Under climate change scenarios freshwater eutrophication is expected to increase, and with it the occurrence of cyanobacterial toxin-producing harmful algal blooms. In the current study, microcystin toxin occurrence data from literature sources and a long-term provincial monitoring program were used to conduct a probabilistic hazard assessment for Alberta, Canada. The large temporal and spatial range of data makes Alberta a model system for identifying regional geography and water body trophic status factors driving toxin concentrations. Environmental exposure distributions of microcystin concentrations were plotted and used to identify the likelihood of a given sample exceeding water guideline values as a function of regional geography, total phosphorus and chlorophyll-a concentration. This process identified regions with intensive cultivation and those most prone to water deficits associated with climate change to be most associated with exceedances of regulatory guideline values. Elevated phosphorus and chlorophyll-a concentrations were also drivers of toxin occurrence. This assessment can be used to identify water bodies of greatest risk to human and animal populations from cyanotoxins and thereby inform regulators as to most effective monitoring strategies.
Snakebite is a major global health concern, for which antivenom remains the only approved treatment to neutralise the harmful effects of the toxins. However, some medically important toxins are poorly immunogenic, resulting in reduced efficacy of the final product. Boosting the immunogenicity of these toxins in the commercial antivenom immunising mixtures could be an effective strategy to improve the final dose efficacy, and displaying snake antigens on Virus-like particles (VLPs) is one method for this. However, despite some applications in the field of snakebite, VLPs have yet to be explored in methods that could be practical at an antivenom manufacturing scale. Here we describe the utilisation of a “plug and play” VLP system to display immunogenic linear peptide epitopes from three finger toxins (3FTxs) and generate anti-toxin antibodies. Rabbits were immunised with VLPs displaying individual consensus linear epitopes and their antibody responses were characterised by immunoassay. Of the three experimental consensus sequences, two produced antibodies capable of recognising the consensus peptides, whilst only one of these could also recognise native whole toxins. Further characterisation of antibodies raised against this peptide demonstrated a sub-class specific response, and that these were able to elicit partially neutralising antibody responses, resulting in increased survival times in a murine snakebite envenoming model.
Snakebite in the Middle East and North Africa (MENA) is a public health problem whose magnitude is not fully known. Several antivenoms are available in these regions, but these formulations are designed for restricted geographical settings. Many countries do not have local production of antivenoms and must access products whose clinical performance has not been demonstrated. We hypothesize that it is possible to unify the treatment for viperid snakebites of MENA in a single antivenom formulation. Hereby we describe the design, development and preclinical evaluation of an antivenom of broad geographical coverage for this region (MENAVip-ICP). We produced this antivenom from the plasma of horses immunized with eight medically important venoms of viperid snake species from MENA. For this, we used a strategy based on two stages: first, immunization of horses with North African (NA) venoms, followed by a second immunization stage, on the same horses, with MENA venoms. We purified antivenoms from both stages: the Anti-NA and the final product Anti-MENA (MENAVip-ICP). Anti-NA was considered as intermediate formulation and was purified with the intention to study the progression of the immunoglobulin immune response of the horses. Antivenoms from both stages neutralized lethal, hemorrhagic, and procoagulant activities of homologous venoms. Compared to Anti-NA, MENAVip-ICP improved the neutralization profile of intravenous lethality and in vitro procoagulant activities of venoms. A notable finding was the difference in the neutralization of lethality when MENAVip-ICP was assessed intraperitoneally versus intravenously in the murine model. Intraperitoneally, MENAVip-ICP appears more effective in neutralizing the lethality of all venoms. Furthermore, MENAVip-ICP neutralized the lethal activity of venoms of species from other regions of MENA, Central/East Asia, and Sub-Saharan Africa that were not included in the immunization protocol. Our results showed that MENAVip-ICP neutralizes the main toxic activities induced by viperid MENA venoms at the preclinical level. Consequently, it is a promising product that could be clinically assessed for the treatment of snakebite envenomings in this region.
Approximately 1 million scorpion stings are recorded annually worldwide, resulting in 3000 deaths. Scorpion venom has various effects on the human body, with neurological complications occurring in about 2% of cases. Among these complications, stroke—whether ischemic or hemorrhagic—is particularly significant. A systematic literature review was conducted through a bibliographic search using key terms in the PubMed, Scopus, Scielo, Latin American and Caribbean Literature in Health Sciences (LILACS) and Google Schoolar databases without date restrictions. Articles related to stroke due to scorpion stings in Spanish, English, and Portuguese were included. Our protocol was registered in PROSPERO. A total of 24 articles met the inclusion criteria for this review. The primary neurological symptoms caused by scorpion stings include hemiplegia, hemiparesis, seizures, and limb weakness. Stroke should be suspected in the presence of these symptoms, as scorpion stings can lead to both hemorrhagic and ischemic strokes in both adults and pediatric populations. While stroke is a rare complication of scorpion stings, it is crucial to consider this diagnosis in patients presenting with neurological symptoms, necessitating the use of computed tomography or magnetic resonance imaging if stroke is suspected.

