首页 > 最新文献

Jordanian Journal of Computers and Information Technology最新文献

英文 中文
TRANSMIT ANTENNA SELECTION SCHEMES FOR DOUBLE SPATIAL MODULATION 双空间调制的发射天线选择方案
IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-03-01 DOI: 10.5455/jjcit.71-1567496518
Belal Asaati, A. Hudrouss
التعديل الفضائي المزدوج (DSM) عبارة عن تقنية إرسال تم اقتراحها حديثا لأنظمة اتصالات متعددة المخرجات تمتلك هذه التقنية فاعلية طيفية أعلى مقارنة مع التعديل الفضائي الكلاسيكي (SM) ، فهي تعمل على مضاعفة عدد هوائيات الإرسال الفعالة. في هذه الورقة يتم تطبيق اختيار الهوائي على الفضاء الهوائي المزدوج من أجل تحسين الأداء من حيث معدل خطأ البت (BER). و بشكل أكثر تحديدا نقوم بدمج خوارزميتين دون المستوى الأمثل مع التعديل الفضائي المزدوج ؛ وهما اختيار الهوائيات القائم على السعة المثالية(COAS) و اختيار الهوائي بناءا على الاتساع الارتباط بين الهوائيات (A-C-AS). وقد تم عرض نتائج محاكاة للخوارزميتين ومقارنتها مع اختيار الهوائيات الإقليدية المثالية (EDAS) باستخدام برمجية الماتلاب. تظهر النتائج وجود أفضلية للخوارزميتين من حيث درجة التعقيد الحسابي على الرغم من أن هناك خسارة لا تذكر في معدل خطأ البت ، فالخوارزميتين أقل تعقيدا بكثير من خوارزمية EDAS.
双层空间改造(DSM)是一种新建议的多输出通信系统的传输技术,其光谱比传统的空间改造(SM)更高,可使有效的传输天线的数量增加一倍。在本文件中,天线的选择适用于双天线空间,以提高误误率。更具体地说,我们将两种不理想的算法与双重空间修改相结合;这两种选择是基于理想容量的天线选择,以及基于天线之间的广度选择天线。介绍了两种算法的模拟结果,并将这些结果与使用电脑电脑软件的理想区域天线的选择进行比较。结果显示,两种算法在算法的复杂性方面具有优越性,尽管误差率损失微乎其微,但两种算法比eds算法复杂得多。
{"title":"TRANSMIT ANTENNA SELECTION SCHEMES FOR DOUBLE SPATIAL MODULATION","authors":"Belal Asaati, A. Hudrouss","doi":"10.5455/jjcit.71-1567496518","DOIUrl":"https://doi.org/10.5455/jjcit.71-1567496518","url":null,"abstract":"التعديل الفضائي المزدوج (DSM) عبارة عن تقنية إرسال تم اقتراحها حديثا لأنظمة اتصالات متعددة المخرجات تمتلك هذه التقنية فاعلية طيفية أعلى مقارنة مع التعديل الفضائي الكلاسيكي (SM) ، فهي تعمل على مضاعفة عدد هوائيات الإرسال الفعالة. \u0000في هذه الورقة يتم تطبيق اختيار الهوائي على الفضاء الهوائي المزدوج من أجل تحسين الأداء من حيث معدل خطأ البت (BER). و بشكل أكثر تحديدا نقوم بدمج خوارزميتين دون المستوى الأمثل مع التعديل الفضائي المزدوج ؛ وهما اختيار الهوائيات القائم على السعة المثالية(COAS) و اختيار الهوائي بناءا على الاتساع الارتباط بين الهوائيات (A-C-AS). \u0000وقد تم عرض نتائج محاكاة للخوارزميتين ومقارنتها مع اختيار الهوائيات الإقليدية المثالية (EDAS) \u0000باستخدام برمجية الماتلاب. تظهر النتائج وجود أفضلية للخوارزميتين من حيث درجة التعقيد الحسابي على الرغم من أن هناك خسارة لا تذكر في معدل خطأ البت ، فالخوارزميتين أقل تعقيدا بكثير من خوارزمية EDAS.","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41587148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
MULTI-LABEL RANKING METHOD BASED ON POSITIVE CLASS CORRELATIONS 基于正类相关的多标签排序方法
IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-01-01 DOI: 10.5455/jjcit.71-1592597688
Raed Alazaidah, F. Ahmad, M. Mohsin, F. Thabtah, W. Alzoubi
{"title":"MULTI-LABEL RANKING METHOD BASED ON POSITIVE CLASS CORRELATIONS","authors":"Raed Alazaidah, F. Ahmad, M. Mohsin, F. Thabtah, W. Alzoubi","doi":"10.5455/jjcit.71-1592597688","DOIUrl":"https://doi.org/10.5455/jjcit.71-1592597688","url":null,"abstract":"","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"8 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70819906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
CHANNEL ESTIMATION AND DETECTION FOR OFDM MASSIVE-MIMO IN FLAT AND FREQUENCY SELECTIVE FADING CHANNELS 平坦和频率选择性衰落信道中ofdm海量mimo的信道估计与检测
IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-01-01 DOI: 10.5455/jjcit.71-1588437727
Abdelhamid Riadi, M. Boulouird, hassani moha
{"title":"CHANNEL ESTIMATION AND DETECTION FOR OFDM MASSIVE-MIMO IN FLAT AND FREQUENCY SELECTIVE FADING CHANNELS","authors":"Abdelhamid Riadi, M. Boulouird, hassani moha","doi":"10.5455/jjcit.71-1588437727","DOIUrl":"https://doi.org/10.5455/jjcit.71-1588437727","url":null,"abstract":"","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70820274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arabic Sign Language Characters Recognition Based on Deep Learning Approach and a Simple Linear Classifier 基于深度学习方法和简单线性分类器的阿拉伯手语字符识别
IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-01-01 DOI: 10.5455/jjcit.71-1587943974
Ahmad Hasasneh
One of the best ways of communication between deaf people and hearing people is based on sign language or so-called hand gestures. In the Arab society, only deaf people and specialists could deal with Arabic sign language, which makes the deaf community narrow and thus communicating with normal people difficult. In addition to that, studying the problem of Arabic sign language recognition (ArSLR) has been paid attention recently, which emphasizes the necessity of investigating other approaches for such a problem. This paper proposes a novel ArSLR scheme based on an unsupervised deep learning algorithm, a deep belief network (DBN) coupled with a direct use of tiny images, which has been used to recognize and classify Arabic alphabetical letters. The use of deep learning contributed to extracting the most important features that are sparsely represented and played an important role in simplifying the overall recognition task. In total, around 6,000 samples of the 28 Arabic alphabetic signs have been used after resizing and normalization for feature extraction. The classification process was investigated using a softmax regression and achieved an overall accuracy of 83.32%, showing high reliability of the DBN-based Arabic alphabetical character recognition model. This model also achieved a sensitivity and a specificity of 70.5% and 96.2%, respectively.
聋哑人和正常人之间最好的交流方式之一是基于手语或所谓的手势。在阿拉伯社会,只有聋哑人和专家才能使用阿拉伯手语,这使得聋哑人群体狭窄,难以与正常人交流。此外,近年来对阿拉伯语手语识别问题的研究备受关注,强调了研究其他方法解决该问题的必要性。本文提出了一种新的基于无监督深度学习算法的ArSLR方案,即深度信念网络(DBN)与直接使用微小图像相结合,该方案已被用于识别和分类阿拉伯字母。深度学习的使用有助于提取稀疏表示的最重要特征,并在简化整个识别任务中发挥重要作用。在调整大小和归一化后,总共使用了28个阿拉伯字母符号的大约6000个样本进行特征提取。使用softmax回归对分类过程进行研究,总体准确率达到83.32%,表明基于dbn的阿拉伯字母字符识别模型具有较高的可靠性。该模型的敏感性和特异性分别为70.5%和96.2%。
{"title":"Arabic Sign Language Characters Recognition Based on Deep Learning Approach and a Simple Linear Classifier","authors":"Ahmad Hasasneh","doi":"10.5455/jjcit.71-1587943974","DOIUrl":"https://doi.org/10.5455/jjcit.71-1587943974","url":null,"abstract":"One of the best ways of communication between deaf people and hearing people is based on sign language or so-called hand gestures. In the Arab society, only deaf people and specialists could deal with Arabic sign language, which makes the deaf community narrow and thus communicating with normal people difficult. In addition to that, studying the problem of Arabic sign language recognition (ArSLR) has been paid attention recently, which emphasizes the necessity of investigating other approaches for such a problem. This paper proposes a novel ArSLR scheme based on an unsupervised deep learning algorithm, a deep belief network (DBN) coupled with a direct use of tiny images, which has been used to recognize and classify Arabic alphabetical letters. The use of deep learning contributed to extracting the most important features that are sparsely represented and played an important role in simplifying the overall recognition task. In total, around 6,000 samples of the 28 Arabic alphabetic signs have been used after resizing and normalization for feature extraction. The classification process was investigated using a softmax regression and achieved an overall accuracy of 83.32%, showing high reliability of the DBN-based Arabic alphabetical character recognition model. This model also achieved a sensitivity and a specificity of 70.5% and 96.2%, respectively.","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70820231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
IMPROVING RESPONSE TIME OF TASK OFFLOADING BY RANDOM FOREST, EXTRA-TREES AND ADABOOST CLASSIFIERS IN MOBILE FOG COMPUTING 移动雾计算中随机森林、额外树和adaboost分类器提高任务卸载响应时间
IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-01-01 DOI: 10.5455/jjcit.71-1590557276
Elham Darbanian, Dadmehr Rahbari, Roghayeh Ghanizadeh, M. Nickray
{"title":"IMPROVING RESPONSE TIME OF TASK OFFLOADING BY RANDOM FOREST, EXTRA-TREES AND ADABOOST CLASSIFIERS IN MOBILE FOG COMPUTING","authors":"Elham Darbanian, Dadmehr Rahbari, Roghayeh Ghanizadeh, M. Nickray","doi":"10.5455/jjcit.71-1590557276","DOIUrl":"https://doi.org/10.5455/jjcit.71-1590557276","url":null,"abstract":"","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70819890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
IOT SECURITY FOR SMART GRID ENVIRONMENT: ISSUES AND SOLUTIONS 智能电网环境的物联网安全:问题和解决方案
IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-01-01 DOI: 10.5455/jjcit.71-1595835783
Yuvaraaj Velayutham, Nur Azaliah Abu Bakar, N. H. Hassan, Ganthan Narayana Samy
{"title":"IOT SECURITY FOR SMART GRID ENVIRONMENT: ISSUES AND SOLUTIONS","authors":"Yuvaraaj Velayutham, Nur Azaliah Abu Bakar, N. H. Hassan, Ganthan Narayana Samy","doi":"10.5455/jjcit.71-1595835783","DOIUrl":"https://doi.org/10.5455/jjcit.71-1595835783","url":null,"abstract":"","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70819938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
INTEGRATING UML 2.0 ACTIVITY DIAGRAMS AND PI-CALCULUS FOR MODELING AND VERIFICATION OF SOFTWARE SYSTEMS USING TGG 使用TGG集成uml 2.0活动图和pi演算对软件系统进行建模和验证
IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-01-01 DOI: 10.5455/jjcit.71-1587215553
R. Elmansouri, Said Meghzili, A. Chaoui, A. Belghiat, Omar Hedjazi
{"title":"INTEGRATING UML 2.0 ACTIVITY DIAGRAMS AND PI-CALCULUS FOR MODELING AND VERIFICATION OF SOFTWARE SYSTEMS USING TGG","authors":"R. Elmansouri, Said Meghzili, A. Chaoui, A. Belghiat, Omar Hedjazi","doi":"10.5455/jjcit.71-1587215553","DOIUrl":"https://doi.org/10.5455/jjcit.71-1587215553","url":null,"abstract":"","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70820219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
AN EFFICIENT HOLY QURAN RECITATION RECOGNIZER BASED ON SVM LEARNING MODEL 基于SVM学习模型的高效古兰经诵读识别器
IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-01-01 DOI: 10.5455/jjcit.71-1593380662
K. Nahar, Raed khatib, Moyawiah Shannaq, Malek Barhoush
{"title":"AN EFFICIENT HOLY QURAN RECITATION RECOGNIZER BASED ON SVM LEARNING MODEL","authors":"K. Nahar, Raed khatib, Moyawiah Shannaq, Malek Barhoush","doi":"10.5455/jjcit.71-1593380662","DOIUrl":"https://doi.org/10.5455/jjcit.71-1593380662","url":null,"abstract":"","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70819929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
AGE ESTIMATION USING SPECIFIC DOMAIN TRANSFER LEARNING 使用特定领域迁移学习的年龄估计
IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-01-01 DOI: 10.5455/jjcit.71-1571410322
Arwa Shannaq, Lamiaa A. Elrefaei
Nowadays, the engagement of deep neural networks in computer vision increases the ability to achieve higher accuracy in many learning tasks, such as face recognition and detection. However, the automatic estimation of human age is still considered as the most challenging facial task that demands extra efforts to obtain an accepted accuracy for real application. In this paper, we attempt to obtain a satisfied model that overcomes the overfitting problem, by fine-tuning CNN model which was pre-trained on face recognition task to estimate the real age. To make the model more robust, we evaluated the model for real age estimation on two types of datasets: on the constrained FG_NET dataset, we achieved 3.446 of MAE, while on the unconstrained UTKFace dataset, we achieved 4.867 of MAE. The experimental results of our approach outperform other state-of-the-art age estimation models on the benchmark datasets. We also fine-tuned the model for age group classification task on Adience dataset and our model achieved an accuracy of 61.4%.
如今,深度神经网络在计算机视觉中的应用增加了在许多学习任务中实现更高精度的能力,例如人脸识别和检测。然而,人类年龄的自动估计仍然被认为是最具挑战性的面部任务,需要额外的努力才能获得实际应用所接受的精度。在本文中,我们试图通过微调在人脸识别任务上预训练的CNN模型来估计真实年龄,从而获得一个克服过拟合问题的满意模型。为了使模型更具鲁棒性,我们在两种类型的数据集上评估了模型的真实年龄估计:在有约束的FG_NET数据集上,我们实现了3.446的MAE,而在无约束的UTKFace数据集上,我们实现了4.867的MAE。在基准数据集上,我们的方法的实验结果优于其他最先进的年龄估计模型。我们还对该模型在受众数据集上的年龄组分类任务进行了微调,模型的准确率达到了61.4%。
{"title":"AGE ESTIMATION USING SPECIFIC DOMAIN TRANSFER LEARNING","authors":"Arwa Shannaq, Lamiaa A. Elrefaei","doi":"10.5455/jjcit.71-1571410322","DOIUrl":"https://doi.org/10.5455/jjcit.71-1571410322","url":null,"abstract":"Nowadays, the engagement of deep neural networks in computer vision increases the ability to achieve higher accuracy in many learning tasks, such as face recognition and detection. However, the automatic estimation of human age is still considered as the most challenging facial task that demands extra efforts to obtain an accepted accuracy for real application. In this paper, we attempt to obtain a satisfied model that overcomes the overfitting problem, by fine-tuning CNN model which was pre-trained on face recognition task to estimate the real age. To make the model more robust, we evaluated the model for real age estimation on two types of datasets: on the constrained FG_NET dataset, we achieved 3.446 of MAE, while on the unconstrained UTKFace dataset, we achieved 4.867 of MAE. The experimental results of our approach outperform other state-of-the-art age estimation models on the benchmark datasets. We also fine-tuned the model for age group classification task on Adience dataset and our model achieved an accuracy of 61.4%.","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70820352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
A Comparative Study of DCT and DWT Image Compression Techniques combined with Huffman coding DCT和DWT图像压缩技术与Huffman编码的比较研究
IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2019-08-01 DOI: 10.5455/JJCIT.71-1554982934
Ashraf Y. A. Maghari
لقد شاع استخدام تقنيات ضغط الصور لتخزين البيانات ونقلها، الأمر الذي يتطلب حيزا تخزينيا كبيرا وسرعة نقل عالية. ويؤدي النمو السريع للصور عالية الجودة إلى تنامي الطلب على تقنيات فعالة لتخزين البيانات وتبادلها عبر الانترنت. في هذه الورقة البحثية، نقدم دراسة مقارنة بين خوارزميات تقنيتي DCT و DWT مع استخدام ترميز هوفمان. والمقارنة في هذه الدراسة مبنية على خسمة عوامل: معدل الضغط، ومتوسط مربع الخطأ (MSE)، وأعلى نسب الأشارة إلى الضجيج (PSNR)، ومقياس عامل التشابه البنيوي (SSIM)، وزمن الضغط/ازالة الضغط.
图像压缩技术被广泛用于存储和传输数据,这需要大量的存储空间和高传输速度。高质量图像的快速增长导致对在线存储和交换数据的高效技术的需求不断增长。在本文中,我们介绍了DCT和DWT技术算法与霍夫曼编码的比较研究。本研究中的比较基于以下因素的折合:压力率、平均误差框(MSE)、最高信噪比(PSNR)、结构相似性(SSIM)和压力/减压时间。
{"title":"A Comparative Study of DCT and DWT Image Compression Techniques combined with Huffman coding","authors":"Ashraf Y. A. Maghari","doi":"10.5455/JJCIT.71-1554982934","DOIUrl":"https://doi.org/10.5455/JJCIT.71-1554982934","url":null,"abstract":"لقد شاع استخدام تقنيات ضغط الصور لتخزين البيانات ونقلها، الأمر الذي يتطلب حيزا تخزينيا كبيرا وسرعة نقل عالية. ويؤدي النمو السريع للصور عالية الجودة إلى تنامي الطلب على تقنيات فعالة لتخزين البيانات وتبادلها عبر الانترنت. في هذه الورقة البحثية، نقدم دراسة مقارنة بين خوارزميات تقنيتي DCT و DWT مع استخدام ترميز هوفمان. والمقارنة في هذه الدراسة مبنية على خسمة عوامل: معدل الضغط، ومتوسط مربع الخطأ (MSE)، وأعلى نسب الأشارة إلى الضجيج (PSNR)، ومقياس عامل التشابه البنيوي (SSIM)، وزمن الضغط/ازالة الضغط.","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48512201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Jordanian Journal of Computers and Information Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1