Current manual assessments are subjective and may not take advantage of the most informative moments in embryo development. Here, we apply convolutional neural networks (CNNs) to identify key windows in pre-implantation human development that can be linked to embryo viability and are therefore suitable for the early grading of IVF embryos. We show how machine learning models trained at these developmental time points can be used to refine overall embryo viability assessment. Exploiting the well-known capabilities of transfer learning, we illustrate the performance of CNN models for very limited datasets, paving the way for the use on a clinic-by-clinic basis, catering for local data heterogeneity.
{"title":"Deep learning pipeline reveals key moments in human embryonic development predictive of live birth after in vitro fertilization.","authors":"Camilla Mapstone, Helen Hunter, Daniel Brison, Julia Handl, Berenika Plusa","doi":"10.1093/biomethods/bpae052","DOIUrl":"10.1093/biomethods/bpae052","url":null,"abstract":"<p><p>Demand for in vitro fertilization (IVF) treatment is growing; however, success rates remain low partly due to difficulty in selecting the best embryo to be transferred. Current manual assessments are subjective and may not take advantage of the most informative moments in embryo development. Here, we apply convolutional neural networks (CNNs) to identify key windows in pre-implantation human development that can be linked to embryo viability and are therefore suitable for the early grading of IVF embryos. We show how machine learning models trained at these developmental time points can be used to refine overall embryo viability assessment. Exploiting the well-known capabilities of transfer learning, we illustrate the performance of CNN models for very limited datasets, paving the way for the use on a clinic-by-clinic basis, catering for local data heterogeneity.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11305813/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1093/biomethods/bpae051
Pedro Ferro-Gallego, Antón Vila-Sanjurjo, Andrea Katherine Valderrama Pereira, Gonzalo Porres Pérez, Lourdes Domínguez-Gerpe
Here, we introduce the highly versatile circular PCR (CiPCR) technique, propose a mechanism of action, and describe a number of examples demonstrating the versatility of this technique. CiPCR takes place between two fragments of dsDNA with two homologous regions, as long as one of the fragments carries said regions at its 3´ and 5´ ends. Upon hybridization, elongation by a polymerase occurs from all 3´ ends continuously until a 5´ end is reached, leading to stable circular dsDNA with staggered nicks. When both dsDNA fragments carry the homology at their 3´ and 5´ ends (Type I CiPCR), all four 3' ends effectively prime amplification of the intervening region and CiPCR products can function as template during the reaction. In contrast, when only one of the two dsDNA fragments carries the homologous regions at its 3´ and 5´ ends and the other carries such regions internally (Type II CiPCR), only two 3´ ends can be amplified and CiPCR products possess no template activity. We demonstrate the applicability of both CiPCR types via well-illustrated experimental examples. CiPCR is well adapted to the quick resolution of most of the molecular cloning challenges faced by the biology/biomedicine laboratory, including the generation of insertions, deletions, and mutations.
{"title":"Circular PCR as an efficient and precise umbrella of methods for the generation of circular dsDNA with staggered nicks: mechanism and types","authors":"Pedro Ferro-Gallego, Antón Vila-Sanjurjo, Andrea Katherine Valderrama Pereira, Gonzalo Porres Pérez, Lourdes Domínguez-Gerpe","doi":"10.1093/biomethods/bpae051","DOIUrl":"https://doi.org/10.1093/biomethods/bpae051","url":null,"abstract":"\u0000 Here, we introduce the highly versatile circular PCR (CiPCR) technique, propose a mechanism of action, and describe a number of examples demonstrating the versatility of this technique. CiPCR takes place between two fragments of dsDNA with two homologous regions, as long as one of the fragments carries said regions at its 3´ and 5´ ends. Upon hybridization, elongation by a polymerase occurs from all 3´ ends continuously until a 5´ end is reached, leading to stable circular dsDNA with staggered nicks. When both dsDNA fragments carry the homology at their 3´ and 5´ ends (Type I CiPCR), all four 3' ends effectively prime amplification of the intervening region and CiPCR products can function as template during the reaction. In contrast, when only one of the two dsDNA fragments carries the homologous regions at its 3´ and 5´ ends and the other carries such regions internally (Type II CiPCR), only two 3´ ends can be amplified and CiPCR products possess no template activity. We demonstrate the applicability of both CiPCR types via well-illustrated experimental examples. CiPCR is well adapted to the quick resolution of most of the molecular cloning challenges faced by the biology/biomedicine laboratory, including the generation of insertions, deletions, and mutations.","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141821028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-13DOI: 10.1093/biomethods/bpae050
Esther Van Den Bos, Jürgen Gadau, L. Schrader
Transposable elements (TEs) are found in virtually every eukaryotic genome and are important for generating de novo genetic variation. However, outside of costly and time-consuming whole-genome sequencing approaches, the set of available methods to study TE polymorphisms in non-model species is very limited. The Transposon Display (TD) is a simple yet effective technique to characterize polymorphisms across samples by identifying amplified fragment length polymorphisms using primers targeting specific TE families. So far, this technique has almost exclusively been used in plants. Here, we present an optimized TD protocol for insect species with small genomes such as ants (ca. 200-600 Mb). We characterized TE polymorphisms between two distinct genetic lineages of the invasive ant Cardiocondyla obscurior, as well as between neighboring populations of the New World lineage. We found active LTR/Ty3 retrotransposons, that contributed to the genetic diversification of populations in this species.
可转座元件(Transposable elements,TEs)几乎存在于每一个真核生物基因组中,对于产生新的遗传变异非常重要。然而,除了昂贵且耗时的全基因组测序方法外,研究非模式物种中 TE 多态性的可用方法非常有限。转座子显示(TD)是一种简单而有效的技术,通过使用针对特定 TE 家族的引物来识别扩增片段长度多态性,从而描述不同样本的多态性特征。迄今为止,这项技术几乎只用于植物。在这里,我们提出了一种针对蚂蚁等基因组较小的昆虫物种(约 200-600 Mb)的优化 TD 方案。我们描述了入侵蚂蚁 Cardiocondyla obscurior 的两个不同基因系之间的 TE 多态性,以及新世界系相邻种群之间的 TE 多态性。我们发现了活跃的 LTR/Ty3 反转座子,这些反转座子促成了该物种种群的遗传多样性。
{"title":"Molecular identification of polymorphic transposable elements in populations of the invasive ant cardiocondyla obscurior","authors":"Esther Van Den Bos, Jürgen Gadau, L. Schrader","doi":"10.1093/biomethods/bpae050","DOIUrl":"https://doi.org/10.1093/biomethods/bpae050","url":null,"abstract":"\u0000 Transposable elements (TEs) are found in virtually every eukaryotic genome and are important for generating de novo genetic variation. However, outside of costly and time-consuming whole-genome sequencing approaches, the set of available methods to study TE polymorphisms in non-model species is very limited. The Transposon Display (TD) is a simple yet effective technique to characterize polymorphisms across samples by identifying amplified fragment length polymorphisms using primers targeting specific TE families. So far, this technique has almost exclusively been used in plants. Here, we present an optimized TD protocol for insect species with small genomes such as ants (ca. 200-600 Mb). We characterized TE polymorphisms between two distinct genetic lineages of the invasive ant Cardiocondyla obscurior, as well as between neighboring populations of the New World lineage. We found active LTR/Ty3 retrotransposons, that contributed to the genetic diversification of populations in this species.","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141650579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1093/biomethods/bpae049
Taras Mika, Martins Kalnins, K. Spalvins
Microorganisms are widely used for the industrial production of various valuable products such as pharmaceuticals, food and beverages, biofuels, enzymes, amino acids, vaccines, etc. Research is constantly carried out to improve their properties, mainly to increase their productivity and efficiency and reduce the cost of the processes. The selection of microorganisms with improved qualities takes a lot of time and resources (both human and material); therefore, this process itself needs optimisation. In the last two decades, microfluidics technology appeared in bioengineering, which allows for manipulating small particles (from tens of microns to nanometer scale) in the flow of liquid in microchannels. The technology is based on small-volume objects (microdroplets from nano to femtoliters), which are manipulated using a microchip. The chip is made of an optically transparent inert to liquid medium material and contains a series of channels of small size (< 1 mm) of certain geometry. Based on the physical and chemical properties of microparticles (like size, weight, optical density, dielectric constant, etc.), they are separated using microsensors. The idea of accelerated selection of microorganisms is the application of microfluidic technologies to separate mutants with improved qualities after mutagenesis. This paper discusses the possible application and practical implementation of microfluidic separation of mutants, including yeasts like Yarrowia lipolytica and Phaffia rhodozyma after chemical mutagenesis will be discussed.
{"title":"The Use Of Droplet-Based Microfluidic Technologies For Accelerated Selection Of Yarrowia lipolytica and Phaffia rhodozyma Yeast Mutants","authors":"Taras Mika, Martins Kalnins, K. Spalvins","doi":"10.1093/biomethods/bpae049","DOIUrl":"https://doi.org/10.1093/biomethods/bpae049","url":null,"abstract":"\u0000 Microorganisms are widely used for the industrial production of various valuable products such as pharmaceuticals, food and beverages, biofuels, enzymes, amino acids, vaccines, etc. Research is constantly carried out to improve their properties, mainly to increase their productivity and efficiency and reduce the cost of the processes. The selection of microorganisms with improved qualities takes a lot of time and resources (both human and material); therefore, this process itself needs optimisation. In the last two decades, microfluidics technology appeared in bioengineering, which allows for manipulating small particles (from tens of microns to nanometer scale) in the flow of liquid in microchannels. The technology is based on small-volume objects (microdroplets from nano to femtoliters), which are manipulated using a microchip. The chip is made of an optically transparent inert to liquid medium material and contains a series of channels of small size (< 1 mm) of certain geometry. Based on the physical and chemical properties of microparticles (like size, weight, optical density, dielectric constant, etc.), they are separated using microsensors. The idea of accelerated selection of microorganisms is the application of microfluidic technologies to separate mutants with improved qualities after mutagenesis. This paper discusses the possible application and practical implementation of microfluidic separation of mutants, including yeasts like Yarrowia lipolytica and Phaffia rhodozyma after chemical mutagenesis will be discussed.","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141662117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Transformers are a powerful subclass of neural networks catalyzing the development of a growing number of computational methods for RNA structure modeling. Here, we conduct an objective and empirical study of the predictive modeling accuracy of the emerging transformer-based methods for RNA structure prediction. Our study reveals multi-faceted complementarity between the methods and underscores some key aspects that affect the prediction accuracy.
{"title":"The landscape of RNA 3D structure modeling with transformer networks.","authors":"Sumit Tarafder, Rahmatullah Roche, Debswapna Bhattacharya","doi":"10.1093/biomethods/bpae047","DOIUrl":"10.1093/biomethods/bpae047","url":null,"abstract":"<p><p>Transformers are a powerful subclass of neural networks catalyzing the development of a growing number of computational methods for RNA structure modeling. Here, we conduct an objective and empirical study of the predictive modeling accuracy of the emerging transformer-based methods for RNA structure prediction. Our study reveals multi-faceted complementarity between the methods and underscores some key aspects that affect the prediction accuracy.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244692/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02eCollection Date: 2024-01-01DOI: 10.1093/biomethods/bpae048
Joao B Xavier
Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce MetaboLiteLearner, a lightweight machine learning framework that harnesses the detailed fragmentation patterns from electron ionization (EI) collected in scan mode during gas chromatography/mass spectrometry to predict changes in the metabolite composition of metabolically adapted cells. When tested on breast cancer cells with different preferences to metastasize to specific organs, MetaboLiteLearner predicted the impact of metabolic rewiring on metabolites withheld from the training dataset using only the EI spectra, without metabolite identification or pre-existing knowledge of metabolic networks. Despite its simplicity, the model learned captured shared and unique metabolomic shifts between brain- and lung-homing metastatic lineages, suggesting cellular adaptations associated with metastasis to specific organs. Integrating machine learning and metabolomics paves the way for new insights into complex cellular adaptations.
{"title":"Machine learning of cellular metabolic rewiring.","authors":"Joao B Xavier","doi":"10.1093/biomethods/bpae048","DOIUrl":"10.1093/biomethods/bpae048","url":null,"abstract":"<p><p>Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce <i>MetaboLiteLearner</i>, a lightweight machine learning framework that harnesses the detailed fragmentation patterns from electron ionization (EI) collected in scan mode during gas chromatography/mass spectrometry to predict changes in the metabolite composition of metabolically adapted cells. When tested on breast cancer cells with different preferences to metastasize to specific organs, <i>MetaboLiteLearner</i> predicted the impact of metabolic rewiring on metabolites withheld from the training dataset using only the EI spectra, without metabolite identification or pre-existing knowledge of metabolic networks. Despite its simplicity, the model learned captured shared and unique metabolomic shifts between brain- and lung-homing metastatic lineages, suggesting cellular adaptations associated with metastasis to specific organs. Integrating machine learning and metabolomics paves the way for new insights into complex cellular adaptations.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141621138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27eCollection Date: 2024-01-01DOI: 10.1093/biomethods/bpae044
Takahiro Bamba, Rina Aoki, Yoshimi Hori, Shu Ishikawa, Ken-Ichi Yoshida, Naoaki Taoka, Shingo Kobayashi, Hisashi Yasueda, Akihiko Kondo, Tomohisa Hasunuma
Biosurfactants have remarkable characteristics, such as environmental friendliness, high safety, and excellent biodegradability. Surfactin is one of the best-known biosurfactants produced by Bacillus subtilis. Because the biosynthetic pathways of biosurfactants, such as surfactin, are complex, mutagenesis is a useful alternative to typical metabolic engineering approaches for developing high-yield strains. Therefore, there is a need for high-throughput and accurate screening methods for high-yield strains derived from mutant libraries. The blood agar lysis method, which takes advantage of the hemolytic activity of biosurfactants, is one way of determining their concentration. This method includes inoculating microbial cells onto blood-containing agar plates, and biosurfactant production is assessed based on the size of the hemolytic zone formed around each colony. Challenges with the blood agar lysis method include low experimental reproducibility and a lack of established protocols for high-throughput screening. Therefore, in this study, we investigated the effects of the inoculation procedure and media composition on the formation of hemolytic zones. We also developed a workflow to evaluate the number of colonies using robotics. The results revealed that by arranging colonies at appropriate intervals and measuring the areas of colonies and hemolytic rings using image analysis software, it was possible to accurately compare the hemolytic activity among several colonies. Although the use of the blood agar lysis method for screening is limited to surfactants exhibiting hemolytic activity, it is believed that by considering the insights gained from this study, it can contribute to the accurate screening of strains with high productivity.
{"title":"High-throughput evaluation of hemolytic activity through precise measurement of colony and hemolytic zone sizes of engineered <i>Bacillus subtilis</i> on blood agar.","authors":"Takahiro Bamba, Rina Aoki, Yoshimi Hori, Shu Ishikawa, Ken-Ichi Yoshida, Naoaki Taoka, Shingo Kobayashi, Hisashi Yasueda, Akihiko Kondo, Tomohisa Hasunuma","doi":"10.1093/biomethods/bpae044","DOIUrl":"10.1093/biomethods/bpae044","url":null,"abstract":"<p><p>Biosurfactants have remarkable characteristics, such as environmental friendliness, high safety, and excellent biodegradability. Surfactin is one of the best-known biosurfactants produced by <i>Bacillus subtilis</i>. Because the biosynthetic pathways of biosurfactants, such as surfactin, are complex, mutagenesis is a useful alternative to typical metabolic engineering approaches for developing high-yield strains. Therefore, there is a need for high-throughput and accurate screening methods for high-yield strains derived from mutant libraries. The blood agar lysis method, which takes advantage of the hemolytic activity of biosurfactants, is one way of determining their concentration. This method includes inoculating microbial cells onto blood-containing agar plates, and biosurfactant production is assessed based on the size of the hemolytic zone formed around each colony. Challenges with the blood agar lysis method include low experimental reproducibility and a lack of established protocols for high-throughput screening. Therefore, in this study, we investigated the effects of the inoculation procedure and media composition on the formation of hemolytic zones. We also developed a workflow to evaluate the number of colonies using robotics. The results revealed that by arranging colonies at appropriate intervals and measuring the areas of colonies and hemolytic rings using image analysis software, it was possible to accurately compare the hemolytic activity among several colonies. Although the use of the blood agar lysis method for screening is limited to surfactants exhibiting hemolytic activity, it is believed that by considering the insights gained from this study, it can contribute to the accurate screening of strains with high productivity.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219306/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}