Pub Date : 2023-03-01DOI: 10.1016/j.tcsw.2023.100104
David Pereira , Thomas Alline , Sébastjen Schoenaers , Atef Asnacios
Root hairs are cells from the root epidermis that grow as long tubular bulges perpendicular to the root. They can grow in a variety of mechanical or chemical environments. Their mechanical properties are mainly due to their stiff cell wall which also constitutes a physical barrier between the cell and its environment. Thus, it is essential to be able to quantify the cell wall mechanical properties and their adaptation to environmental cues. Here, we present a technique we developed to measure the Young’s (elastic) modulus of the root hair cell wall. In essence, using custom-made glass microplates as cantilevers of calibrated stiffness, we are able to measure the force necessary to bend a single living root hair. From these experiments one can determine the stiffness and Young’s modulus of the root hair cell wall.
{"title":"In vivo measurement of the Young’s modulus of the cell wall of single root hairs","authors":"David Pereira , Thomas Alline , Sébastjen Schoenaers , Atef Asnacios","doi":"10.1016/j.tcsw.2023.100104","DOIUrl":"10.1016/j.tcsw.2023.100104","url":null,"abstract":"<div><p>Root hairs are cells from the root epidermis that grow as long tubular bulges perpendicular to the root. They can grow in a variety of mechanical or chemical environments. Their mechanical properties are mainly due to their stiff cell wall which also constitutes a physical barrier between the cell and its environment. Thus, it is essential to be able to quantify the cell wall mechanical properties and their adaptation to environmental cues. Here, we present a technique we developed to measure the Young’s (elastic) modulus of the root hair cell wall. In essence, using custom-made glass microplates as cantilevers of calibrated stiffness, we are able to measure the force necessary to bend a single living root hair. From these experiments one can determine the stiffness and Young’s modulus of the root hair cell wall.</p></div>","PeriodicalId":36539,"journal":{"name":"Cell Surface","volume":"9 ","pages":"Article 100104"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3e/9e/main.PMC10015226.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9141105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-28DOI: 10.1016/j.tcsw.2023.100103
Raymond Wightman
Movement of cellulose synthase particles have so far been observed on the plant epidermis that are amenable to confocal imaging, yielding appreciable signal and resolution to observe small plasma membrane-localised particles. Presented here is a method, using airyscan confocal microscopy, that permits similar information to be obtained at depth within the developing protoxylem vessels of intact roots.
{"title":"Observing cellulose synthases at emerging secondary thickenings in developing xylem vessels of the plant root using airyscan confocal microscopy","authors":"Raymond Wightman","doi":"10.1016/j.tcsw.2023.100103","DOIUrl":"10.1016/j.tcsw.2023.100103","url":null,"abstract":"<div><p>Movement of cellulose synthase particles have so far been observed on the plant epidermis that are amenable to confocal imaging, yielding appreciable signal and resolution to observe small plasma membrane-localised particles. Presented here is a method, using airyscan confocal microscopy, that permits similar information to be obtained at depth within the developing protoxylem vessels of intact roots.</p></div>","PeriodicalId":36539,"journal":{"name":"Cell Surface","volume":"9 ","pages":"Article 100103"},"PeriodicalIF":0.0,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/29/23/main.PMC9996086.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9103061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-17DOI: 10.1016/j.tcsw.2023.100102
Yingxuan Ma , Kim Johnson
Arabinogalactan-proteins (AGPs) are cell wall glycoproteins that make up a relatively small component of the extracellular matrix of plants yet have significant influence on wall mechanics and signalling. Present in walls of algae, bryophytes and angiosperms, AGPs have a wide range of functional roles, from signalling, cell expansion and division, embryogenesis, responses to abiotic and biotic stress, plant growth and development. AGPs interact with and influence wall matrix components and plasma membrane proteins to regulate developmental pathways and growth responses, yet the exact mechanisms remain elusive. Comprising a large gene family that is highly diverse, from minimally to highly glycosylated members, varying in their glycan heterogeneity, can be plasma membrane bound or secreted into the extracellular matrix, have members that are highly tissue specific to those with constitutive expression; all these factors have made it extremely challenging to categorise AGPs many qualities and roles. Here we attempt to define some key features of AGPs and their biological functions.
{"title":"Arabinogalactan proteins – Multifunctional glycoproteins of the plant cell wall","authors":"Yingxuan Ma , Kim Johnson","doi":"10.1016/j.tcsw.2023.100102","DOIUrl":"10.1016/j.tcsw.2023.100102","url":null,"abstract":"<div><p>Arabinogalactan-proteins (AGPs) are cell wall glycoproteins that make up a relatively small component of the extracellular matrix of plants yet have significant influence on wall mechanics and signalling. Present in walls of algae, bryophytes and angiosperms, AGPs have a wide range of functional roles, from signalling, cell expansion and division, embryogenesis, responses to abiotic and biotic stress, plant growth and development. AGPs interact with and influence wall matrix components and plasma membrane proteins to regulate developmental pathways and growth responses, yet the exact mechanisms remain elusive. Comprising a large gene family that is highly diverse, from minimally to highly glycosylated members, varying in their glycan heterogeneity, can be plasma membrane bound or secreted into the extracellular matrix, have members that are highly tissue specific to those with constitutive expression; all these factors have made it extremely challenging to categorise AGPs many qualities and roles. Here we attempt to define some key features of AGPs and their biological functions.</p></div>","PeriodicalId":36539,"journal":{"name":"Cell Surface","volume":"9 ","pages":"Article 100102"},"PeriodicalIF":0.0,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2b/e9/main.PMC9974416.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10844521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-28DOI: 10.1016/j.tcsw.2023.100101
Thomas M. Curry , Maria J. Peña , Breeanna R. Urbanowicz
{"title":"An update on xylan structure, biosynthesis, and potential commercial applications","authors":"Thomas M. Curry , Maria J. Peña , Breeanna R. Urbanowicz","doi":"10.1016/j.tcsw.2023.100101","DOIUrl":"10.1016/j.tcsw.2023.100101","url":null,"abstract":"","PeriodicalId":36539,"journal":{"name":"Cell Surface","volume":"9 ","pages":"Article 100101"},"PeriodicalIF":0.0,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d1/03/main.PMC9898438.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10725199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-25DOI: 10.1016/j.tcsw.2023.100098
Annika Grieß-Osowski , Cătălin Voiniciuc
{"title":"Branched mannan and xyloglucan as a dynamic duo in plant cell walls","authors":"Annika Grieß-Osowski , Cătălin Voiniciuc","doi":"10.1016/j.tcsw.2023.100098","DOIUrl":"10.1016/j.tcsw.2023.100098","url":null,"abstract":"","PeriodicalId":36539,"journal":{"name":"Cell Surface","volume":"9 ","pages":"Article 100098"},"PeriodicalIF":0.0,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10684082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O-Acetyl esterification is an important structural and functional feature of pectins present in the cell walls of all land plants. The amount and positions of pectin acetyl substituents varies across plant tissues and stages of development. Plant growth and response to biotic and abiotic stress are known to be significantly influenced by pectin O-acetylation. Gel formation is a key characteristic of pectins, and many studies have shown that gel formation is dependent upon the degree of acetylation. Previous studies have indicated that members of the TRICHOME BIREFRINGENCE-LIKE (TBL) family may play a role in the O-acetylation of pectin, however, biochemical evidence for acceptor specific pectin acetyltransferase activity remains to be confirmed and the exact mechanism(s) for catalysis must be determined. Pectin acetylesterases (PAEs) affect pectin acetylation as they hydrolyze acetylester bonds and have a role in the amount and distribution of O-acetylation. Several mutant studies suggest the critical role of pectin O-acetylation; however, additional research is required to fully understand this. This review aims to discuss the importance, role, and putative mechanism of pectin O-acetylation.
{"title":"Insights into pectin O-acetylation in the plant cell wall: structure, synthesis, and modification","authors":"Lubana Shahin , Liang Zhang , Debra Mohnen , Breeanna R. Urbanowicz","doi":"10.1016/j.tcsw.2023.100099","DOIUrl":"https://doi.org/10.1016/j.tcsw.2023.100099","url":null,"abstract":"<div><p><em>O</em>-Acetyl esterification is an important structural and functional feature of pectins present in the cell walls of all land plants. The amount and positions of pectin acetyl substituents varies across plant tissues and stages of development. Plant growth and response to biotic and abiotic stress are known to be significantly influenced by pectin <em>O</em>-acetylation. Gel formation is a key characteristic of pectins, and many studies have shown that gel formation is dependent upon the degree of acetylation. Previous studies have indicated that members of the TRICHOME BIREFRINGENCE-LIKE (TBL) family may play a role in the <em>O</em>-acetylation of pectin, however, biochemical evidence for acceptor specific pectin acetyltransferase activity remains to be confirmed and the exact mechanism(s) for catalysis must be determined. Pectin acetylesterases (PAEs) affect pectin acetylation as they hydrolyze acetylester bonds and have a role in the amount and distribution of <em>O</em>-acetylation. Several mutant studies suggest the critical role of pectin <em>O</em>-acetylation; however, additional research is required to fully understand this. This review aims to discuss the importance, role, and putative mechanism of pectin <em>O</em>-acetylation.</p></div>","PeriodicalId":36539,"journal":{"name":"Cell Surface","volume":"9 ","pages":"Article 100099"},"PeriodicalIF":0.0,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49788816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-21DOI: 10.1016/j.tcsw.2023.100097
Antonin Chevenier, Diane Jouanneau, Elizabeth Ficko-Blean
In this review, we summarize the current state of knowledge on the biosynthesis of carrageenan by exploring both the enzyme activities and their localizations. Genomic data, with the sequencing of the genome of Chondrus crispus and the first transcriptomic study into the life cycle stages of this organism, as well as fine carbohydrate structural determination of matrix glycans, provide leads in the study of carrageenan anabolism. Comparison to related carbohydrate-active enzymes, detailed phylogenies alongside classic histochemical studies and radioactivity assays, help predict the localization of the carrageenan-related enzyme biochemistries. Using these insights, we provide an updated model of carrageenan biosynthesis which contributes to understanding the ancestral pathway of sulfated polysaccharide biosynthesis in eukaryotes.
{"title":"Carrageenan biosynthesis in red algae: A review","authors":"Antonin Chevenier, Diane Jouanneau, Elizabeth Ficko-Blean","doi":"10.1016/j.tcsw.2023.100097","DOIUrl":"10.1016/j.tcsw.2023.100097","url":null,"abstract":"<div><p>In this review, we summarize the current state of knowledge on the biosynthesis of carrageenan by exploring both the enzyme activities and their localizations. Genomic data, with the sequencing of the genome of <em>Chondrus crispus</em> and the first transcriptomic study into the life cycle stages of this organism, as well as fine carbohydrate structural determination of matrix glycans, provide leads in the study of carrageenan anabolism. Comparison to related carbohydrate-active enzymes, detailed phylogenies alongside classic histochemical studies and radioactivity assays, help predict the localization of the carrageenan-related enzyme biochemistries. Using these insights, we provide an updated model of carrageenan biosynthesis which contributes to understanding the ancestral pathway of sulfated polysaccharide biosynthesis in eukaryotes.</p></div>","PeriodicalId":36539,"journal":{"name":"Cell Surface","volume":"9 ","pages":"Article 100097"},"PeriodicalIF":0.0,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311240/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10121790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-07DOI: 10.1016/j.tcsw.2023.100095
François Le Mauff , Donald C. Sheppard
Half a century after their discovery, polymers of N-acetylgalactosamine produced by the Aspergilli have garnered new interest as mediators of fungal virulence. Recent work has focused on the Aspergillus fumigatus secreted and cell wall-associated heteropolymer, galactosaminogalactan (GAG). This polymer, composed of galactose (Gal) and partially deacetylated N-acetylgalactosamine (GalNAc), plays a role in a variety of pathogenic processes including biofilm formation, immune modulation and evasion, and resistance to antifungals. Given its many potential contributions to fungal pathogenesis, GAG is a promising therapeutic target for novel antifungal strategies. As such, several studies have sought to elucidate the biosynthetic pathways required for GAG production and secretion. Herein we review the progress made in the understanding of the molecular mechanisms underlying GAG synthesis and identify several gaps in our understanding of this process.
{"title":"Understanding Aspergillus fumigatus galactosaminogalactan biosynthesis: A few questions remain","authors":"François Le Mauff , Donald C. Sheppard","doi":"10.1016/j.tcsw.2023.100095","DOIUrl":"https://doi.org/10.1016/j.tcsw.2023.100095","url":null,"abstract":"<div><p>Half a century after their discovery, polymers of <em>N</em>-acetylgalactosamine produced by the Aspergilli have garnered new interest as mediators of fungal virulence. Recent work has focused on the <em>Aspergillus fumigatus</em> secreted and cell wall-associated heteropolymer, galactosaminogalactan (GAG). This polymer, composed of galactose (Gal) and partially deacetylated <em>N</em>-acetylgalactosamine (GalNAc), plays a role in a variety of pathogenic processes including biofilm formation, immune modulation and evasion, and resistance to antifungals. Given its many potential contributions to fungal pathogenesis, GAG is a promising therapeutic target for novel antifungal strategies. As such, several studies have sought to elucidate the biosynthetic pathways required for GAG production and secretion. Herein we review the progress made in the understanding of the molecular mechanisms underlying GAG synthesis and identify several gaps in our understanding of this process.</p></div>","PeriodicalId":36539,"journal":{"name":"Cell Surface","volume":"9 ","pages":"Article 100095"},"PeriodicalIF":0.0,"publicationDate":"2023-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49788814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}