Pub Date : 2023-01-01DOI: 10.1007/s41109-023-00544-9
Sinan A Ozbay, Maximilian M Nguyen
We present a simple method to quantitatively capture the heterogeneity in the degree distribution of a network graph using a single parameter . Using an exponential transformation of the shape parameter of the Weibull distribution, this control parameter allows the degree distribution to be easily interpolated between highly symmetric and highly heterogeneous distributions on the unit interval. This parameterization of heterogeneity also recovers several other canonical distributions as intermediate special cases, including the Gaussian, Rayleigh, and exponential distributions. We then outline a general graph generation algorithm to produce graphs with a desired amount of heterogeneity. The utility of this formulation of a heterogeneity parameter is demonstrated with examples relating to epidemiological modeling and spectral analysis.
{"title":"Parameterizing network graph heterogeneity using a modified Weibull distribution.","authors":"Sinan A Ozbay, Maximilian M Nguyen","doi":"10.1007/s41109-023-00544-9","DOIUrl":"https://doi.org/10.1007/s41109-023-00544-9","url":null,"abstract":"<p><p>We present a simple method to quantitatively capture the heterogeneity in the degree distribution of a network graph using a single parameter <math><mi>σ</mi></math> . Using an exponential transformation of the shape parameter of the Weibull distribution, this control parameter allows the degree distribution to be easily interpolated between highly symmetric and highly heterogeneous distributions on the unit interval. This parameterization of heterogeneity also recovers several other canonical distributions as intermediate special cases, including the Gaussian, Rayleigh, and exponential distributions. We then outline a general graph generation algorithm to produce graphs with a desired amount of heterogeneity. The utility of this formulation of a heterogeneity parameter is demonstrated with examples relating to epidemiological modeling and spectral analysis.</p>","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9784643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1007/s41109-023-00540-z
Shiv G Yücel, Rafael H M Pereira, Pedro S Peixoto, Chico Q Camargo
The COVID-19 pandemic has shed light on how the spread of infectious diseases worldwide are importantly shaped by both human mobility networks and socio-economic factors. However, few studies look at how both socio-economic conditions and the complex network properties of human mobility patterns interact, and how they influence outbreaks together. We introduce a novel methodology, called the Infection Delay Model, to calculate how the arrival time of an infection varies geographically, considering both effective distance-based metrics and differences in regions' capacity to isolate-a feature associated with socio-economic inequalities. To illustrate an application of the Infection Delay Model, this paper integrates household travel survey data with cell phone mobility data from the São Paulo metropolitan region to assess the effectiveness of lockdowns to slow the spread of COVID-19. Rather than operating under the assumption that the next pandemic will begin in the same region as the last, the model estimates infection delays under every possible outbreak scenario, allowing for generalizable insights into the effectiveness of interventions to delay a region's first case. The model sheds light on how the effectiveness of lockdowns to slow the spread of disease is influenced by the interaction of mobility networks and socio-economic levels. We find that a negative relationship emerges between network centrality and the infection delay after a lockdown, irrespective of income. Furthermore, for regions across all income and centrality levels, outbreaks starting in less central locations were more effectively slowed by a lockdown. Using the Infection Delay Model, this paper identifies and quantifies a new dimension of disease risk faced by those most central in a mobility network.
{"title":"Impact of network centrality and income on slowing infection spread after outbreaks.","authors":"Shiv G Yücel, Rafael H M Pereira, Pedro S Peixoto, Chico Q Camargo","doi":"10.1007/s41109-023-00540-z","DOIUrl":"https://doi.org/10.1007/s41109-023-00540-z","url":null,"abstract":"<p><p>The COVID-19 pandemic has shed light on how the spread of infectious diseases worldwide are importantly shaped by both human mobility networks and socio-economic factors. However, few studies look at how both socio-economic conditions and the complex network properties of human mobility patterns interact, and how they influence outbreaks together. We introduce a novel methodology, called the Infection Delay Model, to calculate how the arrival time of an infection varies geographically, considering both effective distance-based metrics and differences in regions' capacity to isolate-a feature associated with socio-economic inequalities. To illustrate an application of the Infection Delay Model, this paper integrates household travel survey data with cell phone mobility data from the São Paulo metropolitan region to assess the effectiveness of lockdowns to slow the spread of COVID-19. Rather than operating under the assumption that the next pandemic will begin in the same region as the last, the model estimates infection delays under every possible outbreak scenario, allowing for generalizable insights into the effectiveness of interventions to delay a region's first case. The model sheds light on how the effectiveness of lockdowns to slow the spread of disease is influenced by the interaction of mobility networks and socio-economic levels. We find that a negative relationship emerges between network centrality and the infection delay after a lockdown, irrespective of income. Furthermore, for regions across all income and centrality levels, outbreaks starting in less central locations were more effectively slowed by a lockdown. Using the Infection Delay Model, this paper identifies and quantifies a new dimension of disease risk faced by those most central in a mobility network.</p>","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10872656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1007/s41109-023-00538-7
Zachary M Boyd, Nick Callor, Taylor Gledhill, Abigail Jenkins, Robert Snellman, Benjamin Webb, Raelynn Wonnacott
Genealogical networks (i.e. family trees) are of growing interest, with the largest known data sets now including well over one billion individuals. Interest in family history also supports an 8.5 billion dollar industry whose size is projected to double within 7 years [FutureWise report HC-1137]. Yet little mathematical attention has been paid to the complex network properties of genealogical networks, especially at large scales. The structure of genealogical networks is of particular interest due to the practice of forming unions, e.g. marriages, that are typically well outside one's immediate family. In most other networks, including other social networks, no equivalent restriction exists on the distance at which relationships form. To study the effect this has on genealogical networks we use persistent homology to identify and compare the structure of 101 genealogical and 31 other social networks. Specifically, we introduce the notion of a network's persistence curve, which encodes the network's set of persistence intervals. We find that the persistence curves of genealogical networks have a distinct structure when compared to other social networks. This difference in structure also extends to subnetworks of genealogical and social networks suggesting that, even with incomplete data, persistent homology can be used to meaningfully analyze genealogical networks. Here we also describe how concepts from genealogical networks, such as common ancestor cycles, are represented using persistent homology. We expect that persistent homology tools will become increasingly important in genealogical exploration as popular interest in ancestry research continues to expand.
{"title":"The persistent homology of genealogical networks.","authors":"Zachary M Boyd, Nick Callor, Taylor Gledhill, Abigail Jenkins, Robert Snellman, Benjamin Webb, Raelynn Wonnacott","doi":"10.1007/s41109-023-00538-7","DOIUrl":"https://doi.org/10.1007/s41109-023-00538-7","url":null,"abstract":"<p><p>Genealogical networks (i.e. family trees) are of growing interest, with the largest known data sets now including well over one billion individuals. Interest in family history also supports an 8.5 billion dollar industry whose size is projected to double within 7 years [FutureWise report HC-1137]. Yet little mathematical attention has been paid to the complex network properties of genealogical networks, especially at large scales. The structure of genealogical networks is of particular interest due to the practice of forming unions, e.g. marriages, that are typically well outside one's immediate family. In most other networks, including other social networks, no equivalent restriction exists on the distance at which relationships form. To study the effect this has on genealogical networks we use persistent homology to identify and compare the structure of 101 genealogical and 31 other social networks. Specifically, we introduce the notion of a network's persistence curve, which encodes the network's set of persistence intervals. We find that the persistence curves of genealogical networks have a distinct structure when compared to other social networks. This difference in structure also extends to subnetworks of genealogical and social networks suggesting that, even with incomplete data, persistent homology can be used to meaningfully analyze genealogical networks. Here we also describe how concepts from genealogical networks, such as common ancestor cycles, are represented using persistent homology. We expect that persistent homology tools will become increasingly important in genealogical exploration as popular interest in ancestry research continues to expand.</p>","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950181/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9353129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-02-16DOI: 10.1007/s41109-023-00534-x
Ferenc Béres, Tamás Vilmos Michaletzky, Rita Csoma, András A Benczúr
We investigate automatic methods to assess COVID vaccination views in Twitter content. Vaccine skepticism has been a controversial topic of long history that has become more important than ever with the COVID-19 pandemic. Our main goal is to demonstrate the importance of network effects in detecting vaccination skeptic content. Towards this end, we collected and manually labeled vaccination-related Twitter content in the first half of 2021. Our experiments confirm that the network carries information that can be exploited to improve the accuracy of classifying attitudes towards vaccination over content classification as baseline. We evaluate a variety of network embedding algorithms, which we combine with text embedding to obtain classifiers for vaccination skeptic content. In our experiments, by using Walklets, we improve the AUC of the best classifier with no network information by. We publicly release our labels, Tweet IDs and source codes on GitHub.
{"title":"Network embedding aided vaccine skepticism detection.","authors":"Ferenc Béres, Tamás Vilmos Michaletzky, Rita Csoma, András A Benczúr","doi":"10.1007/s41109-023-00534-x","DOIUrl":"10.1007/s41109-023-00534-x","url":null,"abstract":"<p><p>We investigate automatic methods to assess COVID vaccination views in Twitter content. Vaccine skepticism has been a controversial topic of long history that has become more important than ever with the COVID-19 pandemic. Our main goal is to demonstrate the importance of network effects in detecting vaccination skeptic content. Towards this end, we collected and manually labeled vaccination-related Twitter content in the first half of 2021. Our experiments confirm that the network carries information that can be exploited to improve the accuracy of classifying attitudes towards vaccination over content classification as baseline. We evaluate a variety of network embedding algorithms, which we combine with text embedding to obtain classifiers for vaccination skeptic content. In our experiments, by using Walklets, we improve the AUC of the best classifier with no network information by. We publicly release our labels, Tweet IDs and source codes on GitHub.</p>","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10765431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-15DOI: 10.1007/s41109-022-00523-6
Marcos S. Lyra, B. Damásio, Flávio L. Pinheiro, F. Bação
{"title":"Fraud, corruption, and collusion in public procurement activities, a systematic literature review on data-driven methods","authors":"Marcos S. Lyra, B. Damásio, Flávio L. Pinheiro, F. Bação","doi":"10.1007/s41109-022-00523-6","DOIUrl":"https://doi.org/10.1007/s41109-022-00523-6","url":null,"abstract":"","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45918762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-15DOI: 10.1007/s41109-022-00524-5
M. Óskarsdóttir, Kristín Eva Gísladóttir, Ragnar Stefánsson, Damián E. Aleman, Carlos Sarraute
{"title":"Social networks for enhanced player churn prediction in mobile free-to-play games","authors":"M. Óskarsdóttir, Kristín Eva Gísladóttir, Ragnar Stefánsson, Damián E. Aleman, Carlos Sarraute","doi":"10.1007/s41109-022-00524-5","DOIUrl":"https://doi.org/10.1007/s41109-022-00524-5","url":null,"abstract":"","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42859870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-06DOI: 10.1007/s41109-023-00537-8
Eniko Zakar-Polyák, Marcell Nagy, Roland Molontay
{"title":"Towards a better understanding of the characteristics of fractal networks","authors":"Eniko Zakar-Polyák, Marcell Nagy, Roland Molontay","doi":"10.1007/s41109-023-00537-8","DOIUrl":"https://doi.org/10.1007/s41109-023-00537-8","url":null,"abstract":"","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42837900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1007/s41109-022-00521-8
Jinyoung Pung, R. D’Souza, D. Ghosal, Michael Zhang
{"title":"A road network simplification algorithm that preserves topological properties","authors":"Jinyoung Pung, R. D’Souza, D. Ghosal, Michael Zhang","doi":"10.1007/s41109-022-00521-8","DOIUrl":"https://doi.org/10.1007/s41109-022-00521-8","url":null,"abstract":"","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47208199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-15DOI: 10.1007/s41109-022-00516-5
Magnus Neuman, Viktor Jonsson, J. Calatayud, M. Rosvall
{"title":"Cross-validation of correlation networks using modular structure","authors":"Magnus Neuman, Viktor Jonsson, J. Calatayud, M. Rosvall","doi":"10.1007/s41109-022-00516-5","DOIUrl":"https://doi.org/10.1007/s41109-022-00516-5","url":null,"abstract":"","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46620934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-09DOI: 10.1007/s41109-023-00559-2
Ayan Chatterjee, Qingtao Cao, A. Sajadi, B. Ravandi
{"title":"Deterministic random walk model in NetLogo and the identification of asymmetric saturation time in random graph","authors":"Ayan Chatterjee, Qingtao Cao, A. Sajadi, B. Ravandi","doi":"10.1007/s41109-023-00559-2","DOIUrl":"https://doi.org/10.1007/s41109-023-00559-2","url":null,"abstract":"","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41876202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}